
1

Prof Alexander M. Korsunsky

Hilary Term (January 08)
http://users.ox.ac.uk/~engs0161/4me6.html

C1B Stress Analysis
Lecture 1:

Minimum Energy Principles
in Mechanics

2

This course
introduces selected chapters in Stress Analysis

1. Energy principles in deformation theories.
Variational calculus. Euler equation and

boundary conditions.
Application to beam bending.
The Rayleigh-Ritz method.

2. Further Euler, Rayleigh-Ritz, and Galerkin.
Generalisation to higher dimensions. Piecewise
approximation, and the connection with the FEM.

3. Fundamentals of anisotropic elasticity: Stress,
strain, elastic constants. The system of equations
of elasticity. Analytical solution of elastic
problems.

Plane stress and plane strain.
The wedge problem.
Fundamental singular solution for problems

involving plane contacts. Connection with the
Boundary Element Method (BEM). Solution of
contact problems using BEM.

4. Fundamental solutions in elasticity theory.
The Williams wedge analysis.
The Westergaard stress function.

3

Energy minimisation

A simple spring model shows how problems can be
solved using the energy minimisation approach,
rather than the system of equilibrium equations.
The elastic energy stored in the spring is found as
the work done by the internal forces over the
displacements, i.e.

During uniaxial deformation of ties, columns,
beams etc. the strain energy density (i.e. the
elastic stored energy per unit volume) is given by:

Key steps of solution by energy minimisation:

•Identify key parameters that describe deformation

•Express total energy in terms of unknown parameters

•Minimise energy with respect to these parameters

To develop understanding of solving problems by energy minimisation, we will
follow this strategy:

1). Discuss fundamentals of minimising functionals (e.g. integrals), known as
the calculus of variations.

2). Learn about the derivation and use of Euler’s equation, and the attendant
boundary conditions. We will apply Euler’s equation to the problem of
bending a simply supported beam and a built-in cantilever.

3). Learn how fast and error-free derivations can be carried out using a
symbolic algebra package, such as Mathematica.

3). Introduce the direct parametrisation and minimisation technique known
as the Rayleigh-Ritz method. We will then assess its accuracy by
comparison with exact solutions.

4). Introduce another method for solving minimisation problems, known as
the Galerkin method.

2
2

1
0

d ,dddd εεσεεεσεσ
ε

EUEU ===== ∫

2
2

1
0

d ,ddd kxxFxUxkxxFU ==== ∫
ε

4

Energy Functionals

Let v(x) denote the deflection. Strain energy density for a bent beam :

For a tie/column:

For a shaft:

Note that in all cases the energy is expressed as an integral of some
derivative of the deformed shape.
In order to find a solution, the integral must be minimised with respect
to the choice of a function, e.g., v(x), u(x) or θ (x).
Additionally, the function must satisfy some boundary conditions at the
ends of the interval (or possibly within). For example, at the ends x=0, L
of a bent beam free, simply supported, or built-in conditions may be
prescribed.
Note that, in general, the energy integral contains a combination of the
function and its derivatives of different orders.

Minimisation of a functional is the problem of the calculus of variations

2
2

1
0

d ,ddd εεσεεεσ
ε

EUEU ==== ∫
() () xv''EIxv''AyExAEW

LA LV

ddddd 2
2

122
2

12
2

1 ∫∫ ∫∫ === ε

() xu'EAW
L

d2
2

1 ∫=

() x'GJW
L

d2
2

1 ∫= θ

The energy to be minimised is
often expressed as an integral.
As examples we can consider:
• elastic bending of a beam
• axial tension or compression in
ties and columns
• torsion of shafts

5

Variational calculus

Problem: Find a function y(x) that makes the following integral W[y] take a
minimum value:

Boundary conditions on the unknown function y(x) may be prescribed:
y(a)=y0, y(b)=y1, y’(a)=y’0, y’(b)=y’1, etc.

If y(x) is the solution, how do we seek it?

Let’s try to adjust the methods known from minimisation of functions.

Let y(x) be a solution. Construct comparison or trial solutions

When α=0, y becomes the solution. Require , etc.,
so that y still satisfies all boundary conditions.

Now minimise W as a function of α.

How do we determine the conditions on the solution y(x) ?
We know that at a minimum of a function f(x), its derivative fx vanishes.
Another way of saying the same thing is that the variation δf=fxδx vanishes.

We now develop the same approach to finding the minimum of functional
W[y].

Consider an increment of the introduced parameter α, and find the
expression for the variation δW. We identify the conditions this imposes on
the functions involved, which are likely to emerge as differential equations,
and also some conditions at the region boundary.

[] xyyyxFyW
b

a

d)'',',,(∫=

)()(xxyy αη+=
0)(,0)(== ba ηη

6

Euler equation

We are seeking the variation of W[y] with y.
Consider δW=W[y+δy]-W[y]:

By carrying out integration by parts as many times as necessary, all
derivatives of y can be eliminated from under the integral sign, giving

Now in order to ensure that W is at a minimum, this variation must be zero
for any δy. This can only be guaranteed if the expression in brackets is zero.

The differential equation for the solution y(x) is the Euler equation:

[] xyyyxFxyyyyyyxFyWyyW
b

a

b

a

d)'',',,(d)'''','',,(][∫∫ −+++=−+ δδδδ

xyFyFyFyW
b

a
yyy d)'''(]['''∫ ++= δδδδ

xyFFFyW
b

a
yyy d]')'()'([][''' δδ ∫ +−=

0')'()'(''' =+− yyy FFF

[] xyyyxFyW
b

a

d)'',',,(∫=

Problem: find the shape of a string of length L suspended in tension T due to
distributed load w.

A line element of string dx becomes
after loading. The strain is ½ (y’)2 and strain energy is ½ T(y’)2, while the
work done by the load is wy per unit length. The total energy is given by
(1.1), where

To write the Euler equation using (1.2), we need to differentiate F with
respect to y and y’ as if they were two independent variables. Hence

Apply boundary conditions y(0)=y(L)=0. The solution:

))'(1(d)'(1d 2
2

12 yxyx +=+

wyyTyyyxF −= 2
2

1)'()'',',,(

(1.1)

(1.2)

0'' =+wTy

).(
2

)(xLx
T
wxy −=

7

Euler: Bent Beam

Problem: Minimise the potential energy of a beam with deflection v under
general applied force f(x) (may be a combination of distributed and point
loads).

Total energy of the system:

The second integral term describes the work done by the force f over
displacement v.
The first variation of W is found by considering increments δv and δv’’

and using integration by parts

The Euler equation for a bent beam is found as:

We now discuss the boundary conditions.
Some boundary conditions arise from the variation of δW (see above). They are
not a consequence of any additional constraints imposed on the system, and for
this reason are called natural boundary conditions.
Other boundary conditions appear because of additional constraints.

For a bent beam, the following options can be encountered:

(a)If beam ends are free, then δv and δv’ are arbitrary, and their coefficients
in the expression for δW must vanish (these are the natural b.c.). Hence at a
free end v’’=0 and v’’’=0.

(b)If an end is simply supported, then the deflection and the bending moment
M=-Eiv’’ must vanish, leading to the requirements v=0 and v’’=0.

(c)If an end is built-in, then the deflection and slope must vanish, leading to
the requirements v=0 and v’=0.

() ∫∫ −=
ll

xfvxv''EIW
00

2
2

1 dd

∫∫∫∫ −−=−=
ll

l
ll

xvfxv'v''EIvvEIxvfxv''v''EIW
00

0
00

2
1 dd']'''[dd2 δδδδδδ

∫ −+−=
l

ll xvfEIvvvEIvvEIW
0

00 d]''''[]'''[]'''[δδδδ

0'''' =− fEIv (1.3)

8

Euler: Bent Beam2

Example problem: a simply supported beam of length L and bending stiffness
EI is loaded by a combination of UDL ω and a point load P at mid-span.

Use Euler equation to solve the problem.
The load is given by

Here δ(x) is Dirac’s delta-function. It is often used in physics and engineering
to represent point loads, concentrated charges, etc. Its most important
property is expressed in an integral sense:
when the delta–function is integrated over an interval which contains the
zero of its argument, the result is unity; otherwise it is zero.
Note that this is precisely what we mean by a unit point load!
To find v(x), we must integrate (four times) Euler equation in the form

0'''' =− fEIv

)2/()(lxPwxf −+= δ

EIlxPwv /)]2/(['''' −+= δ
Integrating the delta-function is easy: the
first integral produces a unit-step function,
which is changes from zero to unity as we go
through zero of the argument.

If we denote this first integral of the
delta-function by H(x), then subsequent
integrations produce functions of the form

Hn(x)=H(x) xn-1/(n-1)!

You must note here the similarity between
the delta-function and its integrals, and the
Macaulay brackets. It is also important to
note that constants of integration must be
introduced when solving differential
equations.

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

Integrating δ-function

δ(x)
H(x)
H

2
(x)

H
3
(x)

H
4
(x)

y(
x)

x

9

Using Mathematica
In order to find the solution of the example problem, integration must be
performed four times. Four constants will be introduced in the process,
which will need to be found from the four boundary conditions. You may
want to practice doing that for the exam. For our purposes we need an
error-free and fast way to perform these analytical manipulations. We can
use one of the symbolic algebra packages, such as Mathematica.

eulerbeam.nb

Clear@v, v1, v2, v3, c1, c2, c3, c4DH∗ Euler equation: EI v''''=w + P DiracDelta@x−dD ∗L
v3= Integrate@Hw+ P DiracDelta@x− dDL ê EI, xD + c1

v2= Integrate@v3, xD +c2

v1= Integrate@v2, xD +c3

v= Integrate@v1, xD +c4

c1 +
wx + PUnitStepHx- dL

EI

wx2

2 EI
+ c1x + c2 +

P Hx- dLUnitStepHx - dL
EI

wx3

6 EI
+

c1x2

2
+ c2 x + c3 -

dP Hx- dLUnitStepHx - dL
EI

+
P Hx2 - d2LUnitStepHx - dL

2 EI

wx4

24 EI
+

c1 x3

6
+

c2x2

2
+ c3x+ c4 +

d2 P Hx - dLUnitStepHx- dL
2 EI

-
dP Hx2 - d2LUnitStepHx - dL

2 EI
+

P Hx3 - d3LUnitStepHx - dL
6 EI

v2ê. x→ 0ê. UnitStep@L− dD → 1 ê. UnitStep@−dD → 0

vê. x→ 0ê. UnitStep@L− dD → 1 ê. UnitStep@−dD → 0

c2

c4
v= vê. c2→ 0ê. c4→ 0;

v2= v2ê. c2→ 0ê. c4→ 0;

eq2= v2ê. x→ Lê. UnitStep@L− dD → 1 ê. UnitStep@−dD → 0

v= vê. Solve@eq2m 0, c1D@@1DD
v2= v2ê. Solve@eq2m 0, c1D@@1DD
wL2

2 EI
+ c1 L +

HL - dL P
EI

wx4

24 EI
-

HwL2 + 2PL - 2 dPL x3

12 EI L
+ c3x +

d2 P Hx - dLUnitStepHx- dL
2 EI

-
dP Hx2 - d2LUnitStepHx - dL

2 EI
+

P Hx3 - d3LUnitStepHx - dL
6 EI

wx2

2 EI
-

HwL2 + 2 PL - 2 dPL x
2 EI L

+
P Hx- dLUnitStepHx - dL

EI
eq= Simplify@vê. x→ Lê. UnitStep@L− dD → 1 ê. UnitStep@−dD → 0ê. c2→ 0ê. c4→ 0D
v= vê. Solve@eqm 0, c3D@@1DD
v2= v2ê. Solve@eqm 0, c3D@@1DD
-

wL4 + 8dPL2 - 24c3EIL - 12d2 PL + 4d3 P
24EI

wx4

24EI
-

HwL2 + 2PL - 2dPL x3

12EIL
-

H-wL4 - 8dPL2 + 12d2 PL - 4d3 PL x
24EIL

+
d2 PHx - dLUnitStepHx- dL

2EI
-

dPHx2 - d2LUnitStepHx- dL
2EI

+
PHx3 - d3LUnitStepHx - dL

6EI

wx2

2EI
-

HwL2 + 2PL - 2dPL x
2EIL

+
PHx- dLUnitStepHx - dL

EI

10

Using Mathematica2

Summary EIv(L/2) EIv(L/4) -EIv’’(L/2) -EIv’’(L/4)

P at L/2 0.0208PL3 0.0143PL3 0.25PL 0.125PL

UDL ω 0.0130ωL4 0.0093ωL4 0.125ωL2 0.094ωL2

In[26]:= valuep= 8EI→ 1, L→ 1, d→ 0.5, P → 1, w → 0<;
valuew = 8EI→ 1, L→ 1, d→ 0.5, P → 0, w → 1<;
nvp= vê. valuep
nv2p= v2ê. valuep
nvw = vê. valuew
nv2w = v2ê. valuew
Plot@8nvp, nvw<, 8x, 0, 1<, PlotStyle → 8Hue@0.2D, Hue@1D<D8nvpê. x→ 0.5, nvw ê. x→ 0.5, nvpê. x→ 0.25, nvw ê.x → 0.25<
Plot@8−nv2p, −nv2w<, 8x, 0, 1<, PlotStyle→ 8Hue@0.2D, Hue@1D<D8−nv2p ê.x → 0.5, −nv2w ê.x → 0.5, −nv2pê. x→ 0.25, −nv2w ê. x→ 0.25<

Out[28]= -0.0833333 x3 + 0.0625x + 0.125 Hx - 0.5LUnitStepHx - 0.5L - 0.25 Ix2 - 0.25M UnitStepHx - 0.5L +
1
6
Ix3 - 0.125M UnitStepHx - 0.5L

Out[29]= Hx- 0.5LUnitStepHx - 0.5L - 0.5 x

Out[30]=
x4

24
-

x3

12
+

x
24

Out[31]=
x2

2
-

x
2

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

Out[32]= Ü Graphics Ü

Out[33]= 80.0208333, 0.0130208, 0.0143229, 0.00927734<

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Out[34]= Ü Graphics Ü

Out[35]= 80.25, 0.125, 0.125, 0.09375<

11

Key steps:

(a) Express the unknown function (e.g. deflected shape) as a linear
combination of known functions with unknown coefficients:

(b) Express the total energy of the system W as a function of constants Ai.

(c) Find the minimum by requiring

i.e.

Rayleigh-Ritz Method

This approach is a powerful alternative to finding and solving Euler equation.
It is a direct method, in the sense that the solution is assumed to be
unknown but of a certain form containing unknowns, which are then found by
minimisation.

...)()()()(332211 +++= xvAxvAxvAxv

0/ =∂∂ iAW0grad =W
iA

The Rayleigh-Ritz method transforms a problem with an infinite number of
degrees of freedom into one with a finite number (as many as Ai’s used).

Rayleigh-Ritz: Bent Beam
We seek a solution to the bent beam problem by seeking the deflected
shape as a series of the type (1.4), but containing only one term:

We find right away that:

The function v(x) is chosen to satisfy the deflection boundary conditions
v(0)=v(L)=0 at simply supported ends. Note that it also satisfies the moment
boundary conditions, since for it v’’(0)=v’’(L)=0.
Total energy of the system can be evaluated (e.g. using Mathematica)

Since in this case (1.5) reduces to a single equation, the immediate result is

L
xAxv πsin)(=

π
π wLAPA

L
EIALPvxwvxvEIW

L L 2
4

)2/(dd)''(3

24

0 0

2
2

1 −−=−−= ∫ ∫

L
x

L
Axv ππ sin)(''

2

⎟
⎠
⎞

⎜
⎝
⎛−=

(1.4)

(1.5)

⎟
⎠
⎞

⎜
⎝
⎛ +==−−=

∂
∂

πππ
π wLP

EI
LAwLP

L
EIA

A
W 22 ,02

4
2

4

3

3

4

12

Rayleigh-Ritz Method2
In Mathematica, the solution is found by following the three steps we have
indentified (ritzbeam.nb):

It is now possible to compare the results with the exact solutions (by Euler
equation), by giving the following commands:

We can now compare the solutions for deflected shapes

In[112]:= vr2= D@vr, 8x, 2<D
nvrp= vrê. valuep
nvr2p= vr2ê. valuep
nvrw = vrê. valuew
nvr2w = vr2ê. valuew
Plot@8nvrp, nvp<, 8x, 0, 1<, PlotStyle → 8GrayLevel@0.6D, GrayLevel@0D<D
Plot@8nvrw, nvw<, 8x, 0, 1<, PlotStyle → 8GrayLevel@0.6D, GrayLevel@0D<D
Plot@8−nvr2p, −nv2p<, 8x, 0, 1<, PlotStyle→ 8GrayLevel@0.6D, GrayLevel@0D<D
Plot@8−nvr2w, −nv2w<, 8x, 0, 1<, PlotStyle→ 8GrayLevel@0.6D, GrayLevel@0D<D

and bending moment profiles.
0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01

0.012

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

H∗ Bent beam by Rayleigh−Ritz, one term ∗L Off@General::spell, General::spell1DH∗ Step 1: Define shape in terms of A ∗L
v= ASin@Pixê LD;v2 = D@v, 8x, 2<DH∗ Step 2: Calculate W in terms of A ∗L
W = Integrate@EIv2^2ê 2− w v, 8x, 0, L<D − P H v ê.x → Lê 2LH∗ Step 3: Minimise dWêdA to find solution ∗L
vr= vê. Solve@D@W, AD m 0, AD@@1DD

Out[6]= -
Ap2 sinJ p x

L
N

L2

Out[7]=
A2 EI p5 - 8 AL4 w

4 L3 p
- AP

Out[8]=
2L3 Hp P+ 2 L wL sinJ p x

L
N

EI p5

13

Rayleigh-Ritz Method3
We compare the exact solution with the R-R approximation:

In[59]:= H∗ Comparison for deflection ∗LH∗ Exact ∗L 8nvpê. x→ 0.5, nvw ê. x→ 0.5, nvpê. x→ 0.25, nvw ê.x → 0.25<H∗ R−R ∗L 8nvrpê. x→ 0.5, nvrw ê. x→ 0.5, nvrpê. x→ 0.25, nvrw ê.x → 0.25<
Out[59]= 80.0208333, 0.0130208, 0.0143229, 0.00927734<
Out[60]= 80.020532, 0.0130711, 0.0145183, 0.00924263<H∗ Comparison for bending moment ∗LH∗ Exact ∗L 8−nv2p ê.x → 0.5, −nv2w ê.x → 0.5, −nv2pê. x→ 0.25, −nv2w ê. x→ 0.25<H∗ R−R ∗L 8−nvr2p ê.x → 0.5, −nvr2w ê.x → 0.5, −nvr2pê. x→ 0.25, −nvr2w ê. x→ 0.25<
Out[57]= 80.25, 0.125, 0.125, 0.09375<
Out[58]= 80.202642, 0.129006, 0.14329, 0.0912211<
R-R captures the deflected shape better than the bending moment profile
(i.e. stress). This is because stresses and strains depend on the derivatives
of deflection, and require higher order approximation for good agreement.

The quality of approximation can only improve with extra terms in (1.4).

Assume

An efficient solution is obtained if, after writing down the integral
expression for W, differentiation with respect to Ai is carried out under
the integral sign:

The resulting integrals are familiar from Fourier analysis. In particular from

it follows that

, and

You can inspect a possible Mathematica implementation of this sine series
solution in the file ritzbeamn.nb, or construct your own.

∑
=

=
Ni

i L
xiAxv

..1

sin)(π

∫∫ ∂
∂−

∂
∂−

∂
∂=

∂
∂ L

ii

L

ii

x
A
vwL

A
vPx

A
vvEI

A
W

00

d)2/(d''''

∫ =⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

L

ij
Lx

L
xj

L
xi

0 2
dsinsin δππ

)1(cos
2

sin
2

0
4

−−⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= π

π
ππ i

i
wLiPAL

L
iEI i

⎥
⎦

⎤
⎢
⎣

⎡ −+⎟
⎠
⎞

⎜
⎝
⎛=)1(cos

2
sin

)(
2

4

3

π
π

π
π

i
i
wLiP

EIi
LAi

14

Mathematica tutorial
H∗ Introduction to using Mathematica for 4 ME6 Stress Analysis ∗LH∗ In the derivations I use a very small part of what Mathematica can do. ∗LH∗ You will have guessed that parenthesis−asterisk is used for comments ∗LH∗ Mathematica understands about most functions.

To run a CELL, you need to press Shitf+Enter − top status bar should flash

' RUNNING', and come up with a plot below ∗L
Plot@8Sin@xD, Cos@xD, Exp@xD, Cosh@xD<, 8x, 0, Pi<D

0.5 1 1.5 2 2.5 3

-1

1

2

3

4

5

6

Ü Graphics ÜH∗ You may have noticed that the functions are grouped together between curly brackets,

and separated by commas − they form a LIST. The plotting argument and range also form a list −8x, 0, Pi<.
The plot above looks difficult to read,

since no colour was used. Instruction can be given to the plot command,

using PlotStyle→8Hue...< to choose a HUE for each function respectively. HUE argument

can go from 0 to 1. To find what' s what, change the numbers below, and re−run ∗L
Plot@8Sin@xD, Cos@xD, Exp@xD, Cosh@xD<, 8x, 0, Pi<, PlotStyle→ 8Hue@0.1D, Hue@0.3D, Hue@0.5D, Hue@0.7D<D

0.5 1 1.5 2 2.5 3

-1

1

2

3

4

5

6

Ü Graphics ÜH∗ Mathematica can also build lists using Table: ∗L
Table@Sin@nPiê6D, 8n, 0, 6<D
Plot@8Sin@xD, Sin@2 xD, Sin@3 xD, Sin@4 xD<, 8x, 0, Pi<, PlotStyle→ Table@Hue@0.25jD, 8j, 1, 4<DD
:0,

1
2

,
è 3

2
, 1,

è 3
2

,
1
2

, 0>

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Ü Graphics Ü

15

Mathematica tutorial2H∗ It can also build arrays: ∗L
consts= Array@c, 5D8cH1L, cH2L, cH3L, cH4L, cH5L<H∗ It' s very good at producing pretty 3 D plots ∗L
u= Sin@rhoD H3+ Cos@thDL;
v= Cos@rhoD H3+ Sin@thDL;
z= Sin@thD;
ParametricPlot3D@8u, v, z<, 8rho, 0, 2 Pi<, 8th, 0, 2 Pi<D

-4

-2

0

2

4
-4

-2

0

2

4

-1
-0.5

0
0.5
1

-4

-2

0

2

4

Ü Graphics3D ÜH∗ Mathematica can differentiate using D@D Heven several timesL and find indefinite

and definite integrals using Integrate@D ∗L
D@Sin@xD, xD
D@Sin@xD, 8x, 2<D
Integrate@Sin@xD, xD
Integrate@Sin@xD, 8x, 0, Pi<D
cosHxL
-sinHxL
-cosHxL
2H∗ It can do series! ∗L
Series@Tan@xD, 8x, 0, 15<D
x+

x3

3
+

2x5

15
+

17 x7

315
+

62x9

2835
+

1382x11

155925
+

21844 x13

6081075
+

929569 x15

638512875
+ OIx16M

H∗ Mathematica can solve equations − note the use of == ∗L
Solve@x^2+ 5 x− 6== 0, xD88x Ø -6<, 8x Ø 1<<H∗ It can also solve differential equations! ∗L
DSolve@u''@xD − 9 u@xD m 0, u@xD, xD99uHxL Ø ‰-3 x c1 + ‰3 x c2==
DSolve@u''@xD − 4 u'@xD + 4 u@xD m 0, u@xD, xD99uHxL Ø ‰2 x c1 + ‰2 x xc2==

16

Mathematica tutorial3H∗ Mathematica is very good at solving systems of equations. Command SOLVE needs a

list of equations, followed by a list of unknowns to find. ∗L
SOLUTION= Solve@8x+ 3 y+ z== 2,

−x− 2 y+z == 5,

3 x+ 7 y+ z== −3<, 8x, y, z<D::x Ø -
13
2

, y Ø 2, z Ø
5
2
>>H∗ We call the result ' SOLUTION'. It contains RULES. Each RULE describes a

substitution: it shows, using an arrow →,

which values should be given to each

unknown.

Our SOLUTION contains the rules enclosed in double curly brackets. To extract the rules,

we needto use double square brackets, and specify we need the first element ∗L
SOLUTION@@1DD:x Ø -

13
2

, y Ø 2, z Ø
5
2
>H∗ To use the solution, we need to perform the substitution. This is done by using the command ê.

The result is a list of values of x,y,z that we found ∗L8x, y, z< ê. SOLUTION@@1DD:-
13
2

, 2,
5
2
>

H∗ Finally, procedures can be defined using MODULE.

This one calculates the sum of odd integers up to n.

It uses OddQ − a query function, which is true of the integer is odd,

and false otherwise. Note the C−style calculation of the total ∗L
OddSum@n_D :=

Module@8i, total= 0<,
Do@If@OddQ@iD, total+= i, 0D,8i, n<D;
totalDH∗ We can now use OddSum as a function ∗L

OddSum@100D
2500

In order to appreciate the capabilities of Mathematica, you must
try running it yourself.

You can use the program to study the examples from
http://users.ox.ac.uk/~engs0161/4me6.html

in the ECS lab (the Solarium) on any of the machines booth36.ecs
to booth50.ecs (inclusive).
To run Mathematica, type start_mathematica. This will start a
window titled "Mathematica4.0 Execution Window".
Run Mathematica in this window by typing mathematica.

