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Review of Guidelines for the Use of Combined Forecasts 

 

Abstract 

A large literature has evolved in the thirty years since the seminal work on combining 

forecasts. Despite this, when evaluating performance we only look at measures of accuracy and 

thus ignore most of the rigour of time series analysis. Furthermore, the output from a 

combination of forecasts is just a single point estimate which is insufficient for business 

planning models which take explicit account of risk and uncertainty. In this paper, we review 

evidence on the performance of different combining methods with the aim of providing 

practical guidelines based on three properties of the forecast errors: variance, asymmetry and 

serial correlation. The evidence indicates that using different criteria leads to distinct 

preferences, and that the properties of the individual forecast errors can strongly influence the 

characteristics of the combination's errors. We show that a practical approach to combining 

also requires a degree of judgement on the attributes of error specification. 

 

Keywords:Forecasting; Combinations; Error Specification; Guidelines. 
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1. Introduction 

 Combining forecasts is a well-established procedure for improving forecasting accuracy 

which takes advantage of the availability of both multiple information and computing resources 

for data-intensive forecasting (Bunn, 1989). Generally, when one evaluates the results of a 

composite forecast, one only looks at measures of accuracy, for example, mean squared error 

(MSE). This is a remarkably different procedure from that of analysing results within any other 

forecasting technique where the forecast error pattern is also considered. It seems that much of 

the rigour, which is necessary to generate the individual models' forecasts, is forgotten when 

evaluating the combination. Furthermore, the output from a combination of forecasts is still 

just a single point estimate, however, this is no longer sufficient for business planning models 

(e.g. capital budgeting, resource allocation, policy monitoring) that need to take explicit 

account of risk and uncertainty. Indeed the increasing use of risk analysis (Cooper and 

Chapman, 1987) places an additional requirement for high quality estimates of predictive 

distributions. It seems a little surprising that even Bayesian combining methods (e.g. Clemen 

and Winkler, 1993), which use the distributional properties of the individual forecasts to 

construct the combination, do not consider the predictive distribution of the resultant composite 

forecast. 

 Despite a large literature on combining forecasts, the choice of which method to use is 

not obvious. Even under a single accuracy criterion, such as mean squared error, guidelines 

concerning the "best performance" are not straightforward. When additional criteria are 

considered, the development of practical rules and the interactive use of judgement become 

harder to formalise. The main aim of this paper is to develop practical guidelines for 

combining forecasts where the criteria are error variance, distribution asymmetry and serial 

correlation. Recent research has provided theoretical and empirical evidence regarding the 

latter two alternative criteria. This paper draws practical guidelines from these studies, and 

contrasts them with guidelines based purely on an accuracy perspective. The resultant 

guidelines serve as a set of decision rules, which may be applied not only to select an 

appropriate combining method but also for switching from one combining method to another, 

or refining the forecasting model, as new signs develop. 

 In the decade since Clemen's (1989) extensive bibliographical review of forecast 

combining, the literature has grown substantially. A further contribution of our work is to 

provide an update of this review from a practical perspective. In order to produce useful 

insight, we focus on several of the most widely used combining rules. Three of these are based 

on Bates and Granger's (1969) initial proposal and so this paper also provides an overview of 

how far guidelines have developed over thirty years of combining forecasts. First, the 

combining methods, which we consider in the present study are discussed. We then review the 

literature to establish the current perspective on their relative performance. This survey reveals 

that combined forecasts have been evaluated solely on the basis of accuracy. We summarise 
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practical guidelines for combining from an accuracy perspective and then, in the subsequent 

two sections, we concentrate on the alternative criteria of skewness and serial correlation, for 

which we provide illustrative examples. Finally, a set of guidelines, possible extensions and 

further practical implications are discussed. 

 

2. Combining methods 

 The years since Bates and Granger's seminal article have seen the development of many 

interesting combining methods. The methods now available to the forecaster range from the 

robust simple average to the far more theoretically complex, such as state-space methods that 

attempt to model non-stationarity in the combining weights. An example of one of the more 

recent developments is the work of Donaldson and Kamstra (1996) on estimating the 

combining form using artificial neural networks, which is another data-intensive, theory-sparse 

forecasting approach (Bunn, 1996). 

 Our analysis, however, concentrates on seven well-established methods that were 

selected to be good representatives of varying degrees of sophistication. All the methods adopt 

the linear formulation whereby a vector, f, of n forecasts are combined via a linear weighting 

vector, w, as fc=w′f. 
(1) Simple average: This has the virtues of impartiality, robustness and a good "track-record" 

in economic and business forecasting. It has been consistently the choice of many researchers 

(see Clemen's review of 1989). 

(2) Outperformance (Bunn, 1975): This approach develops the forecast combination as fc=p′f 
where p is a simplex of probabilities which can be assessed and revised in a Bayesian manner. 

Each individual weight is interpreted as the probability that its respective forecast will perform 

the best (in the smallest absolute error sense) on the next occasion. Each probability is 

estimated as the fraction of occurrences in which its respective forecasting model has 

performed the best in the past. It is a robust nonparametric method of achieving differential 

weights with intuitive meaning which performs well when there is relatively little past data 

and/or when the decision maker wishes to incorporate expert judgement into the combining 

weights (Bunn, 1985). 

(3) Optimal (Bates and Granger, 1969): Here the linear weights are calculated to minimise the 

error variance of the combination (assuming unbiasedness for each individual forecast). 

Specifically, the vector of combining weights, w, is determined according to the formula 

where e is the (n × 1) unit vector and S is the (n × n) covariance matrix of forecast errors. 

Granger and Ramanathan (1984) showed that the method is equivalent to a least squares 

regression in which the constant is suppressed and the weights are constrained to sum to one. 

The problem with this optimising approach is that it requires S to be properly estimated. In 
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practice, S is often not stationary, in which case it is estimated on the basis of a short history of 

forecasts and thus the method becomes an adaptive approach to combining forecasts. 

(4) Optimal (adaptive) with independence assumption: The estimate of S in (1) is restricted to 

be diagonal, comprising just the individual forecast error variances. 

(5) Optimal (adaptive) with restricted weights: In this case the optimal formula has the 

additional restriction that no individual weight can be outside the interval [0,1]. 

(6) Regression: In this method the constituent forecasts are used as regressors in an ordinary 

least squares (OLS) regression with the inclusion of a constant. Granger and Ramanathan 

(1984) argued that this has the advantage over the popular optimal method that an unbiased 

combined forecast is produced regardless of whether the constituent forecasts are biased. 

(7) Regression with restricted weights: Here the least squares regression is performed with the 

inclusion of a constant but the weights are constrained to sum to one. 

 

3. The current state of preferences: controversies over relative performance 

 In thirty years of combining forecasts, assessments of the relative performance of various 

combinations have generally been made under an accuracy criterion, mostly expressed in terms 

of MSE. In this section we consider empirical and simulation studies, which were specifically 

designed to investigate the relative accuracy of combining methods. They serve as the basis for 

some initial guidelines and practical observations, which we discuss in section 4. 

 

3.1. Early empirical evidence 

 Newbold and Granger (1974) analyzed combinations of three forecasts for 80 time series 

using different estimates of the optimal weights, though restricting the weights to the interval 

[0,1]. They concluded that formulations which assume independence between the individual 

forecast errors perform considerably better than those attempting to account for correlation. 

They also found that, regardless of the combining method employed, a small improvement in 

forecast accuracy results from the addition of a third forecast. 

 A large-scale forecasting competition (1001 time-series), known as the M-Competition, 

was reported by Makridakis et al. (1982). Amongst several extrapolation techniques, two 

combinations of six forecasts were tested: the simple average and a weighted average based on 

the covariance matrix. Makridakis et al. found that the simple average produced the better 

performance, and indeed outperformed the individual methods included in the average, 

although Gardner (1983) showed that the ranking of the forecast methods depended somewhat 

on the choice of error measure used. Subsequently, Winkler and Makridakis (1983) used the 

1001 series from the M-Competition and examined five weighting procedures for combining 

various numbers of forecasts from among ten different methods. Their results confirmed 

Newbold and Granger's (1974) conclusions regarding the preference for the independence 

assumption and a relatively small number of individual forecasts. 
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 In a simulation study, Bunn (1985) addressed the relative performance of combining 

methods as a function of the three statistical properties of the individual forecast errors: 

variance ratios, correlation coefficient and sample size. He reported on combinations of two 

forecasts generated from six combining methods, namely: equal weights, optimal, optimal with 

independence assumption, outperformance, Bayesian probabilities and quasi-Bayes 

probabilities. Bunn found an overall robustness of optimal with independence assumption, 

outperformance and quasi-Bayes probabilities. He found that forecasting accuracy was heavily 

dependent on sample size with the outperformance method dominating for smaller sample sizes 

(≤6); the optimal procedure with independence assumption was found to be the most efficient 

for sample sizes varying from 7 to 25, whenever the variance ratio was significantly different 

from 1 and the data was well behaved; and not surprisingly, the optimal procedure dominated 

over larger samples, provided well behaved data. 

 Our view is that there is considerable disagreement and contradiction regarding the "best 

choice" of combining rule. Using a MSE criterion, Schnaars (1986a) compared performances 

of seven extrapolation models and three combinations of models over nearly 1500 forecasts of 

annual sales series. He concluded that combinations generally outperformed the individual 

models and equal weights were preferred. On the other hand, in a similar study, where most 

series had less than 30 observations, the same author (Schnaars, 1986b) found that a weighted 

average performed significantly better than a simple average. 

 

3.2. Evidence on regression-based combining and the issue of bias 

 Granger and Ramanathan (1984) framed the combination of forecasts as an unrestricted 

least squares regression with an intercept, and showed that if the individual forecasts are 

biased, the method will be superior to Bates and Granger's (1969) optimal method. Recently, 

MacDonald and Marsh (1994) reported that the presence of substantial biases in constituent 

forecasts led them to use OLS regression to combine exchange rate forecasts. The superiority 

of the regression method was supported by the work of Guerard (1987) and Holmen (1987). 

By contrast, Mills and Stephenson (1985), Clemen (1986), Holden and Peel (1986) and Lobo 

(1991) provided empirical evidence favouring the optimal approach over OLS regression. 

 As the optimal method can be viewed as a least squares regression with the restrictions of 

no intercept and slope coefficients summing to one, it is clear that the combined within-sample 

MSE will be higher for the optimal method than for unrestricted regression. Therefore, an 

unrestricted regression-based approach would appear to be the natural choice. However, our 

advice is that some care should be taken. Since the unrestricted regression includes one more 

forecast among those to be combined, the unconditional mean of the variable being forecast, 

the variable must be either stationary or made stationary. Another issue, which we discuss 

more fully in section 5, is that the forecast errors resulting from unrestricted least squares 

combining are likely to be serially correlated (Diebold, 1988). A third problem with the 
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unconstrained regression approach is multicollinearity which is likely to be an issue as 

constituent forecasts are often correlated. 

 Following Granger and Ramanathan's interpretation, Holden et al. (1990) concluded that 

a reasonable approach to combining is to include a constant in the regression and to restrict the 

weights on the forecasts to sum to one, thus excluding the unconditional mean of the series that 

is implicitly included in an unrestricted regression approach. The authors argued that this is 

appealing as for many forecasting situations the unconditional mean cannot be expected to 

contribute to a combination. They also claim that this procedure is equivalent to debiasing the 

original forecasts and then applying an optimal formulation. Unfortunately, this is not strictly 

true because although the constant will correct for location bias, it will be insufficient to ensure 

unbiasedness if the individual forecasts suffer from scale bias. 

 The empirical work of Gunter (1992) and Aksu and Gunter (1992) compared the 

accuracy of a wide range of restricted least squares combining procedures plus the simple 

average. The methods that they examined used various mixtures of the following restrictions: 

constraining weights to sum to one, suppressing the intercept and constraining weights and 

intercept to be non-negative. They found that restricting weights to be non-negative was as 

robust and accurate as the simple average, and that both almost always outperform least 

squares without constraints and least squares with the restriction that weights sum to one but 

may be negative. 

 

3.3. Evidence on simple average combining and the issue of stability 

 As it is widely accepted that only "good" forecasts should be included in a combination, 

strong differences in forecast error variances between the individual forecasts are not to be 

expected. In such circumstances, it seems unlikely that a weighted average will outperform a 

simple average combination. 

 As we discussed earlier, the M-Competition of Makridakis et al. (1982) gave strong 

support for the simple average. More recently, Makridakis et al. (1993) reported on their M2-

Competition, which aimed at determining post-sample forecasting accuracy of 10 extrapolative 

methods, including 5 human forecasters. The study considered different time series, which 

characterised specific contexts where the forecasters would tend to incorporate additional 

information into their predictions. Among their conclusions, the authors recommended a 

simple average of smoothing methods on grounds of accuracy and efficiency. Unfortunately, 

they did not consider other combining approaches. Another opportunity to evaluate the relative 

success of automatic combining methods will be provided by the M3-Competition which is 

currently being organised and involves 3003 series. 

 Many other applications have favoured equal weights (e.g. Bessler and Brandt, 1981; 

Kang, 1986; Clemen and Winkler, 1987), the argument being that it will perform best or 

nearly best. These conclusions made Clemen (1989), in his review of over 209 articles, ask 
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"why does the simple average work so well, and under what conditions do other specific 

methods work better?". Since then, there have been several significant theoretical contributions 

to the debate. Palm and Zellner (1992) pointed out that the sampling uncertainty in the 

estimated weights is often overlooked when the theoretical MSE of a weighted average is 

evaluated. Gunter (1990) identified analytically the conditions under which the simple average 

outperforms the regression and optimal methods. He considers the range of possible values of 

the true weight vector for which the simple average will outperform the alternatives, based on 

an expected MSE criterion. Our view is that, although interesting and intuitive results emerge, 

it is difficult to draw guidelines for the practical situation where the true weight vector is 

obviously unknown. 

 A possible answer for the success of the simple average, as indicated by comments from 

several authors (e.g. Holden and Peel, 1989), may rely on the potential for unstable weights, 

which often result from unsystematic changes over time in the variance-covariance matrix of 

the individual forecast errors. Under these circumstances, a simple average, although having 

non-optimal weights, may still give rise to better results than time-varying weights. An 

analogous argument can be developed with respect to the amount of data available to estimate 

the combining weights. 

 The issue of structural change has been approached in the literature by the use of time-

varying (Diebold and Pauly, 1987; LeSage and Magura, 1992), or more adaptive combining 

procedures (Bates and Granger, 1969), or simply ignoring part of past data whenever it 

becomes irrelevant for forecasting purposes (Chatfield, 1988). Miller et al. (1992) reported the 

results of a simulation study investigating the effects of non-stationarity on a range of 

combining methods. They simulated the non-stationarity by means of a shift in the underlying 

process generating the forecast errors. Not surprisingly, the simple methods did much better 

during and immediately after structural changes, however, overall their study indicated no 

great advantage for the simple average approach. 

 

3.4. Evidence from studies into switching methods 

 Schmittlein et al. (1990) focused on potential policies for switching between combining 

models. Their work provides useful insight for combining. Using simulated data, they analyzed 

performance regarding: the size of the forecast history used for estimation, the accuracy and 

the correlation of the individual forecasts. Combinations of two forecasts were considered 

using the following methods: equal weights, optimal and optimal with independence 

assumption. The obtained results (supported by the standard MSE criterion) indicated that for 

equal weights to be the best alternative, the individual forecasts' accuracy must be similar and 

large positive correlations must not occur (ρ<0.5). They found that the optimal method with 

independence assumption dominated, when the accuracies were unequal and the absolute value 

of the correlation was small (-0.3<ρ<0.4), and also when the accuracies are similar and 



 

 
 
 8 

correlation was large and positive. The optimal method should be used whenever accuracies 

are unequal and the absolute value of the correlation is large (ρ<-0.3, ρ>0.4). They found 

that as the forecast history develops, the availability of data will generally support more 

sophisticated procedures. Hence, the "best" combining method could change upon the arrival 

of more information concerning the individual forecasts. Finally, they argued that in practice 

the relative performance of equal weights is likely to improve, since it does not rely on 

estimates of parameters, which are then subjected to instability. 

 Deutsch et al. (1994) introduced combining models with changing weights derived from 

switching regression models or from smooth transition regression models. They considered 

models in which the weights are allowed to change immediately or gradually when there is a 

change in regime. The switching regime was estimated using two alternative approaches. The 

first used the lagged forecast errors from the constituent forecasts whilst the second based the 

regime on a relevant economic variable. 

 

3.5. Evidence on the use of judgement in combining 

 Flores and White (1989) evaluated subjective versus objective combinations of forecasts. 

Their experiment used 93 undergraduate students as the forecasters and two different types of 

time series. They claimed that subjective combinations were as accurate or even more accurate 

than objective combining methods (simple average or optimal methods). However, they agreed 

with Newbold and Granger (1974) by recommending that no more than four forecasts should 

be combined. Indeed, in spite of controversies over the "best" combining method, there has 

been considerable agreement with respect to the number of individual forecasts to be included 

in the combination (maximum of 4). However, in section 5 we present motivation for the 

inclusion of a much larger number of individual forecasts in the combination. 

 Collopy and Armstrong (1992) presented a rule-based expert systems approach to 

integrating judgement and quantitative approaches to forecasting. Knowledge elicitation was 

achieved through a survey of forecasting experts' routines, which revealed an overall 

preference for combining forecasts instead of developing complex models. Their final 

modelling stage consists of a combination, where different weights are assigned to the forecasts 

based on accuracy over the hold-out data period. The combining rule assumes independence 

between the individual forecast errors, and, in circumstances of high uncertainty, it reverts to 

equal weights. 

 

4. Practical guidelines from a minimum variance perspective 

 Under stable conditions with relatively well-behaved data, theoretical and simulation 

research has shown that the relative performance of combining forecast methods depends upon: 

the error variance ratios of the forecasts, the correlation between forecast errors and the sample 

of past data used for estimation. A review of the past thirty years of combining, and recent 
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simulation and case-study results (de Menezes, 1993; de Menezes and Bunn, 1993), have led 

us to the following practical guidelines for combining forecasts based on a minimum forecast 

error variance criterion: 

(1) Over small samples, use the outperformance as it is a simple method that takes advantage of 

the dissimilarity in forecast error variances. 

(2) Over medium samples with low correlation, use an optimal method with independence 

assumption. 

(3) Over large samples, use an optimal or a restricted regression-based model. 

(4) However, if error variances are similar and positive correlation is weak (ρ<0.5) or 

unstable, the simple average is advocated on the basis of simplicity and efficiency. 

 In the vast majority of cases, preference towards a particular combining method has been 

based on an accuracy criterion. One exception to this is the work of Reeves and Lawrence 

(1982, 1991), who considered a multiple objective combining framework where the criteria are 

forecast accuracy and the ability to correctly predict the direction of change. However, none of 

the literature has considered the selection of a combining approach under a range of criteria 

concerned with the specification of the combined forecast error distribution. In the next two 

sections of this paper we broaden the evaluation criteria by considering the skewness and the 

serial correlation of the forecast errors. 

 

5. Skewness of the forecast error distribution 

 We now focus on the shape of the combined forecast error distribution. This is of 

practical value because different shapes imply distinct attitudes towards risk and uncertainty 

(see the literature on stochastic dominance, e.g. Bunn (ch.4, 1984) and Levy (1992)). From a 

practical perspective, there are two main issues of interest: 

(1) If different combining rules lead to differently shaped forecast error distributions, then the 

decision-maker's attitude to risk becomes an additional factor in selecting the combining 

method. 

(2) If combining different individual forecasts results in diverse shapes of error distributions, 

then the choice of which specific set of forecasts to be included in the combination will also be 

affected by this criterion. 

 Our consideration of the shape of the forecast error distribution focuses on the departure 

of the distribution from the common assumption of normality. Although a more complete 

analysis would account for kurtosis, we consider only skewness as this feature of the 

distribution can be perceived even in very small samples (Ramsey and Ramsey, 1990; 

D'Agostino et al., 1990), whilst inference on the coefficient of kurtosis would require a 

minimum of several hundred observations. In this section we first present practical guidelines 

for combining forecasts using a skewness criterion and then provide an illustrative example. 
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5.1. Practical guidelines from a skewness perspective 

 Whilst there have been contributions in the literature to estimating the predictive 

distribution in a combining context (Granger et al., 1989; Taylor and Bunn, 1996, 1998), the 

only studies that we are aware of, which offer guidelines for combining forecasts based on the 

shape of the distribution, are those of de Menezes and Bunn (1993, 1998). These case-study 

and simulation results indicate that, in a context of asymmetric individual forecast error 

distributions, a skewness criterion suggests the following guidelines for combining forecasts: 

(1) Over small samples, use an outperformance method. 

(2) Over medium and large samples use: 

- An adaptive (optimal) method with independence assumption whenever positive correlation is 

not large. 

- An adaptive (optimal) method with correlation estimation and restricted weights in the 

presence of significant positive correlation. 

(3) When selecting individual forecasts for the combination, consider different (preferably 

"balancing") shapes. 

(4) When combining, include as many different forecasts as available, since they may provide 

little additional information in variance terms, but are likely to improve the shape of the 

resulting forecast error distribution, and thus reduce risk. 

(5) When analysing results, estimate not only the mean forecast error but also measures that 

indicate asymmetry (mode, median, etc.). 

(6) Whenever a simple average is chosen (e.g. for simplicity or due to an unstable covariance 

matrix of the forecast errors), be aware that skewness may not be diluted through combining. 

 Although these guidelines suggest an evolution from a less sophisticated 

(outperformance) to a more complex (optimal) method, they differ substantially from those 

supported by a strictly minimum error variance criterion. The differences are expressed not 

only in terms of the expectations regarding the simple average, but also in the number of 

forecasts to be included in the model, which indeed can be larger than the maximum 

traditionally advocated in the literature. Case-study results (de Menezes and Bunn, 1993) 

indicate that the above suggestions may be extended to kurtosis as a possible measure of 

increasing risk, although a detailed analysis could only be carried out for large samples. 

 

5.2 An illustrative example: UK Daily Electricity Load 

 For a number of years the engineers responsible for scheduling electricity generating 

plants in England and Wales have consulted three separate forecasts that are produced in three 

hourly intervals throughout the day. Thus, the National Control engineers have made their own 

forecast as a judgemental synthesis (Bunn, 1987) of: AREA - a synthesis of the regionally 

produced, area based forecasts; DFS - a weather based regression model from the demand 

forecasting section; HEUR - a heuristic load curve based approach of their own. 
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 Here, we consider a re-evaluation of a set of 246 observations for consecutive evening 

peak forecasts from the three methods. First, we examined the variance-covariance structure of 

the individual forecast errors. Although, the correlation appeared to increase with the forecast 

history, which would have favoured an optimal method of combination, it was very unstable 

(as illustrated in Table 1). Thus, we should revert to simpler combining methods. In this 

example we consider the simple average. 

********************  TABLE 1 APPROXIMATELY HERE  *********************** 

 The individual forecast error distributions are summarised in Table 2 and indicate that 

non-normality is a serious concern. The skewness and kurtosis values should ideally be around 

0 and 3 respectively for normality. The Bowman Shenton (Bera and Jarque, 1980) is an 

omnibus test for normality (see Newbold, 1995, page 412). We notice that the forecast with the 

smallest MSE, DFS, which would generally be given the most weight in a combination, has a 

significantly skewed and long-tailed error distribution. 

********************  TABLE 2 APPROXIMATELY HERE  *********************** 

 We focus upon simple averages of all three, and of pairs of the original forecasts (Table 

3). All averages have led to more accurate predictions, compared to the best individual forecast 

(DFS). However, we notice that high levels of skewness and kurtosis of the DFS persisted into 

combinations. The critical value (5% level) for skewness is about 0.3. We can see that of the 

individual forecasts, only DFS produced significantly skewed errors. Yet, substantial skewness 

was transmitted into all averages that contained DFS. Therefore, reliance on the ability of 

averaging to dilute non-normality seems rather dangerous. 

********************  TABLE 3 APPROXIMATELY HERE  *********************** 

 In practice, the asymmetric costs of error in electric load forecasting encourage over-

forecasting. If we disregard bias, we might conclude that the better shape of the combined pair 

AREA & HEUR, is preferable to the slightly more accurate average of all three, especially if 

confidence intervals are to be estimated. 

 

6. Serial correlation in the forecast errors 

 Although several of the empirical studies on combining forecasts have evidenced some 

degree of serial correlation, few authors have yet addressed the issue. The implication of the 

presence of serial correlation in the combined prediction errors is that the estimates of the 

combining weights are inefficient and their associated standard deviations are inconsistent. 

Hence, the combined forecasts may no longer be the best unbiased linear combination. In this 

section we consider the case of serial correlation for regression-based combination methods, 

we then review the recent work relating co-integration to combining forecasts, and finally we 

present practical guidelines for combining using a serial correlation perspective followed by an 

illustrative example.  
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6.1. Serial correlation from regression-based combining models 

 A forecaster may believe that well behaved forecast errors (e.g. white noise) are 

sufficient to guarantee uncorrelated combined disturbances. Whilst this is true for the optimal 

method, Diebold (1988) showed analytically that unrestricted OLS regression combinations are 

expected to give rise to serially correlated residuals even if the individual forecasts have serially 

uncorrelated errors. However, if the regression is constrained so that the combining weights 

sum to unity, either with or without the presence of a constant, then the combined forecasts' 

residuals will be serially uncorrelated. This is the case for the optimal method which is 

equivalent to regression with no intercept and weights summing to one. Diebold went on to 

show that if individual forecasts are weakly inefficient, exhibiting a small degree of serial 

correlation, the combined forecast errors will be even more serially correlated. Of course, 

ideally, serial dependence should be absent in the individual forecasts. However, in practice, 

some serial correlation may occur. For example, error processes with low time-dependent 

coefficients are difficult to identify. Also, one often relies on externally produced forecasts, 

which may be published by different sources that periodically update previous estimates, and 

thus serial correlation emerges from the forecasting process itself. 

 Diebold recommended the inclusion of a model of the disturbance process in the 

combination, however, in practice, stable conditions may not prevail and it may be difficult to 

adequately estimate the error process. Coulson and Robins (1993) investigated the implications 

of including lags into combinations, by focusing on the specific case of combining two 

forecasts whose combination error follows an AR(1) process. They concluded that a 

parsimonious method for incorporating the dynamics is achieved by using a lagged dependent 

variable, with no lagged forecasts. They reported improvements in post-sample forecasting, 

although they failed to report the specification of the resultant forecast errors. 

 

 

 

6.2. Integrated processes: a special case 

 We have not yet addressed the specific case in which the variable to be forecast is 

integrated. (When a series must be differenced d times before achieving stationarity it is said to 

be integrated of order d, and denoted I(d).) In fact, integrated series are quite common, 

particularly when dealing with financial and economic variables. The problem with using 

integrated variables in an unrestricted regression is that the R2 and t-values may suggest a good 

model but instead the regression may be spurious. The key issue in identifying a spurious 

regression is the behaviour of the residuals in terms of stationarity. This can initially be 

assessed graphically or on the basis of the Durbin-Watson statistic (DW). If the process is non-

stationary, then the DW statistic tends to zero and the model is misspecified. A stationary 

process leads to a DW value that is significantly different from zero, indicating that the variable 
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being forecast and the actual forecasts are cointegrated and the estimated weights are then 

super-consistent. (In general, linear combinations of I(d) variables are also I(d), but if there 

exists one or more linear combinations that are integrated of lower order, then the variables are 

said to be cointegrated.) 

 Hallman and Kamstra (1989) were the first to note that cointegration is an issue when 

combining forecasts of an integrated variable. When a forecasted variable yt is I(1), any 

reasonable forecast ft should be cointegrated with it, with co-integrating vector (1,-1)′. If not, 

the forecast error (yt - ft) will not be stationary and the series and its forecast will drift 

increasingly apart over time. (Indeed, Holly and Tebbutt (1993) made the point that, before 

combining, it is important to ensure that if yt is I(1), then each individual forecast is 

cointegrated with yt). If the dependent variable in a regression is cointegrated with the 

independent variables, then the estimated coefficients will have reasonable properties but will 

in theory be inefficient, unless account is taken of the cointegration. Engle and Granger (1987) 

indicated that some form of the error-correction model is appropriate for integrated variables 

and, with this in mind, Hallman and Kamstra proposed a new combining form. 

 Writing the ith one step-ahead forecast at time t-1 as f it-1,1, Hallman and Kamstra pointed 

out that if (yt - f it-1,1) and (yt-1 - yt) are both I(0), then so is (f it-1,1 - yt-1). In view of this, they 

developed a model for the forecast difference of yt in terms of the new variables (f it-1,1 - yt-1 ). 

This can be interpreted as explaining the change in yt as a linear combination of forecasts of the 

change. This is equivalent to a model for yt in terms of the forecasts and a lag yt-1 of the series 

itself, with coefficients constrained to sum to one and the presence of a constant term. Since all 

the variables in the differenced formulation are I(0), the t-values of the regressors, including 

the constant, can be used to decide whether to retain all the forecasts in the combination. 

Coulson and Robins (1993) also concluded that, rather than a forecast of the level, the forecast 

of the change should be made, based on a linear combination of forecasts of the change. 

 Cointegration is an issue if unrestricted regression is used for combining. We advise two 

possible courses of action when using unrestricted regression to combine forecasts of an 

integrated variable: 

(1) Adopt the traditional time series approach and model forecasts of the corresponding 

stationary change.  

(2) Follow an econometric (error-correction) approach supported by the theory of cointegration 

and include the corresponding lag of the series being forecast in the combining regression 

model. 

 

6.3. Practical guidelines from a serial correlation perspective 

 The practical implication of Diebold's (1988) theoretical work is that using unrestricted 

least squares regression to combine forecasts will lead to serially correlated errors. His 

recommendation was to restrict the coefficients to sum to one. More recently, de Menezes and 



 

 
 
 14 

Bunn (1993, 1998) carried out simulation and case-study analyses to investigate the issue of 

serial correlation. In broad terms, this work showed that combined forecast errors replicate 

some of the serial correlation from the individual forecast error processes, although some of 

the serial dependence can be diluted through combining, and that alternative combining 

forecast methods behave differently under serial correlation. 

 Based on the conclusions of these three studies, using a serial correlation criterion, we 

arrive at the following practical guidelines for combining forecasts: 

(1) In cases of small sample sizes, use the simple average of the forecasts. 

(2) Over larger samples, use an optimal combination, where independence is assumed if cross-

correlation is small (ρ<0.5), otherwise estimate the optimal weights restricted to the interval 

[0,1], or, a regression-based approach restricting the weights on the forecasts to sum to one. 

(3) Check the combined forecast errors for serial correlation. If a pattern is found:  

- Model the errors whenever the pattern is simple and does not involve a unit root. 

- If there is a unit root in the errors, then revise the modelling procedure so as to consider the 

appropriate structure of the series (e.g. model the corresponding stationary change, 

restrict the combining regression or include the relevant lag in the model). 

- If the serial correlation pattern is complex, then it might indicate another case of 

misspecification, the forecasting procedure as a whole should therefore be revised. 

 

6.4 An illustrative example: percentage change in UK inflation  

 In business planning models, such as capital budgeting, a synthesis of several sources of 

economic forecasts are often required. Here, the data are one-year-ahead monthly forecasts of 

the annual percentage change in UK inflation from July 1983 to December 1988 from two 

forecasters London Business School and Goldman Sachs (de Menezes,1993). When we 

examined the individual forecast errors, we found that the correlation coefficient was 

reasonably stable and near zero; the distribution was normal, but serial correlation was an issue 

(ARIMA with a quarterly seasonal component and AR(1) structures).  

 We used the first five combining methods that were described in section 2 and estimated 

the combining weights based on the previous year (12 observations). The results are 

summarised in Table 4, where we note that all combinations have led to smaller forecast error 

variances than the larger of the individual variances. As the sample size is not small and the 

correlation coefficient (though not constant) is near zero, an adaptive method with 

independence assumption led to the smallest error variance, which is indeed smaller than both 

originals. Serial correlation was present in all combinations, but worse in those methods that 

attempted to estimate the correlation coefficient. Thus, confirming our expectations based on 

the proposed guidelines. Given the persistence of serial correlation in the combinations, the 

next stage in the analysis would be to model the error process. 

******************** TABLE 4 APPROXIMATELY HERE ************************ 
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7. Summary and guidelines for combining forecasts 

 In the light of previous conclusions, a set of guidelines on the use of different combining 

rules emerge. Given stable statistical conditions and relatively well-behaved data, the 

comparative performances of the methods, in terms of accuracy, was found to depend on the 

error variance ratios of the forecasts, the correlation between forecast errors and the sample of 

past data used for estimation. However, with respect to either skewness or serial correlation, 

the individual forecast error variances became less relevant.  

********************  TABLE 5 APPROXIMATELY HERE  *********************** 

 Table 5 summarises the guidelines, which constitute a valuable decision support tool for 

combining forecasts. They aid on issues such as the choice of the initial combining rule, the 

continuous assessment of the appropriateness of the rule, and model-switching whenever the 

basic statistical conditions change. Furthermore, they emphasise the need for frequent 

diagnostic-tracking in order to enable the decision maker to exercise their judgement or 

preference. 

 Results from a large case-study on inflation forecasts (de Menezes and Bunn, 1993) have 

also shown the effectiveness of these guidelines. They confirm that, in practice, the forecaster 

is faced with different sources of error misspecification and, unfortunately, when eliminating or 

filtering one source, stronger evidence of other sources may emerge. Thus, combining 

forecasts becomes clearly a multi-attribute decision problem, where a significant amount of 

judgement on the value of each attribute may be required from the modeller, who in situations 

of structural change and instability will also need to decide whether and when to revert to 

simpler methods. 

 

8. Conclusions and further implications 

 We have interpreted the problem of combining forecasts as a multi-criteria decision 

process. We have examined three criteria, although other dimensions can certainly be added to 

the analysis. The forecaster must decide upon which specification features to trade-off, and 

thus model-switching schemes will result from changes in the basic statistical conditions. 

Hence, the implementation of the proposed guidelines requires constant diagnostic-tracking and 

model-modeller interaction. 

 An approach that may be considered for model-switching is one of automatically 

generating various combinations and then selecting the best according to a set of diagnostics, 

for which priority rules would be given by the decision maker. The model would be updated 

with the arrival of individual forecasts or changes in priority rules. Following the history of 

individual forecast errors, a smaller set of combinations could be defined and generated. In 

practice, this implementation is not trivial. Real data is often not well behaved, making it 

sometimes difficult to define explicit criteria and constraints. Besides, the available diagnostics 

are usually poor and require considerable judgement. Therefore, provided some expertise from 
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the modeller, a framework like Reeves and Lawrence's (1982, 1991), combining given 

multiple objectives, can become attractive. However, if one restricts one's choices to a subset 

of the more robust methods on grounds of simplicity and pragmatism, then Collopy and 

Armstrong's (1992) rule-based forecasting may become a viable alternative. 

 On the other hand, the complexity of such procedures should also be considered. Thus, 

an alternative and more effective approach consists of placing more emphasis upon diagnostic-

tracking as a means for model review and reformulation, rather than "on-line" model-

switching. In fact, diagnostic-tracking would in principle provide considerable feedback to the 

different modelling stages (e.g. forecast and model selection, correcting for serial correlation 

and bias). When there are indications that forecast errors are not subject to serial correlation 

and outliers, a predictive distribution can then be derived via a bootstrap, leading to measures 

of the uncertainty in the combined forecast. Nonetheless, there are still strong limitations 

concerning the choice of diagnostics available, since most statistical tests rely on either 

asymptotical or large-scale simulation results. In a combining forecast context, one often deals 

with small and time-variant forecasting histories, and thus judgement and expertise is often 

required. 

 We believe that this paper provides useful practical guidelines for those who are 

interested in combining forecasts, but who are also concerned about the structure of the errors 

that result from the combination. We observed that different combining rules react distinctly to 

misspecification. We discussed how the quality of the individual forecasts in the model have 

substantial implications for the overall forecasting performance, and thus we showed the 

importance of a rigorous analysis of the individual forecast errors prior to combining. Indeed, 

in order to be able to exercise preference and judgement while using multiple forecasts, 

decision makers should be attentive to the different individual forecasting patterns. They should 

be aware that, as individual forecasts can be subject to badly behaved errors, it would be a 

mistake to assume equivalent forecasting behaviour and produce a simple average (consensus) 

forecast without previously examining the individual forecasting patterns. 
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Subsamples AREA & HEUR AREA & DFS HEUR & DFS 

1-20 0.56 0.36 0.34 

1-40 0.68 0.60 0.65 

41-80 0.80 0.76 0.81 

141-160 0.33 0.39 0.61 

201-220 0.75 0.25 0.47 

 
 
 Table 1. Estimated Correlation Coefficients Between Errors 
       from Individual Electric Load Forecasts 
 
 
 

 AREA DFS HEUR 

 Mean 151.60 24.61 77.60 

 STD 480.47 465.34 464.66 

 MSE 253,830 217,143 221,945 

 Skewness -0.20 -0.76 -0.15 

 Kurtosis 3.98 4.85 3.62 

 Bowman Shenton 11.48** 31.26** 4.86 
 
 ** normality rejected at a 5% significance level 
 
 
 Table 2. Errors from Individual Electric Load Forecasts (246 observations) 
 
 
 

  AREA, HEUR & 
DFS 

AREA 
& HEUR 

AREA 
& DFS 

HEUR 
& DFS 

 Mean 84.64 114.65 88.11 51.15 

 STD  408.23 431.32 424.67 417.63 

 MSE 173,819 199,177 188,108 177,069 

 Skewness -0.38 -0.23 -0.44 -0.41 

 Kurtosis 4.34 4.02 4.37 4.04 

 Bowman Shenton 24.33** 12.83** 27.16** 17.98** 
 
 ** normality rejected for all combinations (5% level) 
 
 
 Table 3. Errors from Simple Average Combinations 
     of Electric Load Forecasts (246 observations) 
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 Individual Forecasts 
Errors 

Combined Forecasts 
Errors 

 LBS GS AVG OUT OPT OPTI OPTR 

Mean 0.244 -0.169 0.038 0.119 0.208 0.175 0.163 

Variance 0.261 1.241 0.412 0.272 0.328 0.246 0.278 

Serial Correlation  
Structure 

ARIMA(1,0,0) 

×(0,1,1)4 

AR(1) AR(1) AR(1) ARMA(1,2) AR(1) ARMA(4,3) 

 
   LBS - London Business School 
   GS - Goldman Sachs 
   AVG - Simple Average 
  OUT - Outperformance 
   OPT - Optimal 
   OPTI - Optimal with independence assumption 
   OPTR - Optimal with weights restricted to lie between 0 and 1 
 
 
 Table 4. Errors from Combinations of Forecasts of the Percentage 
        Change in UK Inflation (54 observations) 
 
 
 
 
 

CRITERIA SMALL 
SAMPLES 

MEDIUM 
SAMPLES 

LARGE 
SAMPLES 

 
 
VARIANCE  

σi ≠ σj     ρij < 0.5  OUT OPTI  OPT/REG 

 σi ≈ σj  AVG AVG AVG 

 σi ≠ σj     ρij ≥ 0.5 OUT OPTR/REG OPTR/REG 

 
SKEWNESS 

ρij < 0.5  OUT OUT/OPTI OPT 

 ρij ≥ 0.5 OUT OPTR OPTR 

SERIAL 
CORRELATION 

ρij < 0.5  AVG OUTI/REGR OPTI/REGR 

 ρij ≥ 0.5 AVG OPTR/REGR OPTR/REGR 

 
   AVG - Simple Average 
  OUT - Outperformance 
   OPT - Optimal 
   OPTI - Optimal with independence assumption 
   OPTR - Optimal with weights restricted to lie between 0 and 1 
 REG - Regression 
   REGR - Regression with coefficients restricted to sum to 1 
 
 
 Table 5.  Practical Guidelines for Combining Forecasts 


