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Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging
microscopy (FLIM) and global analysis provide a way in which protein–protein interactions
may be spatially localized and quantified within biological cells. The FRET efficiency and
proportion of interacting molecules have been determined using bi-exponential fitting to
time-domain FLIM data from a multiphoton time-correlated single-photon counting
microscope system. The analysis has been made more robust to noise and significantly
faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times.
Data have been simulated, as well as acquired from cell experiments, and the accuracy of a
modified Levenberg–Marquardt fitting technique has been explored. Multi-image global
analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a
short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers
practical analysis and time-resolved-image manipulation, which have been targeted towards
providing fast execution, robustness to low photon counts, quantitative results and
amenability to automation and batch processing.

Keywords: fluorescence lifetime; time-correlated single-photon counting;
time-domain fluorescence lifetime imaging microscopy; Förster resonance energy transfer;
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1. INTRODUCTION

Identifying specific cellular protein–protein inter-
actions in space and time, and elucidating their
function, are now of great importance in the post-
genomic era. Such interactions occur over a spatial
distance of a few nanometres, placing heavy demands
on any experimental technique that may be capable of
resolving them. The detection of Förster (or fluor-
escence) resonance energy transfer (FRET) is one such
technique, which is sensitive at these small distance
scales (Voss et al. 2005; Wallrabe & Periasamy 2005).
FRET can be detected optically and used to monitor
protein interactions if the proteins are conjugated with
suitable donor and acceptor fluorophores, such that the
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fluorescence emission spectrum of the donor overlaps
the absorption spectrum of the acceptor and their
dipoles align. The interaction, detected optically via
FRET, can be localized with a spatial accuracy of a few
hundred nanometres.

FRET depletes the excited state population of the
donor reducing the intensity and the lifetime of
the donor fluorescence. It is well known that the
efficiency of energy transfer between these fluoro-
phores varies as the inverse sixth power of the
distance between acceptor and donor (Lakowicz
1999). The advantages of using donor fluorescence
lifetime to detect FRET via fluorescence lifetime
imaging microscopy (FLIM) as opposed to intensity
based methods (Jares-Erijman & Jovin 2006) are the
independence of the measurement to fluorophore
concentration and light path as well as removing the
need to make numerous normalizing measurements to
obtain a quantitative result (Jares-Erijman & Jovin
2006). It is therefore well suited to studies in intact
cells (Ng et al. 1999; Wouters et al. 2001).
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FLIM may be achieved by several methods that
include: time-correlated single-photon counting
(TCSPC) in the time domain (Tadrous 2000; Ameer-
Beg et al. 2002; Chen & Periasamy 2004; Becker et al.
2006) and the frequency-domain method (Gadella et al.
1993; Bastiaens & Squire 1999; Lakowicz 1999). When
TCSPC is used, the sample is excited repeatedly with
delta-like pulses of light, and the time delays between
these pulses and fluorescence photons emitted by the
sample are measured, thus building a record of
the transient fluorescence response of the sample. The
exciting light is focused to record the response at a
single point, which is then scanned over the sample to
record an image. The frequency domain method often
involves illuminating the sample with sinusoidally
modulated light and recording the fluorescence signal
emitted. Measurement of the phase shift and demodu-
lation of the signal owing to the sample enables its
lifetime to be determined. When several modulation
frequencies are employed more than one lifetime may
be determined. We choose to use TCSPC owing to its
increased sensitivity over frequency-domain tech-
niques, allowing modest illumination powers to be
used (Gratton et al. 2003). Time-domain FLIM has
been frequently used in the context of biological
microscopy and there are many examples in the
literature (Peter & Ameer-Beg 2004; Voss et al. 2005;
Festy et al. 2007; Hille et al. 2008; Liu et al. 2008).
Although, frequency-domain FLIM allows for simpler
experimental set-ups, it has a more limited temporal
dynamic range, unless multiple modulation frequencies
are used. However, the accuracy of the results is
ultimately determined by the linearity of the demodu-
lation process (Mizeret et al. 1999). Moreover, fre-
quency-domain techniques generally require high signal
intensities and are less appropriate for operation in a
photon counting mode. Conversely, TCSPC methods
are generally limited in their maximal counting rates
and are thus more appropriate when signal intensities
are low. The efficiency of photon usage is best
described using the ‘figure of merit’ (F; Gerritsen
et al. 2002; Philip & Carlsson 2003); for TCSPC, this is
near to unity while it is typically poorer for frequency
domain methods.

Quantifying the interacting sub-population of donor-
labelled proteins is an important aim of an inter-
molecular FRET experiment. The reduction in lifetime
due to FRET is dependant on the FRET efficiency and
therefore, on the separation of the donor and acceptor
fluorophores (Lakowicz 1999). Since there will be a
distribution of separations for the ensemble of donor
molecules, it would be most appropriate to consider the
fitting of a complex distributed lifetime model to the
transient fluorescence signal and recover the distance
distribution of fluorophores (Rolinski et al. 2000).
However, given the complexity of this approach, the
need for extremely high photon counts to achieve
statistically relevant results and the almost on/off
nature of the sixth power dependence on distance, it is
reasonable to assume that only two populations of
donor molecules are present, i.e. interacting and
non-interacting. This is particularly, relevant in
experiments that involve fluorophores that exhibit
J. R. Soc. Interface (2009)
mono-exponential decays as it allows the use of a
bi-exponential model to analyse these two populations.
The experiments in this paper use green fluorescent
protein (GFP) as the FRET donor that does exhibit a
mono-exponential decay under our preparation proto-
cols in live cells (see the electronic supplementary
material and Ameer-Beg et al. (2003) and Parsons et al.
(2005)), despite some reports to the contrary when
measured in solution. Many studies can be performed
while meeting this requirement for a mono-exponential
donor. Newer fluorescent proteins (Shaner et al. 2005)
may not exhibit mono-exponential decay kinetics and
would require more complex fitting models that are also
implemented using our global methods. Similar
complex models may be required in cases where
significant autofluorescence is present. In our
experience with live and fixed cell work this has not
been required. Since short acquisition times are
desirable in most biological applications, a good photon
economy is required. In practice, the most widely used
time-resolved detectors are photomultiplier tubes
(Becker 2005) and their quantum efficiency peaks in
the green part of the spectrum, and are therefore well
matched to GFP.

Previously, the analysis of FLIM/FRET data at low
photon counts has been often hampered by the use of
mono-exponential lifetime decay models that cannot
distinguish the interacting fraction of donor–acceptor
pairs from the FRET efficiency. In a mixed population,
where there is a distribution of molecular separations or
unbound donor fluorophores, multiple exponential
decay kinetics are most likely observed. A high FRET
efficiency arising from a low concentration of interact-
ing molecules may lead to the incorrect assumption
that there is little or no interaction. The FRET
efficiency and interacting fraction can be resolved
with the use of a bi-exponential model. Extracting
additional parameters with statistical significance
places greater demands on the accuracy of the data,
and appropriate signal-to-noise levels must be main-
tained. One must be especially careful where a
technique such as TCSPC is used. This is often
count-rate-limited and the major noise contribution
thus has a Poisson statistical nature. In general, a total
photon count of 1000 would provide a good mono-
exponential fit whereas nearer 10 000 counts are
required to fit a bi-exponential model (Kollner &
Wolfrum 1992). The latter may increase substantially
under practical conditions where background counts
are above zero or where the difference in component
lifetimes is small.

This work describes and explores fitting mono- and
bi-exponential models to real and simulated transient
data. We use a global fitting algorithm that can be used
to relax the signal-to-noise requirements at individual
image points, and combine the data from the whole
image or multiple images, retaining the spatial and
temporal resolution, under the assumption that the
donor lifetimes of the interacting and non-interacting
populations are constant. It has previously been
demonstrated that the meaning of global from ‘all
pixels in one image’ can be expanded to ‘all pixels in
an experiment’ (Clayton et al. 2004). In this paper,
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we demonstrate the practical use of the modified
Levenberg–Marquardt (MLM) algorithm as part of a
practical and ‘biologist friendly’ software tool, in fixed
and live-cell examples, extending it to multi-image
global analysis and building upon a preliminary
publication that was based on simulated data (Barber
et al. 2005) and several detailing practical application
(Ameer-Beg et al. 2002, 2003, 2005; Parsons et al.
2005; McConnell et al. 2007; Prag et al. 2007; Levitt
et al. 2008).

There have been reports of the application of global
analysis to time-domain data (e.g. Beechem & Haas
1989), but applications to time-domain FLIM have
been limited. One such application relied on the
combination of data from segmented image regions to
obtain good initial estimates and speed up the iterative
fitting procedure (Pelet et al. 2004). Although, in some
cases, that approach has merit, the work described here
uses significant optimizations for fitting exponential
decay functions, such that model convergence occurs
quickly (in several seconds for a typical image) without
region-based assumptions, by using the rapid lifetime
determination (RLD; Sharman et al. 1999) method
to achieve good initial lifetime estimates. Others
have shown an increased performance with low-
photon-count data through the use of maximum-
likelihood techniques (Bajzer et al. 1991).

Global analysis has previously been used to extract
bi-exponential information from frequency-domain
techniques (Verveer & Bastiaens 2003) in which single,
or limited, frequency data can be used to extract FRET
efficiency and population information if similar assump-
tions about constant lifetimes across the sample are
made. Other authors have explored the benefits of
graphical methods (Clayton et al. 2004) and techniques
based on lifetime moments (Esposito et al. 2005). One
technique that has been proposed to deal with complex
multi-exponential decays, without the need for fitting,
is the phasor plot (Digman et al. 2008), which can be
applied to both time and frequency-domain data. This
technique, although a powerful visual tool (Wouters &
Esposito 2008), and useful at low photon counts,
requires further processing if quantitative or automated
results are required. This may involve fitting a non-
linear distribution function to the two-dimensional
data clouds. Under typical experimental conditions,
one is usually faced with images of low signal-to-noise
ratio (i.e. due to low fluorophore concentrations and the
requirement for low pixel dwell times when imaging live
cells) that makes these techniques, including those
using other transforms (e.g. Laplace, Fourier or
Laguerre) somewhat unsuitable to our problem
(Pelet et al. 2004). Although, the benefits of global
techniques can also be harnessed with such transforms
(Jo et al. 2005).

The techniques presented in this paper are comp-
lementary to those works but are applied to the analysis
of time-domain data. Similar numerical techniques
(e.g. Marquardt minimization) and assumptions (e.g.
constant image lifetimes) are often used in both
domains. All techniques, including the work presented
here, require that there is sufficient variation in
populations across the sample (a low interacting
J. R. Soc. Interface (2009)
fraction, less than 0.2, can be tolerated as long as
areas of higher fraction, more than 0.5, are also present)
and that there is sufficient difference in component
lifetimes. It is these aspects that are explored in this
text. However, a most important aspect of FLIM is that
a single image consists of several hundred thousand
decay curves that must be analysed and therefore
speed and amenability to automation are key to the
practical application of the fitting algorithm and
the software application that embeds it. We have con-
centrated on an algorithm that is fast, provides
quantitative results, is readily used in automated
systems or batch processing and robustly handles
time-resolved images with low-photon counts.
2. MATERIAL AND METHODS

2.1. Time-domain multiphoton FLIM

Time-domain FLIM was performed with two multi-
photon microscopy systems. System 1 (Ameer-Beg
et al. 2002), was based on a modified MRC 1024MP
workstation (Bio-Rad, Hemel Hempstead, UK),
Millenia X and Tsunami 3941S femtosecond self-
mode-locked Ti:Sapphire laser (Spectra Physics Lasers,
Inc., Mountain View, CA, USA), TE300 microscope
body (Nikon Instruments Europe B.V., The Nether-
lands) and SPC730 TCSPC electronics (Becker &
Hickl, Berlin, Germany). System 2, was based on a
Mira Ti:Sapphire laser (Coherent, Santa Clara, CA,
USA), a TE2000 microscope body (Nikon), an in-house
developed scan head, SPC830 single-photon counting
electronics (Becker & Hickl) and a temperature
controlled enclosure. Non-descanned detection was
afforded in both systems by the use of fast single-
photon response, photomultiplier tubes (7400 series,
Hamamatsu Ltd., Japan) situated in the re-projected
pupil plane of the objective. The instrument responses
were measured from the hyper-Rayleigh scattering of
highly attenuated excitation in a suspension of 20 nm
colloidal gold (G-1652, Sigma-Aldrich Company Ltd,
Dorset, UK; Habenicht et al. 2002) and found to be
approximately 170 ps full width at half maximum and
these measured responses were used in the fitting of
data. Photons were collected at 500 nm (filter 35-5040,
Coherent). The laser power was adjusted to give average
photon counting rates of the order 104–105 photons sK1

and with peak rates approaching 106 photons sK1, below
the maximum counting rate afforded by the TCSPC
electronics to avoid pulse pile-up (Becker 2005). The
photon arrival times, with respect to the approximately
80 MHz repetitive laser pulses, were binned into 64 or
256 time windows over a total measurement period of
10 ns. Images were captured with a 40! objective lens
(Plan Fluor 40!/1.3 oil, Nikon) at either 128!128 or
256!256 pixels, with imaged areas of 67!67 or 157!
157 mm, respectively.
2.2. Analysis of FLIM data

The following bi-exponential fluorescence decay model
was fitted to the data by iterative reconvolution
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(Grinvald & Steinberg 1974; Periasamy 1988)

IcðtÞZZ CI0

ðN
KN

IinstrðtKt 0Þ$ a1 expðKt=t1Þð

Ca2 expðKt=t2ÞÞdt 0; ð2:1Þ
where

a1 Ca2 Z 1; ð2:2Þ
and Iinstr(t) is the instrumental response; I0 is the peak
intensity; a1 and a2 are the fractional proportions of the
lifetimes, t1 and t2, respectively. The same equation
with a2Z0 was used for the mono-exponential model.
The reduced goodness-of-fit parameter, c2

r , was used as
defined by

c2
r Z

Xn
kZ1

½I ðtkÞKIcðtkÞ�2

IcðtkÞ
nKp

; ð2:3Þ

where I(tk) is the data and Ic(tk) the fit value at the kth
time point, tk; n is the number of time points; and p the
number of variable fit parameters. Normalizing by the
value of the fit (Ic(tk)), rather than the data (I(tk)) in
equation (2.3) leads to less-biased estimates, especially
when photon counts are low (Sharman et al. 1999). c2

r

was minimized using a modified MLM algorithm
(Levenberg 1944).

Assuming the second exponential component relates
to the interacting population, we use the following
definition of FRET efficiency:

hFRET Z 1K
t2

t1
: ð2:4Þ

The interacting fraction is simply given by a2. This
differs from the usual definition of fractional contri-
bution for populations of mixed species, which equates
the area under the transient (aiti) to the number of
molecules. This is not generally appropriate for the
detection of energy transfer as the two populations will
have different quantum yields but the fact that they
have the same radiative lifetime allows the comparison
of signal amplitudes (Lakowicz 1999).

The MLM algorithm is sensitive, in both the result
and the speed of convergence, to the prior estimated
parameters that are used to initiate it, as others have
found (e.g. Pelet et al. 2004). Key to our algorithm is
the use of the RLD method (Woods et al. 1984;
Sharman et al. 1999) to estimate these initial para-
meters. The RLD method is based on the fact that a
good estimate of the lifetime of a single exponential
decay can be obtained by performing three integrals
over the decay curve. The result is somewhat sensitive
to the time intervals that define these integrals and our
algorithm optimizes these by iteratively decreasing the
intervals from 1/3 of the total recorded time, to 1/4,
1/5, 1/6, 1/8, 1/10, etc., while the c2

r continues to fall
(always using the first three neighbouring time inter-
vals nearest the start of the transient). If the decay is
complex and not mono-exponential in form, then an
‘average’ lifetime results from RLD. In our implemen-
tation of MLM, this average lifetime is used to derive
the initial guesses for each of lifetimes required by the
current fitting model (i.e. based on the RLD result
tRLD, t1ZtRLD, t2Z2!tRLD/3, t3ZtRLD/3, where ti
is the lifetime of the ith exponential component in a
multi-exponential decay).
J. R. Soc. Interface (2009)
From the initial guesses the algorithm iterates, using
the Levenberg–Marquardt method, to reduce c2

r .
Iteration continues until c2

r!1:5 or 10 consecutive
iterations do not reduce the c2

r (i.e. a change less than
10K7 as single-precision floating point numbers are
used). An estimate of the error in the fitted parameters
is calculated based on the shape of the c2

r landscape, but
the accuracy of this error varies depending upon the
number of iterations used to reach an acceptable c2

r

minimum. More of the c2
r landscape or ‘support plane’

can be calculated if required but we have found that
more reliable estimates of practical errors are obtained
from Monte Carlo type experiments with simulated
data as presented in this paper.

Our MLM algorithm is embedded in the software
application named time-resolved imaging, which is at
its second major release (TRI2). This implements a user
interface and code framework that enables the use of
mono-, bi-, tri- and stretched-exponential models that
allow for experiments using fluorophores with complex
decays or where there may be interfering autofluores-
cence (Benny Lee et al. 2001). The application is based
around a flexible image viewing and manipulation
framework that includes pre-processing (e.g. pixel
binning), batch processing, c2

r support plane analysis,
macro abilities and image processing functions for
three-dimensional time-resolved data (figure 1). A copy
of the executable program is available on request from
the authors. Details of image storage, processing
and presentation can be found in the electronic
supplementary material.
2.3. Global analysis

The above analysis may be performed on each pixel of
the image in turn (pixel-by-pixel analysis where we
make no spatial or temporal restraints on the fitting
parameters), but in addition it may be extended to
analyse all pixels globally under the assumption that
the lifetimes of interacting and non-interacting species,
and therefore the FRET efficiency, are constant across
all pixels (global analysis; Verveer et al. 2000). The
signal-to-noise ratio of the data is critical in determin-
ing parameter accuracy (Eaton 1990; Istratov &
Vyvenko 1999; Lakowicz 1999; Gratton et al. 2003);
global analysis exploits the Poissonian nature of
TCSPC data to obtain robust lifetime estimates but
also allows fractions (a1 and a2) to vary on a pixel-
by-pixel basis. The entire dataset is considered simul-
taneously to minimize a global c2 value.

Both the individual pixel and global fitting algo-
rithms use the nonlinear least-squares method, based
on the c2 gradient. The constant lifetime assumption
results in a significant speed-up in execution of the
global algorithm. The modifications in this MLM
algorithm are the pre-calculation of many differentials,
as well as their convolutions with the instrument
response reduce significantly the number of calculations
that need to be performed for each pixel. The use of the
RLDmethod for parameter estimation from three areas
under the transient is used to provide initial parameter
estimation, speeding up convergence. The memory
requirements are surprisingly modest as the most
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Figure 1. Screenshots from the time-resolved analysis program, TRI2. (a) The data from a point, selected from the image (top
left), displayed on a graph together with a fit to the data (right-hand side). In the lower left of this panel the fitted parameters are
shown. The parameter in red has been fixed by the user for this particular fit. (b) The framework image viewer and parametric
images produced as a result of a bi-exponential fit to every pixel in an image. Macros have been implemented to calculate the
interacting fractions (F ) and the FRET efficiency based on the fit results. The ‘support plane’ functions for exploring the change
in c2

r as a function of fitted parameters is shown in (c).

Global analysis multiphoton time-domain FLIM P. R. Barber et al. S97
memory hungry part of the algorithm, optimizing
amplitude parameters for each individual pixel, is
essentially linear owing to global lifetime values. On a
32-bit Windows computer, the 2 GB per process
memory limit will allow the global analysis of approxi-
mately 120 images (256!256 pixels by 64 time points).
These optimizations formed the basis for our implemen-
tation of the global least-squares approach and the
mathematical detail on our implementation of this
global analysis method can be found in a previous
publication (Barber et al. 2005).
2.4. Simulated transient generation

The fitting algorithms were tested with simulated data
of the expected signal from a model of the TCSPC
system. Unlike other simulations, we included the fact
J. R. Soc. Interface (2009)
that the excitation laser operates at a pulse repetition
rate of approximately 80 MHz, in the following simple
manner. If the pulses are separated by T seconds, then
(Barber et al. 2005)

I ðtÞZZ CI0
Xm
iZ1

Riai expðKt=tiÞ; ð2:5Þ

where

Ri Z 1C
1

expðT=tiÞK1
:

This raw fluorescence signal was convolved with a
Gaussian excitation pulse and simulated Poisson noise
was added to simulate real photon counts. All
simulated data included both a fixed background and
the effect of repetitive excitation.
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3. RESULTS

The performance of the MLM fitting algorithms for
both pixel-by-pixel and global analysis has been
explored with simulated data previously (Barber et al.
2005). With global analysis of a 32!32 pixel image, the
error in extracted mono-exponential lifetime was lower
than 0.4 per cent for signals with a peak of 500 photon
counts or more, over the lifetime range 0.5–3.0 ns
(640–3840 total counts per pixel). The fitting model and
method could fit mono-exponential lifetimes up to 20 ns
(with less than 5 per cent error in the recovered
lifetime) by adequately estimating the fixed back-
ground from the post-pulse data. In this regime, the
effects of a repetitive excitation do not preclude fitting
of such long lifetimes and throughout our analysis the
use of the time window prior to the pulse to estimate
any fixed background was not used, nor should it be
owing to the possible effect of repetitive excitation.

Bi-exponential decays were also modelled in order
to simulate a FRET experiment with GFP as the
donor (t1Z2.15 ns) and a peak photon count of 500.
Provided the lifetime of GFP undergoing FRET was
belowz1 ns (hFRETO0.5), an interacting population
of 10 per cent could be accurately characterized. There
was, however, increasing difficulty in determining the
interacting fraction as this lifetime increased
abovez1.6 ns (hFRET!0.25). Introducing the concept
of an apparent FRET efficiency (hAPZhFRET!a2), we
can say that good results are obtained when hAPO0.2,
with this number of counts. This definition of hAP

is useful as it approximates the effective FRET effi-
ciency measured when a mono-exponential fitting
model is used (see below).

Additional simulated data and two experiments
demonstrating the performance with fixed and live
cell data now follow.
3.1. Comparison between pixel-by-pixel and
global analysis: simulated data

Figure 2 offers a visual indication of the performance
when fitting a bi-exponential for a particular FRET
pair and expresses the results in terms of FRET effi-
ciency and interacting fraction. A theoretical FRET
pair with an unquenched donor lifetime of 2.1 ns and a
quenched lifetime of 0.4 ns was chosen. We compare
mono- and bi-exponential models, fitted by pixel-
by-pixel and global algorithms. In the sample image,
the bi-exponential amplitudes vary from 0 to 1000
counts independently and linearly from left to right for
component 1 and top to bottom for component 2 giving
rise to the intensity pattern of figure 2a.

The RLD method alone gives a fast result but one
which is biased to lower apparent FRET efficiency.
Mono-exponential pixel-by-pixel MLM fits are three
times slower to calculate than RLD but offer a more
robust result. Bi-exponential MLM fits reveal the
interacting fraction as well as FRET efficiency; pixel-
by-pixel fits taking five to seven times longer than RLD.
A bi-exponential global MLM fit takes only 30 per cent
longer than RLD and reveals the cleanest result.
The exponential component amplitudes recovered
J. R. Soc. Interface (2009)
from the simulated data are given in figure 2h,i and
these clearly show the variation in these parameters.
With simulated data, it is possible to get good estimates
of the error in the parameters determined through
repeated experiments with independent noise. The
lifetime values determined by global analysis, over
eight experiments, were 2.100G0.002 ns and 0.400G
0.001 ns (meanGs.d.), and hFRETZ0.809G0.002.

If the FRET efficiency is known, or can be estimated,
prior to analysis then an interacting fraction can be
inferred from a mono-exponential model. In figure 3, we
show this and compare it to bi-exponential fitting for a
system similar to figure 2 (t1Z2.1 ns, t2Z0.4 ns).
Mathematically, one can define two average lifetimes
for bi-exponential data (Lakowicz 1999); both are
weighted averages of the component lifetimes. The
lifetime can be weighted by its fractional contribution:

tZ

X
ait

2
iX

ajtj
; ð3:1Þ

or by its fractional amplitude

htiZ
X

aiti; ð3:2Þ

where t represents a lifetime and a the corresponding
component proportions (see §2). In our experience, the
measured lifetime from fitting a mono-exponential
model to bi-exponential data using MLM and RLD is
always between these two values, but usually closer to
the average weighted by the fractional amplitude. The
estimation of the FRET efficiency from this average
lifetime is poor when the interacting fraction is low,
being only correct when a2Z1.0.

First, the theoretical FRET efficiency was calculated
for both cases corresponding to equations (3.1) and
(3.2), lifetime weighted by contribution or by ampli-
tude. These are the solid and dotted lines in figure 3,
respectively. The ideal result is a constant line at 0.81
(Z1K0.4/2.1). This effective FRET efficiency calcu-
lated using the amplitude weighted lifetime is
equivalent to the apparent FRET efficiency, hAP,
defined above. Then mono-exponential model fits,
using both RLD and MLM algorithms, were applied
to simulated data. The results are overlaid on to figure 3
in green and red. It can be seen that the MLM
determined values lie close to those derived from
amplitude-weighted lifetimes. The RLD data lie on a
number of lines due to the optimization algorithm
attempting to find the best widths for the integration
periods (lines correspond to integration bins that are
1/3 and 1/4 of the transient’s duration). The results of
fitting a bi-exponential model are also presented
(yellow and black; the black is often obscured by the
yellow in figure 3b). A global bi-exponential fit produces
good and constant lifetimes and a line at a FRET
efficiency of 0.81 (black).

Pixel-by-pixel bi-exponential fits (yellow) suffer
when the interacting fraction is very small or very
large (i.e. fits are good when 0.2!hAP!0.7). This is due
to the signal representing one lifetime, swamping the
other and precluding its accurate determination.
Global analysis obviously wins here as it has good
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Figure 2. Comparing mono- and bi-exponential models fitted by pixel-by-pixel and global algorithms to simulated data. (a) Total
intensity image. (b,c) FRET efficiency from RLD and mono-exponential global MLM fits. FRET efficiency and interacting
fraction maps, respectively, from (d,e) bi-exp global and (f,g) bi-exp pixel fits. (h,i) The component amplitudes recovered using a
global bi-exponential fit and the recovered lifetimes, 2.100 and 0.401 ns. The true lifetimes used to generate the data were 2.100
and 0.400 ns (FRET efficiencyZ0.81). Below each image is its histogram over the pixel intensity range shown.
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estimates of lifetimes, derived from the whole image at
all values of hAP. This analysis indicates that great care
must be taken when applying bi-exponential fits on a
pixel-by-pixel basis, owing to this failure at low and
high interacting fractions. Indeed, mono-exponential
fits provide a more robust analysis provided it short-
comings are understood (cf. figure 2b,c,e,g).

If the unquenched lifetime can be determined from
areas of the image where its signal amplitude is good,
then its value can be fixed, and pixel-by-pixel
bi-exponential fits perform much better in the high-
interacting-fraction regime; however, selecting portions
of the image is hard to automate. Furthermore, if this
unquenched lifetime can be determined from an
independent sample, an attempt can also be made to
determine FRET efficiency and interacting fraction
from fitting a mono-exponential model by calculating
FRET efficiency from the lowest observed average
lifetime and then using equations (2.2) and (3.2) to
calculate a2 (figure 3b). This allows fast RLD type
J. R. Soc. Interface (2009)
techniques to be used that would be more robust than
bi-exponential pixel fitting at the extremes of interact-
ing fraction (e.g. hAP!0.2 or hAPO0.7 in this case).

3.2. Comparison between pixel-by-pixel and
global analysis: cell data

As an example of the efficacy of global fitting, we have
applied it to an experiment to image the interaction of a
neural Wiskott–Aldrich syndrome protein (N-WASP)
with protein Cdc42 (Parsons et al. 2005). Cells were
microinjected with plasmids encoding GFP-N-WASP
and HA-tagged WT or N17 inactive mutant Cdc42,
fixed, and stained with a Cy3-conjugated anti-HA IgG
Fab fragment. Multiphoton donor FLIM was under-
taken on System 1 to determine the extent of FRET
between GFP-N-WASP (donor) and anti-HA-Cy3
(acceptor). Acquired images consisted of 128!128
pixels and 256 time bins. Figure 4 shows a series of
images that compare the results of pixel and global fits
to mono- and bi-exponential models. Acceptor-absent
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Figure 3. (a,b) Comparing the measured (dots) or calculated
(lines) FRET efficiency and interacting fraction for RLD,
mono- and bi-exponential MLM fits, using both pixel-
by-pixel and global algorithms on the simulated data of
figure 1. From the estimates of FRET efficiency measured by
a mono-exponential MLM fit (a: red dots) one sees that the
recovered lifetime resembles that of a theoretical average
lifetime derived by weighting by the fractional amplitudes
(a: dashed line). With this information, and assuming a
FRET efficiency a priori, a good estimate of the interacting
fraction can be made (b: red dots), which is often better than
pixel-by-pixel bi-exponential fits (b: yellow dots), and RLD
(b: green dots). However, bi-exponential fits (yellow dots)
produce the correct result for FRET efficiency and interact-
ing fraction over a limited range of true interacting fractions
without assumptions about the FRET effciency. Only global
analysis (black dots) gives the correct result over the whole
range of interacting fractions. All data are simulated. See
text for a detailed explanation. t1Z2.1 ns, t2Z0.4 ns in all
cases; signal amplitudes range from 0 to 2000 counts. Green
dots, RLD; red dots, mono-exp MLM; black dots, bi-exp
global MLM; yellow dots, bi-exp MLM; solid line, contri-
bution weighted calculated values; dashed line, amplitude
weighted calculated values.
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control cells were used to verify and measure the
unquenched GFP lifetime. The mean lifetime from
the control (2.18 ns) was fixed as a parameter in the
bi-exponential fits.

Figure 4b,c shows that using mono-exponential
analysis, FRET is detected, with an effective FRET
efficiency of approximately 0.3. If we move to a
bi-exponential model, we are able to calculate an
interacting fraction, which, together with the calcu-
lated FRET efficiency, is shown in figure 4f,g, respect-
ively. When using global fitting (figure 4d,e) constant
lifetimes are assumed across the dataset and the
calculated FRET efficiency is constant at a value of
near 0.63. The main differences between the histograms
produced by global and pixel fitting are explored in
figure 4j. Pixel-by-pixel fitting results in a population
of pixels showing an interacting fraction near 1.0
which are clearly artefactual (black area). These are
J. R. Soc. Interface (2009)
due to insufficient representation of the unquenched
lifetime component, resulting in near mono-exponential
data and ill-defined bi-exponential fits at these
pixels. These rogue pixels contribute to the extremes
of the FRET efficiency histogram (black area), the
remaining pixels are clustered around the global
analysis result of 0.63.
3.3. Comparison between pixel-by-pixel and
multi-image global analysis: time-lapsed
cell data

It is often beneficial in time-lapse experiments to
acquire images with a short intervening time interval
such that a higher temporal resolution can be main-
tained. This results in a limited period for photon
accumulation and low-photon-count images. We per-
formed the following experiment to demonstrate the
robust estimation of lifetimes from such data while
maintaining temporal and spatial resolution.

The Rho family of small GTPase proteins (Cdc42,
Rac and Rho) integrate changes in the extra or
intracellular environment and transduce them to
downstream effectors (Ridley 2006). The Rho GTPase
Cdc42 has been implicated in organization of the actin
cytoskeleton (Hall 1998), especially the production of
filopodia (Kozma et al. 1995). Here, the human
epithelial carcinoma cell line A431 was stimulated
with epidermal growth factor (EGF) and Cdc42
activity monitored using the FRET probe Raichu-
Cdc42 (Nakagawa et al. 1998; Itoh et al. 2002), which
was adapted to make it suitable for two-photon FLIM
by forming a GFP-Raichu-mRFP1 probe (see the
electronic supplementary material). Cells were imaged
on System 2 at 1 frame (256!256 pixels by 64 time
bins) approximately every 15 s for several frames and
then recombinant human EGF-biotin (Invitrogen) was
added to the medium to a final concentration of
10 ng mlK1. Any changes in focal plane were then
compensated for and the cell imaging continued (see the
electronic supplementary material).

If the spatial distribution of the interaction is of no
interest (or is assumed irresolvable for experimental
reasons) then lifetime invariant fits (where all data in
the image or series of images is summed and fitted for
an average lifetime or lifetimes) is of use. Figure 5a
shows the time course of average lifetime from mono-
exponential invariance fits. A bi-exponential lifetime
invariant fit of the whole dataset revealed an interact-
ing lifetime of 1.36 ns, and similar analysis of control
data revealed a non-interacting lifetime of 2.41 ns
(see the supplementary data); this slightly increased
GFP lifetime was found to be consistent across live
cell experiments. These values can be used as fixed
parameters for further image by image, bi-exponential,
lifetime invariant fits. This analysis is presented in
figure 5b and reveals the time course of interacting
fraction. If the resolution of spatial information is
desirable then binned pixel-by-pixel fitting can be
performed, again by using the two lifetimes determined
by invariant fits as fixed parameters; this is presented in
figure 5c. Use of a multi-image global fit by-passes
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many of these steps, reveals an interacting lifetime of
1.39 ns and the time course of interacting fraction, in
agreement with other observations (Kurokawa et al.
2004), and in a approximately one-fifth of the calcu-
lation time (figure 5d).
4. DISCUSSION

In §3, the power and potential shortcomings of MLM
fitting have been represented, and the additional
benefits offered by global analysis have been demon-
strated. Inferring the FRET efficiency from a fit to a
mono-exponential model can be extremely misleading
as only the average lifetime can be calculated, but such
a fit may be of use if it is well understood.

The time required to process the data from an area of
an image similar to a typical cell (4000 pixels, 0.5 mm
J. R. Soc. Interface (2009)
per pixel scale) on a pixel-by-pixel basis varied from
approximately 2 s for RLD fits to 16 s for bi-exponential
MLM fits, with global bi-exponential analysis taking
3 s. All measurements were taken on an Intel P4
2.4 GHz PC (see table 1 in the electronic supple-
mentary material). This global fitting technique is fast
to calculate owing to the optimizations that can be
made when fitting exponential data (see §2). Further
speed-up could be achieved through the use of
multithreading as algorithms of this type can be made
highly parallel.

Therefore, the method of choice for deriving the
FRET efficiency and interacting fraction is global

fitting of a bi-exponential model which provides both

these quantities automatically, using only the data

from the current image. The fact that robust estimates

of FRET efficiency and interacting fraction can be
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Figure 5. Monitoring Cdc42 activity before and after the addition of EGF (at time zero) using the FRET probe Raichu-Cdc42 in a
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lifetime of 2.41 ns (see the electronic supplementary material) and this was used to perform bi-exponential fitting. (a) Mono-
exponential image-by-image lifetime-invariant fitting reveals a time course in the lifetime suggesting FRET is occurring after time
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made from a single image makes the global fitting
technique amenable to high-throughput and high-
content screening applications. Mono-exponential fit-
ting, with appropriate prior knowledge or assumptions,
is an alternative which should be used in preference to
pixel-by-pixel bi-exponential fitting, approximately
J. R. Soc. Interface (2009)
when hAP!0.2 or hAPO0.7 (the actual values depend
on the true hFRET). However, when dealing with low
photon count, time-lapse data, the assumptions would
have to be derived from pixel-binned information, and
there are no obvious selection criteria that can be
applied in all cases.
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In some circumstances, where prior knowledge of
component lifetimes is available, more conventional
fitting approaches (e.g. lifetime invariant fits) are
comparably accurate. However, global analysis
approaches, as described, are significantly more robust
to varying experimental conditions and less prone to
potentially improper manipulation of data by the user.
Here, we show that global approaches are valid, as
confirmed by comparison with conventional approaches
with simulated and experimental data are robust at the
extreme of interacting fraction and can be made
significantly faster.

In experiments where interfering acceptor fluor-
escence is present, advantage may come from fitting a
tri- or stretched-exponential model such that additional
terms can account for the acceptor fluorescence. Any
conventional complex exponential fitting would require
higher counts in order to be meaningful but this
requirement is relaxed and such fitting is easily dealt
with using our global analysis technique. The fact that
interacting fractions can be derived from transients of
only several hundred counts compared with several tens
of thousands is indicative of the power of the technique.
Additional information on our implementation can be
found in table 2 and figures in the electronic supple-
mentary material.

FLIM has the potential to become a potent
technique for high-content and high-throughput
screening and if this potential is to be realized, it
would be beneficial for at least one of two aspects to be
improved. First, the speed of acquisition should be
increased, without increasing the light exposure of the
sample. However, the counting rate of TCSPC hard-
ware is fundamentally limited to a small fraction of the
excitation rate and radically different hardware
arrangements must be used. Second, processing
methods must be improved such that lower photon
counts can be tolerated. The algorithms presented in
this paper have been targeted to contribute to the
second of these requirements.

The FLIM processing of the future may provide fast
answers to specific questions for a particular assay,
such as indicating if FRET activity has exceeded a
given threshold or not. In these cases, fitting a fast
mono-exponential model may be preferable, provided
sufficient prior knowledge is available and the biologi-
cal system has been appropriately characterized. Such
approaches, coupled with fuzzy reasoning or Bayesian
decision making (Ruanaidh & Fitzgerald 1996), may
provide fast yes/no answers for screening purposes.
When characterizing the biological system, more
complex models coupled with global analysis or more
exploratory tools, such as phasor plots, may provide
slower but more detailed analysis. It is, of course,
essential, not to lose sight of the application, but
rather to use the appropriate analysis method from the
array of approaches available for both time and
frequency domains.
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