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Using Weather Ensemble Predictions in Electricity Demand Forecasting 

 

Summary 

Weather forecasts are an important input to many electricity demand forecasting models. This 

study investigates the use of weather ensemble predictions in electricity demand forecasting for 

lead times from one to 10 days ahead. A weather ensemble prediction consists of 51 scenarios 

for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related 

component of electricity demand. The results show that the average of the demand scenarios is a 

more accurate demand forecast than that produced using traditional weather forecasts. We use 

the distribution of the demand scenarios to estimate the demand forecast uncertainty. This 

compares favourably with estimates produced using univariate volatility forecasting methods. 

 

Keywords: Energy forecasting; Weather ensemble predictions; Forecasting accuracy; Prediction 

intervals 
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1.  Introduction 

 Weather variables are used to model electricity demand. Demand forecasts are produced 

by substituting a forecast for each weather variable in the model. Traditionally, single point 

weather forecasts have been used. In this paper, we consider a new type of forecast, called 

weather ensemble predictions. An ensemble prediction consists of 51 different members. Each 

member is a different scenario for the future value of the weather variable. The ensemble, 

therefore, conveys the degree of uncertainty in the weather variable. 

 We use the 51 weather ensemble members to produce 51 scenarios for electricity 

demand at lead times from one to 10 days ahead. Meteorologists sometimes find that the mean 

of the 51 ensemble members for a weather variable is a more accurate forecast of the variable 

than a traditional single point forecast (Leith, 1974; Molteni et al., 1996). In view of this, we 

consider the use of the average of the 51 demand scenarios as a point forecast of demand. We 

use the distribution of the electricity demand scenarios as an input to estimating the uncertainty 

in demand forecasts. It is important to assess the uncertainty in order to manage the system load 

efficiently (Adams et al., 1991). A measure of risk is also beneficial for those trading electricity.  

In this paper, our analysis is based on daily electricity demand data. We use the demand 

forecasting methodology of the National Grid (NG) as a basis for our analysis. NG is 

responsible for the transmission of electricity in England and Wales. The company’s demand 

forecasts have always been a crucial input to operational planning, where the generation output 

is scheduled to meet customer demand. Since the re-structuring of the industry in 1990, the NG 

demand forecasts have also been an important influence on the price and dynamics of the 

electricity market. Accurate demand forecasts are required by utilities who need to predict their 

customers’ demand, and by those wishing to trade electricity as a commodity on financial 

markets.  

Weather ensemble predictions are described in Section 2. Section 3 presents the 

method and variables currently used by NG. Section 4 considers how weather ensemble 
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predictions can be used to improve the accuracy of demand forecasts. Sections 5 and 6 

investigate the potential for using weather ensemble predictions to assess the uncertainty in 

demand forecasts. The estimation of demand forecast error variance is considered in Section 5, 

and demand prediction intervals are the focus of Section 6. The final section provides a 

summary and conclusion. 

 

2.  Ensemble Weather Predictions 

The weather is a chaotic system. Small errors in the initial conditions of a forecast 

grow rapidly, and affect predictability. Furthermore, predictability is limited by model errors 

due to the approximate simulation of atmospheric processes in a state-of-the-art numerical 

model. These two sources of uncertainty limit the accuracy of single point forecasts, which 

are generated by running one single model-integration with best estimates for the initial 

conditions (see Figure 1).  

*****  Figure 1  ***** 

Generally speaking, a complete description of the weather prediction problem can be 

stated in terms of the time evolution of an appropriate probability density function (pdf) in 

the atmosphere’s phase space. An estimate of the pdf provides forecasters with an objective 

way to understand the uncertainty in single point predictions. Ensemble prediction aims to 

derive a more sophisticated estimate of the pdf than that provided by a univariate 

extrapolation of the distribution of historical errors. Ensemble prediction systems generate 

multiple realisations of numerical predictions by using a range of different initial conditions 

in the numerical model of the atmosphere. The frequency distribution of the different 

realisations, which are known as ensemble members, provides an estimate of the pdf. The 

initial conditions are not sampled as in a statistical simulation because this is not practical for 

the complex, high-dimensional weather prediction model. Instead, they are designed to 



 3

sample directions of maximum possible growth (Molteni et al, 1996; Palmer et al. 1993; 

Buizza et al., 1998). 

Since December 1992, both the US National Center for Environmental Predictions 

(NCEP, previously NMC) and the European Centre for Medium-range Weather Forecasts 

(ECMWF) have integrated their deterministic prediction with medium-range ensemble 

prediction (Toth and Kalnay, 1993; Tracton and Kalnay, 1993; Palmer et al., 1993). The number 

of ensemble members is limited by the necessity to produce weather forecasts in a reasonable 

amount of time with the available computer power. In December 1996, after different system 

configurations had been considered, a 51-member system was installed at ECMWF (Buizza et 

al., 1998). The 51 members consist of one forecast started from the unperturbed, best estimate 

of the atmosphere initial state plus 50 others generated by varying the initial conditions. 

Stochastic physics was introduced into the system in October 1998 (Buizza et al., 1999). This 

aims to simulate model uncertainties due to random model error in the parameterised physical 

processes.  

At the time of this study, ensemble forecasts were produced every day for lead times 

from 12 hours ahead to 10 days ahead. The ensemble forecasts were archived every 12 hours, 

and are thus available for midday and midnight. The archived weather variables include both 

upper level weather variables (typically wind, temperature, humidity and vertical velocity at 

different heights) and surface variables (e.g. temperature, wind, precipitation, cloud cover). 

ECMWF disseminates ensemble forecasts to the National Meteorological Centers of its 

European member states, as part of an operational suite of weather products. In our work we 

used ensemble predictions generated by ECMWF from 1 November 1998 until 30 April 

2000. We limited our study to this period because the introduction of stochastic physics in 

October 1998 substantially improved the characteristics of the ensemble predictions of 

surface variables. We use ensemble predictions for the following three variables: 

temperature, wind speed and cloud cover. 
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3.  Electricity Demand Forecasting 

3.1.  Modelling Electricity Demand in England and Wales 

 There is no consensus as to the best approach to electricity demand forecasting. The 

range of different approaches includes time-varying splines (Harvey and Koopman, 1993), 

multiple regression models (Ramanathan et al., 1997), judgemental forecasts and artificial 

neural networks (see Hippert et al., 2001). In this paper, we implement the forecasting 

process used at NG. We present the modelling approach and the weather variables in some 

detail, as they form the basis of our analysis in the remainder of the paper. The approach 

taken by NG is first to forecast the demand at the 10 or 11 daily turning points and at several 

strategically positioned fixed points, such as midday and midnight. These turning points and 

fixed points are collectively known as cardinal points. Forecasts for periods between cardinal 

points are then obtained by a procedure known as profiling which involves fitting a curve to 

the cardinal points (see Taylor and Majithia, 2000). Harvey and Koopman (1993) describe a 

similar approach, which involves fitting a time-varying spline between a number of cardinal 

points. At NG, the cardinal point forecasts are produced by separate regression models, which 

are functions of seasonal and weather variables (Baker, 1985). This method has similarities 

with the method of Ramanathan et al. (1997), who produced hourly forecasts by using a 

separate regression model for each hour of the day.  

 

3.2.  Modelling Midday Electricity Demand 

In this paper, we focus on predicting demand (load) in England and Wales at midday. 

This is convenient because ensemble predictions are currently available for midday, although 

in the future they certainly could be produced for any required period of the day. Midday is 

always chosen as a fixed cardinal point by NG, and so there is no need to perform the NG 

profiling heuristic. Midday is a particularly important period in many summer months 

because it is often when peak demand occurs. We follow the procedure of NG and 
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Ramanathan et al. (1997) and produce a model for midday based on demand for previous 

middays and weather variables. 

Figure 2 shows a plot of electricity demand in England and Wales at midday for each 

day in 1999. One clear feature of demand is the strong seasonality throughout the year, which 

results in a difference of about 5000 MW between typical winter and typical summer 

demand. Another noticeable seasonal feature occurs within each week where there is a 

consistent difference of about 6000 MW between weekday and weekend demand. There is 

unusual demand on a number of ‘special days’, including public holidays, such as 1 January. 

In practice, NG forecasts demand on these days using judgemental methods. As in many 

other studies of electricity demand, we elected to smooth out these special days, as their 

inclusion is likely to be unhelpful in our analysis of the relationship between demand and 

weather. An alternative to this would to be treat the special days as missing observations. 

*****  Figure 2  ***** 

Short to medium-term forecasting models must accommodate the variation in demand 

due to the seasonal patterns shown in Figure 2 and due to weather. At NG, demand is modelled 

using three weather variables: effective temperature, cooling power of the wind and effective 

illumination. These variables are constructed by transforming standard weather variables in such 

a way as to enable efficient modelling of weather-induced demand variation (Baker, 1985). 

Effective temperature (TEt) for day t is an exponentially smoothed form of TOt, which is the 

mean of the spot temperature recorded for each of the four previous hours. 

12
1

2
1

−+= ttt TETOTE        (1) 

The influence of lagged temperature aims to reflect the delay in response of heating appliances 

within buildings to changes in external temperature. Cooling power of the wind (CPt) is a non-

linear function of wind speed, Wt, and average temperature, TOt. It aims to describe the draught-

induced load variation.  
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Effective illumination is a complex function of visibility, number and type of cloud and amount 

and type of precipitation.  

Since NG needs to model the demand for the whole of England and Wales, weighted 

averages are used of weather readings at Birmingham, Bristol, Leeds, Manchester and London. 

The weighted averages aim to reflect population concentrations in a simple way by using the 

same weighting for all the locations except London, which is given a double weighting.  

Since the aim of this paper is to investigate the potential for the use of ensemble 

predictions in electricity demand forecasting, we use only weather variables for which ensemble 

predictions were available. Ensemble predictions are available for temperature, wind speed and 

cloud cover (CCt) at midday and midnight. In view of this, we replaced effective illumination by 

cloud cover, and we used spot temperature, instead of average temperature, TOt, to construct 

effective temperature and cooling power of the wind from NG’s formulae in expressions (1) and 

(2).  

A common approach to electricity demand forecasting is to predict separately the 

weather-related demand and the non-weather-related demand, the ‘base load’. For simplicity, 

in this paper, we follow the two-stage approach of NG. The first stage aims to identify the 

weather-related component by estimating a regression model similar to the following: 

        demandt = a0 + a1 TEt + a2 TEt
2 + a3 CPt + a4 CCt + a5 t + a6 t2 + a7 t3 + a8 t4 

                              + a9 FRIt + a10 SATt + a11 SUNt + a12 W1t + a13 W2t + a14 W3t + εt  (3) 
 
where FRIt, SATt and SUNt are 0/1 dummy variables for Fridays, Saturdays and Sundays; 

W1t, W2t and W3t are 0/1 dummy variables representing the three summer weeks when a 

large amount of industry closes; εt is an error term; and the ai are constant parameters. The 

time polynomial is used to model in a deterministic way the yearly seasonal effect that was 
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evident in Figure 2. We followed NG in using data from the previous two years to estimate 

the model, and so a quartic time polynomial was appropriate. 

The second stage of the NG approach involves summing forecasts of the weather-

related demand and the base load. A forecast for the weather-related demand is produced by 

substituting traditional weather point forecasts in the following expression taken from the 

estimated regression model in (3): 

tttt CCaCPaTEaTEademandrelatedweather 43
2

21 ˆˆˆˆ_ +++=−   (4) 

Forecasts for the base load are produced judgementally by NG. Since we do not have the 

expertise to produce judgemental forecasts, we used the simple alternative of a univariate 

ARMA-regression model. Using the usual diagnostic tests, we derived the following model: 

ttttt

ttttttt

uu
WbWbSUNbSATbFRIbbdemandbase

+++=
++++++=

−−− 112211

543210 32_
θεφεφε

ε
   (5) 

where ut is a white noise error term and the bi, φi and θi are constant parameters. 

 

4.  Using Weather Ensembles for Demand Point Forecasting 

4.1.  Creating 51 Scenarios for Weather-Related Electricity Demand 

A standard result in statistics is that the expected value of a non-linear function of 

random variables is not necessarily the same as the non-linear function of the expected values of 

the random variables. This is an important issue when forecasting from non-linear models (Lin 

and Granger, 1994). Let us reconsider the forecast of the weather-related demand, which was 

given in expression (4). In view of the definition of cooling power of the wind, given in 

expression (2), and the presence of the TEt
2 term in (4), it is clear that the weather-related 

demand is a non-linear function of the fundamental weather variables: temperature, wind speed 

and cloud cover. The usual approach to forecasting the weather-related demand in all electricity 

demand models simply involves substituting a single point forecast for each weather variable. 

Bearing in mind the result regarding the expectation of a non-linear function of random 
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variables, it would be preferable to first construct the probability density function for the 

weather-related electricity demand, and then to calculate the expectation.  

Although estimation of the density function of weather-related demand is not 

straightforward, weather ensemble predictions do enable a reasonably sophisticated estimate to 

be constructed. Since we have 51 ensemble members for temperature, wind speed and cloud 

cover, we can substitute these 51 weather scenarios into expression (4) to deliver 51 scenarios 

for weather-related demand. The histogram of these 51 demand scenarios is an estimate of the 

density function. The estimate of the mean is calculated as the mean of the 51 demand scenarios. 

In Sections 5 and 6, we assess the accuracy of the variance and shape of this estimated 

distribution. This is less of an issue in this section, as our aim is to estimate the mean of the 

density function. Meteorologists often find that the mean of the 51 ensemble members for a 

weather variable is a more accurate forecast of the variable than the single point forecast. The 

collection of 51 ensemble members must, therefore, contain information not captured by the 

single point forecast. This provides further motivation for forecasting weather-related demand 

using the mean of the 51 demand scenarios. 

 

4.2.  Comparison of Forecasting Methods 

We used 22 months of daily data from 1 January 1997 to 31 October 1998 to estimate 

model parameters, and 18 months of daily data from 1 November 1998 to 30 April 2000 to 

evaluate the different forecasting methods. After eliminating special days, this 18 month period 

gave 500 days for evaluation. We produced forecasts for each day in our evaluation period for 

lead times of one to 10 days ahead. We compared four different sets of forecasts using the mean 

absolute percentage error (MAPE) summary measure, which is used extensively in the electricity 

demand forecasting literature. 
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Method 1: traditional weather point forecasts - After estimating the models in expression (3) 

and (5) for the two-stage approach described in Section 3, we produced forecasts by the usual 

procedure of substituting traditional single point weather forecasts in expression (4) for the 

weather-related demand.  

 

Method 2: mean of scenarios - Using the same models from the two-stage approach, we 

produced forecasts using the mean of the 51 scenarios for weather-related demand. This 

approach is based on the weather ensemble predictions since the 51 scenarios are constructed 

from the 51 ensemble members. 

 

Method 3: actual weather used as forecasts - In order to establish the limit on demand forecast 

accuracy that could be achieved with improvements in weather forecast information, we 

produced demand ‘forecasts’ using the two-stage approach with actual observed weather 

substituted for the weather variables in the weather-related demand expression in (4). Clearly 

this level of forecast accuracy is unattainable, as perfect weather forecasts are not achievable. 

 

Method 4: pure ARMA - In order to investigate the benefit of using weather-based methods at 

different lead times, we produced a further set of benchmark forecasts from the following well-

specified model that does not include any of the weather variables: 

ttttt

ttttttt

uu
WcWcSUNcSATcFRIccdemand

+++=
++++++=

−−− 112211

543210 32
ψεϕεϕε

ε
 

where the ci, ϕi and ψ1 are constant parameters. 

 

Figure 3 shows MAPE results for the four different methods. It is widely accepted that, 

for one day-ahead forecasting, a weather-based method is preferable to a method that does not 

use weather information. Indeed, all of the methods entered in a recent one day-ahead 
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forecasting competition used temperature as an explanatory variable (Ramanathan et al., 1997). 

We are not aware of a consensus of opinion regarding lead times up to 10 days ahead. Our 

results show that the weather-based methods comfortably dominate the method using no 

weather variables at all 10 lead times. 

*****  Figure 3  ***** 

It is interesting to note from the MAPE results that, for one day-ahead demand 

forecasting, there is very little difference between the performance of the methods using weather 

forecasts and that of the benchmark method using actual observed weather. The difference 

increases steadily with the lead time due to the worsening accuracy of the weather forecasts.  

The results show that using weather ensemble predictions, instead of the traditional 

approach of using single weather point forecasts, led to improvements in accuracy for almost all 

the 10 lead times. These improvements increased with the lead time, and brought the MAPE 

results noticeably closer to those of the method using actual observed weather, which is an 

unattainable benchmark. For lead times of 4 days ahead or more, the accuracy of the new 

ensemble-based approach is as good as that of the traditional approach at the previous lead time. 

This could be described as a gain in accuracy of a day over the traditional approach. 

 

5.  Using Weather Ensembles to Estimate the Demand Forecast Error Variance 

We now turn our attention to estimating the uncertainty in demand forecasts. In 

Section 6, we consider the estimation of prediction intervals. In this section, we aim to 

estimate the variance of the probability distribution of demand forecast error. This is not a 

trivial task, as the forecast error variance is likely to vary over time due to weather and 

seasonal effects. Since the method using weather ensemble predictions as input produced the 

most accurate post-sample forecasts in the previous section, we focus on estimation of the 

variance of the forecast errors from this method. The approach that we take is to model the 

variance in a series of historical post-sample forecast errors. Our modelling of the uncertainty 
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focuses on the error series and does not affect the point forecasts. A similar approach is taken 

by Engle et al. (1993) who model the magnitude of forecast errors. We consider lead times of 

one to 10 days ahead, unlike Engle et al. who focus only on one day-ahead forecasting.  We 

use the first 9 months (1 November 1998 to 31 July 1999) of post-sample errors from our 

earlier analysis of point forecasting to estimate model parameters, and the remaining 9 

months (1 August to 30 April 2000) of post-sample errors to evaluate the resulting variance 

forecasts. 

 

5.1.  Methods for Estimating Demand Forecast Error Variance 

 In this section, we present seven methods for estimating the error variance. Methods 2 

and 3 are used for forecasting volatility in financial data, and Methods 4 to 7 are designed to 

incorporate weather ensemble information in the estimate of the error variance. 

 

Method 1: naïve - For each lead time, k, we calculated the variance of the k day-ahead errors 

in the estimation period of 9 months.  

 

Method 2: ewma - An exponentially weighted moving average of recent squared errors 

allows the estimate to adapt over time. We implemented this method and optimised the 

smoothing parameter separately for each lead time.  

 

Method 3: garch - An alternative to the ad hoc methods described so far is the GARCH 

statistical modelling approach (see Engle, 1982; Bollerslev, 1986). In addition to lagged 

squared error terms and lagged conditional variance terms, exogenous explanatory variables 

can be included in GARCH models. We experimented with simple univariate explanatory 

variables. However, the only one that was significant for any of the models was the dummy 

variable for Saturdays, SATt. The one day-ahead GARCH(1,1) variance forecast is given by 
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tttt SATe 1
2

11
2

110
2 ˆˆ γσβαασ +++= −−  

An interesting issue arises in fitting statistical models to k step-ahead errors. The series of k 

step-ahead errors from an optimal predictor is likely to possess autocorrelation, which can be 

described by a moving average process of order k-1 (see Granger and Newbold, 1986, p. 

130). This was evident in our forecast errors. We controlled for this by fitting the GARCH 

model to the residuals of an MA(k-1) model fitted to the k day-ahead errors. In using the 

GARCH model for prediction, the MA(k-1) components play no part as the prediction is for k 

days ahead.  

 

Method 4: scenario variance - The level of uncertainty in the demand forecasts depends to an 

extent on the uncertainty in the weather forecasts. This motivates the use of a measure of 

weather forecast uncertainty in the modelling of demand forecast uncertainty. The variance of 

the 51 demand scenarios, discussed in Section 4.1, conveys the uncertainty in the weather 

component of demand. For each day in our post-sample period, we calculated the variance, 

2
,tENSσ , of the 51 scenarios for each of the 10 lead times, and used this as an estimate of the 

demand forecast error variance.  

 

Method 5: recalibrated scenario variance - The variance of the 51 scenarios is likely to 

underestimate the demand forecast error variance because it does not accommodate the 

uncertainty due to the model error and the parameter estimation error associated with 

expressions (3) and (4). In view of this, for each lead time, we performed a linear bias correction 

by regressing the squared forecast error on 2
,tENSσ . The ‘recalibrated’ estimator is of the form: 

2
,

2 ˆˆˆ tENSt ba σσ +=  
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Method 6: mixed garch - Since there is likely to be useful information in the weather ensemble 

predictions that is not captured by the univariate time series extrapolation of the GARCH model, 

we estimated GARCH models with 2
,tENSσ  as an additional potential explanatory variable. This 

new variable was significant only in the models for lead times 2, 5, 8, 9 and 10. For the other 

lead times, the mixed garch model was identical to the garch model of Method 3.  

 

Method 7: combination - Combining is an alternative to the mixed garch model for synthesising 

information from the ensemble predictions and the past forecast error variance. We calculated 

the simple average of the recalibrated scenario variance estimator and the garch estimator. We 

chose the garch estimator simply because it is the most sophisticated of the univariate methods. 

 

5.2.  Comparison of Variance Estimators 

Table 1 reports the coefficient of determination, R2, from the regression of the squared 

post-sample forecast errors on the variance forecasts for the 9-month post-sample evaluation 

period. This measure is widely used in volatility forecast evaluation. The regression corrects for 

any bias and the R2 measures the degree to which the estimator varies with the changing variance 

of the errors. It is, therefore, a measure of the informational content of the estimator. Typically, 

the R2 values are low, with values less than 10% being the norm (Andersen and Bollerslev, 

1998). The entries in bold in each column of Table 1 indicate the best performing method for 

each lead time. The R2 for the naïve estimator was zero for all lead times since it does not vary 

during the 9-month evaluation period. The results for the scenario variance method and the 

recalibrated scenario variance method are identical because the R2 measures covariation after 

performing a bias correction on the estimator. Although the garch method performed well at the 

early lead times and at the 10-day horizon, overall, the best results were recorded with the 

ensemble-based methods and the combination. 

*****  Table 1  ***** 
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Table 2 shows the root mean squared error (RMSE) post-sample evaluation results. 

RMSE  = ( )∑ −
i

iie
n

222 ˆ1 σ  

where ei is the load forecast error and n is the number of observations in the 9 month post-

sample evaluation period. Unlike the R2, the RMSE does not correct for bias, and so the results 

of Table 2 are a more straightforward reflection of forecasting performance. In Section 5.1, we 

suggested that bias would be a major issue for the scenario variance method. Comparing 

Methods 4 and 5 in Table 2, we can see that the RMSE results for this estimator notably improve 

with the recalibration. The bold entries in the table indicate that the combination is generally the 

best method up to 5 days ahead and that the recalibrated scenario variance method is the best 

beyond 5 days ahead. 

*****  Table 2  ***** 

 In summary, Tables 1 and 2 show that there is benefit in using weather ensemble 

information in constructing demand forecast error variance estimates. In view of its strong 

performance using both evaluation measures and its relative simplicity, we would recommend 

the recalibrated scenario variance method.  

 

6.  Using Weather Ensembles to Estimate Demand Prediction Intervals 

Prediction intervals are widely used to convey the uncertainty in a forecast. In this 

section, we consider a number of ways of estimating prediction intervals for electricity demand 

forecasts. Although 95% and 90% intervals are most common in the research literature, Granger 

(1996) suggests that 50% intervals are also widely used by practitioners. He points out that 50% 

intervals are more robust to distributional assumptions and are less affected by outliers. He 

criticises 95% limits for often being embarrassingly wide, and thus not very useful. In order to 

consider both the tails and the body of the predictive distribution, we focus on estimation of 50% 

and 90% intervals. More specifically, we evaluate different approaches to estimating the bounds 
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of these intervals: the 5%, 25%, 75% and 95% quantiles. The θ% quantile of the probability 

distribution of a variable y is the value, Q(θ), for which P(y<Q(θ))=θ. As in Section 5, we use 9 

months of post-sample errors from our earlier analysis of demand point forecasting to estimate 

method parameters, and the remaining 9 months of post-sample errors to evaluate the estimators. 

 

6.1.  Methods for Estimating Demand Forecast Error Quantiles 

The variance estimators, investigated in Section 5, can be used as the basis of quantile 

estimators. We used either a Gaussian distribution or the empirical distribution of the 

corresponding standardised forecast errors, tte σ̂/  (see Granger et al., 1989):  

Method 1: naïve variance estimator with Gaussian distribution. 

Method 2: ewma variance estimator with Gaussian distribution. 

Method 3: garch variance estimator with Gaussian distribution. 

Method 4: recalibrated scenario variance variance estimator with Gaussian distribution. 

Method 5: mixed garch variance estimator with Gaussian distribution. 

Method 6: naïve variance estimator with empirical distribution. 

Method 7: ewma variance estimator with empirical distribution. 

Method 8: garch variance estimator with empirical distribution. 

Method 9: recalibrated scenario variance variance estimator with empirical distribution. 

Method 10: mixed garch variance estimator with empirical distribution. 

 

Method 11: scenario quantile - We used the quantiles, )(, θtENSQ , of the distribution of 

scenarios as estimates of the quantiles of the forecast error distribution.  

 

Method 12: recalibrated scenario quantile - The width of the predictive distribution is likely to 

be greater than the width of the distribution of scenarios. We used quantile regression to 
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recalibrate the scenario quantile estimator with the forecast errors as dependent variable and 

)(, θtENSQ  as regressor (see Granger, 1989). The form of the resultant recalibrated estimator is:  

)(ˆˆ)(ˆ
, θθ tENSt QbaQ +=  

 

Method 13: combination - We calculated the average of the garch based estimator with 

empirical distribution and the recalibrated scenario quantile.  

 

6.2.  Comparison of Quantile Estimators 

Table 3 compares estimation of the 5% quantiles at the 10 different lead times for the 

post-sample period of 9 months. The table shows the percentage of post-sample forecast errors 

falling below the quantile estimators. For an unbiased estimator of the 5% quantile, this will be 

5% (see Taylor, 1999). The entries in bold in each column of Table 3 indicate the best 

performing method for each lead time. The asterisks indicate the entries that are significantly 

different from the ideal value at the 5% significance level. The acceptance region for the 

hypothesis test is constructed using a Gaussian distribution and the standard error formula for a 

proportion. The results show that the ewma variance estimator with Gaussian distribution and 

the combination method perform well, and that the scenario quantile method is vastly improved 

with the quantile regression recalibration. 

*****  Table 3  ***** 

To summarise the overall relative performance of the methods at the different lead times, 

we calculated chi-squared goodness of fit statistics. For each method, at each lead time, we 

calculated the statistic for the total number of post-sample forecast errors falling within the 

following five categories: below the 5% quantile estimator, between the 5% and 25% estimators, 

between the 25% and 75%, between the 75% and 95%, and above the 95%. Table 4 shows the 

resulting chi-squared statistics. The asterisks indicate significance at the 5% level. 

Unfortunately, we cannot sum the chi-squared statistics across lead times to give a single 
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summary measure for each of the estimators because the chi-squared statistics for the different 

lead times are not independent. The results indicate that an empirical distribution is preferable to 

a Gaussian assumption. The combination and the recalibrated scenario quantile perform 

consistently well across the 10 lead times. 

*****  Table 4  ***** 

 The percentage of errors falling below a quantile estimator evaluates only bias; we 

should also consider the variability of the estimation error. For example, the first column of 

results in Table 3 shows that 4.4% of the one day-ahead errors fell below the naïve variance 

estimator with Gaussian distribution. Since the ideal is 5%, the estimator is a little low on 

average; it possesses a degree of bias. Although the level of bias in this estimator is the second 

best of the 13 estimators, other estimators should vary in accordance with the varying variance 

of the distribution better than the naïve estimator, which by construction does not vary at all. It 

would be useful if we could evaluate this variability characteristic. The R2 measure used for 

evaluating the variance estimators in Section 5 corrects for bias, so that the R2 then reflects 

variation about the bias. Similarly, a quantile regression R2 measure can be used to evaluate 

quantile estimator prediction variance (Taylor, 1999). The package STATA (Stata, 1993) 

provides a pseudo-R2, analogous to the R2 in LS regression. Table 5 shows this pseudo-R2 for 

estimation of the 5% quantiles; high values of the pseudo-R2 are preferable.  

*****  Table 5  ***** 

The first column of results in Table 5 shows that the pseudo-R2 for the naïve estimator is 

zero, but for many of the other estimators it is considerably more. These results reflect the fact 

that these estimators vary more with the unobservable quantile. The pseudo-R2 reflects 

covariation between estimator and unobservable quantile. Consequently, the quantile estimators 

based on the same variance estimator, which differ only by a linear transformation, have the 

same pseudo-R2. Table 5 suggests that the estimators based on the recalibrated scenario 

variance estimator and those based on the mixed garch variance estimator tend to have the 
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highest pseudo-R2. Many of the others perform well at the early lead times but disappointingly 

for the longer horizons. Based on the chi-squared results in Table 4 and the pseudo-R2 results for 

the four different quantiles, we would tentatively conclude that, overall, the methods that 

perform the best for quantile estimation are the combination and the recalibrated scenario 

variance with empirical distribution.  

 

7.  Summary and Conclusions 

We have investigated the scope for using weather ensemble predictions in electricity 

demand forecasting for lead times from one to 10 days ahead. We used the 51 ensemble 

members for each weather variable to produce 51 scenarios for the weather-related component 

of electricity demand. For almost all 10 lead times, the mean of the demand scenarios was a 

more accurate demand forecast than that produced by the traditional procedure of substituting a 

single point forecast for each weather variable in the demand model. Since demand is a non-

linear function of weather variables, this traditional procedure amounts to approximating the 

expectation of a non-linear function of random variables by the same non-linear function of the 

expected values of the random variables. The mean of the 51 scenarios is appealing because it is 

equivalent to taking the expectation of an estimate of the demand probability density function. 

The distribution of the 51 demand scenarios provides information regarding the 

uncertainty in the demand forecast. However, since the distribution does not accommodate 

demand model uncertainties, it will tend to underestimate the demand forecast uncertainty. In 

view of this, we recalibrated measures of variance and quantiles taken from the scenario 

distribution. The resulting variance estimator compared favourably with estimators produced 

using univariate volatility forecasting methods. Using the same variance estimator as a basis for 

estimating prediction intervals also compared well with univariate methods. We, therefore, 

conclude that there is strong potential for the use of weather ensemble predictions in improving 

the accuracy and uncertainty assessment of electricity demand forecasts.  
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Figure 1:  Schematic of ensemble prediction. The initial probability density function, pdf0, 
represents the initial uncertainties. From the best estimate of the initial state, a single point 
forecast (bold solid curve) is produced. This point forecast fails to predict correctly the future 
state (dash curve). An ensemble of perturbed forecasts (thin solid curves) starting from 
perturbed initial conditions, designed to sample the initial uncertainties, can be used to 
estimate the probability of future states. In this example, the estimated probability density 
function, pdft is bimodal. The figure shows that two of the perturbed forecasts almost 
correctly predicted the future state. Therefore, at time 0, the ensemble system would have 
given a non-zero probability of the future state. 
 
 
 
 
 
 
 
 

forecast lead time, t 

pdf0 

pdft 
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Figure 2:  Demand for Electricity at Midday in England and Wales in 1999.  
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Figure 3:  MAPE for electricity demand point forecasts 

for post-sample period, 1 November 1998 to 30 April 2000.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
Lead time (days)

MAPE

1. traditional weather point forecasts
2. mean of scenarios (based on weather ensembles)
3. actual weather used as forecasts (unattainable benchmark)
4. pure ARMA (using no weather variables)



 24

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Table 1:  R2 percentage measure for forecast error variance estimation 
methods for post-sample period, 1 August 1999 to 30 April 2000.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lead time (days)
1 2 3 4 5 6 7 8 9 10

Univariate
1. naïve 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2. ewma 2.1 1.4 2.1 0.0 0.9 0.0 0.0 5.3 0.0 1.8
3. garch 2.6 2.1 3.2 0.1 0.8 0.5 3.7 2.4 0.6 7.2

Ensemble based
4. scenario variance 1.2 3.5 0.6 1.9 3.0 5.4 6.0 8.5 6.7 4.1
5. recalibrated scenario variance 1.2 3.5 0.6 1.9 3.0 5.4 6.0 8.5 6.7 4.1
6. mixed garch 2.6 7.1 3.2 0.1 4.1 0.5 3.7 9.4 8.2 6.1

Combination
7. average of 3. and 5. 3.0 4.2 0.9 1.9 2.6 4.7 6.0 8.8 6.6 6.8
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Table 2:  RMSE/1000 for forecast error variance estimation methods 

for post-sample period, 1 August 1999 to 30 April 2000.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lead time (days)
1 2 3 4 5 6 7 8 9 10

Univariate
1. naïve 1032 958 1090 1198 1340 1315 1401 1624 1800 1880
2. ewma 1025 950 1079 1197 1350 1311 1412 1614 1801 1888
3. garch 1031 954 1088 1217 1358 1334 1397 1690 1891 1857

Ensemble based
4. scenario variance 1192 1140 1276 1376 1507 1477 1572 1820 2003 2084
5. recalibrated scenario variance 1028 947 1103 1216 1323 1281 1358 1556 1774 1874
6. mixed garch 1031 918 1088 1217 1359 1334 1397 1682 1902 1994

Combination
7. average of 3. and 5. 1017 933 1078 1185 1322 1286 1359 1588 1780 1838
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Table 3:  Percentage of errors falling below estimates of 5% forecast 
error quantile for post-sample period, 1 August 1999 to 30 April 2000. 

* indicates significant at 5% level.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Lead time (days)
1 2 3 4 5 6 7 8 9 10

Variance estimators with Gaussian
1. naïve 4.4 4.4 3.6 4.0 4.0 5.2 4.4 3.2 3.6 3.6
2. ewma 6.0 6.0 5.2 5.2 6.0 6.0 6.0 6.0 3.6 2.8
3. garch 4.0 5.6 7.1 8.3* 7.1 7.1 8.3* 9.9* 9.5* 6.0
4. recalibrated scenario variance 4.0 3.6 3.2 4.0 4.4 4.4 3.2 3.6 4.4 4.4
5. mixed garch 4.0 4.0 7.1 8.3* 8.7* 7.1 8.3* 12.3* 15.1* 14.3*

Variance estimators with empirical
6. naïve 4.4 4.4 3.2 4.4 4.0 3.6 4.4 3.2 3.2 2.0
7. ewma 6.3 7.5 4.4 4.8 6.7 3.6 4.0 3.2 3.2 2.0*
8. garch 6.0 5.6 3.2 4.4 6.0 4.8 6.7 3.2 3.2 4.8
9. recalibrated scenario variance 3.6 4.4 2.4 4.0 4.4 2.0* 3.2 2.4 4.8 4.4
10. mixed garch 6.0 2.8 3.2 4.4 4.0 4.8 6.7 4.0 6.3 6.0

Demand scenario quantile
11. scenario quantile 43.7* 46.0* 27.0* 25.0* 20.6* 20.6* 16.7* 20.6* 17.9* 17.9*
12. recalibrated scenario quantile 4.4 3.6 3.2 4.0 4.4 2.8 3.6 2.8 3.6 4.4

Combination
13. average of 8. and 12. 4.8 4.4 2.8 4.0 4.8 3.2 4.8 3.2 2.4 4.4
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Table 4:  Chi-squared statistics summarising overall estimator bias for 5%, 25%, 75% and 
95% forecast error quantiles for the post-sample period, 1 August 1999 to 30 April 2000. 

* indicates significant at 5% level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lead time (days)
1 2 3 4 5 6 7 8 9 10

Variance estimators with Gaussian
1. naïve 11.7* 9.3 9.0 5.1 4.2 3.3 0.6 4.0 4.5 5.0
2. ewma 8.9 15.9* 20.3* 6.6 10.6* 2.2 3.7 8.2 4.7 4.8
3. garch 12.8* 17.7* 20.3* 14.6* 12.2* 10.7* 14.9* 30.6* 41.8* 25.7*
4. recalibrated scenario variance 12.2* 10.8* 14.7* 4.8 3.0 2.8 3.1 4.0 13.9* 9.7*
5. mixed garch 12.8* 19.1* 20.3* 14.6* 20.2* 10.7* 14.9* 91.6* 153.0* 172.1*

Variance estimators with empirical
6. naïve 4.9 9.4 4.6 1.1 1.1 1.8 3.7 5.9 11.0* 18.1*
7. ewma 9.3 10.3* 9.7* 2.0 3.1 1.8 9.4 6.4 11.0* 19.0*
8. garch 3.8 1.5 3.5 1.1 1.0 4.4 9.3 7.6 6.3 28.6*
9. recalibrated scenario variance 6.5 7.0 5.0 1.7 0.3 5.0 3.9 8.2 19.0* 23.1*
10. mixed garch 3.8 10.6* 3.5 1.1 0.8 4.4 9.3 11.6* 31.1* 41.5*

Demand scenario quantile
11. scenario quantile 1122.2* 1165.8* 1334.4* 639.2* 1536.0* 676.6* 1240.3* 831.7* 1167.4* 1465.5*
12. recalibrated scenario quantile 4.5 7.5 3.8 2.8 1.7 5.3 2.5 3.3 2.8 34.7*

Combining
13. average of 8. and 12. 2.9 4.9 3.8 1.7 0.3 5.6 2.7 2.8 6.0 19.3*
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Table 5:  Pseudo R2 percentage measure for estimators of 5% forecast 
error quantile for post-sample period, 1 August 1999 to 30 April 2000. 

 

Lead time (days)
1 2 3 4 5 6 7 8 9 10

Variance estimators
1.& 6. naïve 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.& 7. ewma 10.9 9.3 9.9 6.7 5.3 0.0 0.2 2.6 0.0 1.3
3.& 8. garch 11.0 6.3 3.2 4.1 4.3 0.4 5.4 0.3 0.2 5.2
4.& 9. recalibrated scenario variance 5.1 5.6 3.2 2.7 4.8 10.3 7.5 8.6 8.1 3.6
5.& 10. mixed garch 11.1 10.1 3.2 4.1 7.5 0.4 8.3 8.6 6.9 4.6

Demand scenario quantile
11. scenario quantile 0.2 3.3 0.5 0.2 0.8 0.5 1.1 0.7 0.6 0.7
12. recalibrated scenario quantile 0.2 3.3 0.5 0.2 0.8 0.5 1.1 0.7 0.6 0.7

Combination
13. average of 8. and 12. 11.2 7.6 1.0 0.6 2.0 1.1 3.9 0.5 0.4 3.2


