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Abstract. We provide a rigorous proof of the CPT theorem within the frame-
work of ’Lagrangian’ quantum field theory. This is in contrast to the usual rig-
orous proofs in purely axiomatic frameworks, and non-rigorous proof-sketches
within the Lagrangian framework.

1. Introduction and Motivation

The CPT theorem says, roughly, that every relativistic quantum field theory
has a symmetry that simultaneously reverses charge (C), reverses the orientation of
space (or ‘parity,’ P), and reverses the direction of time (T). In this paper we will
state and prove a general version of this theorem, proceeding from first principles
and explicitly setting out all required assumptions.

Why re-examine a result that is so widely known? The motivation stems from
the fact that, as a general rule, the QFT literature splits rather sharply into two
sectors. The first sector deals with ‘Lagrangian QFT’; it speaks the language of
mainstream particle physics, but is often rather relaxed about mathematical rigour.
The second sector is fully rigorous, but bears a much looser relationship to the QFTs
that actually enjoy predictive success; it includes the axiomatic program of Streater
and Wightman, and the purely algebraic approach (AQFT) associated with e.g.
Araki, Haag and Kastler. This contrast has been a focus of recent discussion in
the foundations community, with Doreen Fraser (?, ?) arguing that because of the
lack of rigour in the mainstream approach, the axiomatic and algebraic frameworks
provide the more appropriate locus for foundational work, while David Wallace (?,
?) advocates more foundational focus on the Lagrangian framework for the sake of
contact with real physics.

The literature on the CPT theorem is no exception to this general rule. In
standard Lagrangian-QFT textbooks (e.g. (Peskin & Schroeder, 1995), (Itzykson &
Zuber, 2005), (Weinberg, 19xx)) the ‘theorem’ is that Lagrangians of a certain kind
are necessarily invariant under a CPT transformation of the fields; they establish
this result via case-by-case calculations for the fields of most physical interest (e.g.
vectors or Dirac spinors in 3+1 spacetime dimensions), and refer the reader to e.g.
(Streater & Wightman, 1964) for a more rigorous and general proof. If one follows
up these references, one indeed finds a fully rigorous proof of a result called ‘CPT
Theorem,’ but the relationship of that result to the CPT invariance of Lagrangians
is obscure; the same remark applies to such AQFT results as that presented in (?,
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?). The literature contains a gap: there is no rigorous, general proof available of
the CPT theorem within the framework of Lagrangian QFT.

Driven by the platitude that both mathematical rigour and contact with real
physics are highly desirable, this paper aims to fill that gap. We present a rigorous
proof using only the basic geometric and group-theoretic facts on which the CPT
result essentially depends. Our approach has the following features.

(1) We are concerned solely with the symmetries of Lagrangian densities, dy-
namical equations, and similar objects; we say only enough about quantum field
theory per se to motivate appropriate transformation laws. In fact, our results
apply formally to classical relativistic field theories just as well as to quantum ones.
We find that the quantum CPT theorem is an instance of a more general result,
other instances of which can be seen as classical PT, classical CPT and quantum PT
theorems. In standard approaches to the CPT theorem, the relationship between
quantum and classical symmetries is left unclear.

(2) We give a general construction of CPT transformations for an arbitrary
field, based only on how that field transforms under proper orthochronous Lorentz
transformations. This construction is clearly tied to the requirements of our proof
of the CPT theorem, so it is clear why an invariance theorem results for these
particular transformations. In the existing Lagrangian-QFT literature, the CPT
transformations tend to be introduced ad hoc and case-by-case.

(3) We rely on a few basic geometric properties of the Lorentz group, so that
our results are valid for Minkowski space, and, indeed, for any non-Euclidean sig-
nature, in dimension at least three. These properties are absent in dimension two
and for Galilean spacetimes (for which we show there is no analogous result). The
standard approach relies on a detailed classification of the representations and in-
variants of the four-dimensional Lorentz group, thus obscuring the basic structure
and generality of the result.

(4) Our key technique is passage from the real to the complex Lorentz group.
This ‘complexification’ is also the key idea used to prove the CPT theorem of
axiomatic QFT, but it plays no overt role in standard approaches to the Lagrangian
CPT theorem.1

The present paper may also be of interest to those seeking a foundational
understanding of the prima facie mysterious connection between charge conjugation
and spacetime symmetries that is embodied in the CPT theorem (cf. (Greaves,
2007; ?, ?)).

We develop our argument pedagogically, treating first the simpler case of fields
taking values in true representations of the Lorentz group (i.e. tensor fields), and
later generalising to include properly projective representations (spinor fields). The
reader interested only in the broad outline of our results can skip sections 5–9.

The structure of the paper is as follows. Sections 2–4 lay the conceptual founda-
tions. Section 2 introduces our basic notion of a ‘formal field theory,’ and explains
how it can be used to study the symmetries of classical and quantum field theories.
Section 3 explains the distinction between PT and CPT transformations, and the
related idea of charge conjugation. Section 4 uses this framework to give a detailed
overview of our results.

1Complexification does play a key role in the treatment of tensors in an illuminating paper by
J. S. Bell (1955); the latter was the original inspiration for the present paper.
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Sections 5–9 form the technical heart of the paper. Section 5 states and proves
a ‘classical PT theorem’: we show that for classical field theories whose dynami-
cal fields take values exclusively in true representations of the Lorentz group (thus
excluding spinor fields), proper orthochronous Lorentz invariance entails ‘PT invari-
ance.’ Section 6 generalises the result of section 5: we prove a general invariance
theorem that has ‘tensors-only’ versions of the classical PT theorem, the quan-
tum CPT theorem, and classical CPT and quantum PT theorems as corollaries.
Of these, the classical PT and quantum CPT theorems are the most interesting,
because their premisses are widely accepted.

We next generalise to spinorial field theories. Section 7 lays out the basic facts
concerning covers of the proper Lorentz group. Section 8 explains how the most
straightforward attempt to generalise our classical tensorial PT theorem to include
spinors fails. Section 9, building on this instructive failure, further generalises
the results of section 6 to the spinorial case; this includes the full quantum CPT
theorem.

Section 10 examines how our methods apply beyond Minkowski space. We
generalise our results to arbitrary non-Euclidean signatures in dimension at least 3.
We also point out why our methods fail in various settings where there is provably
no analogue of the CPT theorem. Section 11 is the conclusion.

Some mathematical background is presented in Appendix A, to which the
reader should refer as necessary. Appendix B relates our treatment of the covering
groups of the Lorentz group to the usual approach in terms of Clifford algebras.
Detailed proofs are relegated to Appendix C.

2. Field Theories and Their Symmetries

We will state and prove our invariance theorems in a setting of ‘formal field
theories,’ in which the objects of study are formal polynomials that can equally well
be interpreted as dynamical equations or as defining Lagrangian or Hamiltonian
densities for classical or quantum field theories. The advantage of this framework
(over, say, one that takes the objects of study to be spaces of kinematically allowed
fields and their automorphisms) is its neutrality between classical and quantum field
theories, and between various interpretations of QFTs (as dynamical constraints on
operator-valued distributions, formal algorithms for the generation of transition
amplitudes, or anything else).

In this section we explain in detail what a formal field theory is, and how
they can be used to describe classical and quantum field theories. In particular,
we explain how to analyse space-time symmetries of classical and quantum field
theories in terms of an analogous notion for formal field theories.

Initially, ‘spacetime’ M can be any vector space.2 We must eventually suppose
that M has enough structure for us to speak of ‘time-reversing’ transformations.

2As a matter of convenience, we choose an origin forM (thus making it a vector space instead
of an affine space). When we discuss symmetries, this choice allows us to focus on the Lorentz
group rather than the full Poincaré group; it is justified by an implicit assumption that our field
theories are, in an appropriate sense, translation invariant.
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2.1. Classical field theories. A classical field theory is a set D ⊂ K, where
the set K ≡ C∞(M,V ) of kinematically allowed fields consists of all smooth func-
tions from spacetime to some finite-dimensional real vector space V .3 D is the set
of dynamically allowed fields. We are mainly interested in theories D that con-
sist of the solutions to a system of differential equations with constant coefficients
– for brevity, we say that D is polynomial, because these field equations depend
polynomially on the field components and their derivatives.

We will allow our differential equations to have complex coefficients. This
requires some comment. If we were only interested in classical field theories, it
would suffice to consider differential equations with real coefficients. By way of
example, it is true that the Dirac equation

(1) −iγµ∂µψ +mψ = 0

has complex coefficients; however, by taking real and imaginary parts, we may
consider this as a system of two differential equations with real coefficients. As
the example also shows, however, it is nevertheless convenient to allow for complex
coefficients, of which real coefficients are a special case. More importantly, the use
of complex coefficients will be crucial for the study of symmetries in quantum field
theory. There the complex structure of the coefficients can be identified with the
complex structure of Hilbert space, but must be sharply distinguished from any
complex structure that V may happen to possess (e.g. the way in which a complex
scalar field or a Dirac spinor is complex). The latter structure is fundamentally
irrelevant to our purposes (cf. Example 4).

We now spell out the notion of a polynomial classical field theory more precisely.
First, let W = Hom(V,C) be the space of real-linear maps V → C. Given Φ ∈ K,
by a derived component of Φ we mean one of the functions

(2) Φλξ1···ξn := ∂ξ1 · · · ∂ξn(λ ◦ Φ) ∈ C∞(M,C)

specified by the data of λ ∈ W and a (possibly empty) list of vectors ξ1, . . . , ξn ∈
M . A differential operator (with constant complex coefficients) is a map K →
C∞(M,C) that assigns to every Φ ∈ K a fixed polynomial combination of its derived
components – that is, a finite sum of finite products of them, along with complex
scalars. We say that a classical field theory D ⊂ K is polynomial if there is a set
Ddiff of differential operators such that

(3) Φ ∈ D ⇐⇒ [D(Φ) = 0 for all D ∈ Ddiff ].

The vast majority of classical field theories considered in physics are polynomial in
this sense.

Example 1. Consider the Maxwell equation usually written (with implicit
summation over β) as

(4) Fαβ,β − Jα = 0.

3If the theory ‘contains two or more dynamical fields,’ as e.g. electromagnetic theory contains
the Maxwell-Faraday tensor field Fαβ and the charge-current density vector field Jα, then V will
naturally be written as a direct sum of two or more spaces: VEM := VF ⊕ VJ . See Example 1.
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To illustrate our notation, let VF ⊂ M ⊗M be the space of contravariant4, skew-
symmetric rank-two tensors at a point, and VJ = M the space of vectors. A
pair consisting of a particular Maxwell-Faraday tensor field F ∈ C∞(M,VF ) and a
particular charge-current density vector field J ∈ C∞(M,VJ) can then be seen as
a single field Φ ≡ F ⊕ J ∈ C∞(M,VF ⊕ VJ). With respect to an orthonormal basis
e0, e1, e2, e3 ∈M∗ of covectors, we can rewrite (4) as

(5) Φ
eαeβ⊕0

eβ
− Φ0⊕eα = 0.

For each α ∈ {0, 1, 2, 3}, the left-hand side of (5) is a differential operator applied
to the field Φ = F ⊕ J ; the set Ddiff of these four operators specifies the dynamics
of Maxwell field theory, which is therefore a polynomial field theory.

Example 2. Here are two standard examples of non-polynomial field theories.
First, consider the Sine-Gordon equation for a scalar field φ:

∂µ∂
µφ+ sinφ = 0.

Since sine is not a polynomial function, this does not define a polynomial field
theory. However, our results could be extended (or applied indirectly) to the Sine-
Gordon equation and similar cases in which the field equations involve power series
(e.g. the Taylor series of sine) rather than polynomials.

A second type of example is a ‘non-linear σ model,’ in which the target space
V is not even a vector space, but a manifold. If V is an algebraic variety, then there
is still a notion of ‘polynomial field theory,’ and it should be possible to extend our
results in at least some cases. However, in this paper we will only consider the most
important case of polynomial field theories with a linear target space.

2.2. Formal field theories. We now shift attention from differential oper-
ators to the formulae that define them. This abstraction will allow us to treat
classical and quantum field theories on the same footing.

A differential formula is a polynomial combination of the derived components
of a purely symbolic field Φ. We call these derived components field symbols. A
differential formula F determines a differential operator DF that assigns to each
classical field Φ ∈ K the same polynomial combination of its derived components.

Let Kform be the set of all differential formulae. To be quite precise, we under-
stand each field symbol Φλξ1···ξn as an element λ⊗ (ξ1 · · · ξn) of the complex vector
space W ⊗R TM , where TM is the tensor algebra of M . Then we formally define
Kform to be the free algebra Kform = F(W ⊗R TM) (see Appendix A.6–A.7).

Our basic objects of study are certain nice sets of differential formulae:
Definition 1. A formal field theory is a complex affine subspaceDform ⊂ Kform

(see Appendix A.1).
Thus a formal field theory Dform defines a polynomial classical field theory D

via

(6) Φ ∈ D ⇐⇒ [DF (Φ) = 0 for all F ∈ Dform].

Conversely, given a polynomial classical field theory D, we obtain a formal field
theory Dform as the largest collection of differential formulae F satisfying (6). In
this case, Dform is actually a complex subspace of Kform.

4Since the Maxwell-Faraday tensor is the exterior derivative of a one-form, it is of course most
fundamentally a covariant anti-symmetric rank two tensor. We ignore this nicety for simplicity of
exposition; the background Minkowski metric allows us to raise and lower indices at will.
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But this is only one way of interpreting formal field theories. We have so
far noted that a single differential formula F determines a dynamical equation
DF (Φ) = 0; but we could instead consider DF as a Lagrangian or Hamiltonian
density, from which dynamical equations are to be derived. In this case, we can
take Dform to be the set of all differential formulae defining the same density I.
This is not a complex subspace of Kform, since it does not contain zero (unless
I = 0); but it is still a complex affine subspace.

Moving beyond classical field theories, an important feature of our definition is
that Kform is a non-commutative algebra. For example, given λ, µ ∈ W , the prod-
ucts ΦλΦµ and ΦµΦλ are generally different elements of Kform – different formulae
– even though ΦλΦµ = ΦµΦλ for any Φ ∈ K. By maintaining this distinction, we
leave open the possibility of taking Φ to represent a quantum field, whose compo-
nents do not generally commute.5

This is exactly what is done in standard approaches to QFT, where the ‘theory’
is specified by a density I, presented, as in the classical case, by a differential
formula. How exactly I is interpreted may depend on whether we are interested in
canonical quantization, path integrals, or other methods; but these questions are
largely irrelevant insofar as we can focus not on I itself, but on the collection Dform

of all differential formulae that define it. (We make these comments more precise
in section 2.4.)

Thus the formal field theory approach is broadly neutral about what kind of
field theories we wish to study (classical or quantum?) and about how we wish
to study them. (Lagrangians, Hamiltonians, or dynamical equations? Operator
distributions or path integrals?). Because we are interested in symmetries of field
theories, the only general requirement is that the theory of interest D is specified
by a complex affine subspace Dform ⊂ Kform, in such a way that symmetries of D
correspond to some appropriate notion of symmetries for Dform. Our next task is
to explain just what the appropriate notions are.

2.3. Classical spacetime symmetries. First let us consider the situation
for classical field theories. A permutation of K is a symmetry of D if it leaves D
invariant. One typically studies groups of symmetries: if a group G acts on K, we
can ask whether G acts by symmetries, i.e. whether D is G-invariant.

We are particularly interested in spacetime symmetries. This means that the
action u of G on K is determined by the data of a representation (ω,G,M) of G on
M and a representation (ρ,G, V ) of G on V (cf. A.3 on representations). Namely,

(7) u(g)Φ = ρ(g) ◦ Φ ◦ ω(g−1) ∀g ∈ G,Φ ∈ K.

We summarize this situation by saying that G acts geometrically via, and that u is
the geometric action corresponding to, ρ and ω.6

Example 3. The basic example is when G is a subgroup of the Lorentz group
(or, later, a covering group of such a subgroup); G then acts naturally on M ,
so to get a geometric action, it remains to specify a representation of G on V .

5It is also possible to make sense of non-commutative classical fields in various ways – see our
discussion of supercommutativity in section 9.

6This characterisation of spacetime symmetries in terms of geometric actions is general enough
to include what are normally called ‘global internal symmetries’ – these come from geometric
actions in which ω is the trivial representation.
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For example, in Maxwell theory (Example 1), we specified that each summand of
V = VM ⊕ VJ was a space of contravariant tensors.

How can we study spacetime symmetries using formal field theories? In general,
if a group G acts on Kform, we can ask whether a formal field theory Dform is G-
invariant. However, we are only interested in actions [ρω] of G on Kform that
correspond appropriately to a geometric action u of G on K. The natural matching
condition is

(8) DF (u(g)−1Φ) = D[ρω](g)F (Φ) ◦ ω(g) for all g ∈ G,F ∈ Kform,Φ ∈ K.

This and (7) determine [ρω], which can be described more explicitly as follows.

Definition 2. Let ([ρω], G,Kform) be the unique representation satisfying the
following properties (cf. A.9):

(1) For all g ∈ G, λ ∈W , and ξ1 · · · ξn ∈M,

[ρω](g)(Φλξ1···ξn) = Φ
λ◦ρ(g−1)
ω(g)ξ1···ω(g)ξn

.

(2) Every [ρω](g) is an automorphism of algebras: for all X1, X2 ∈ Kform,

[ρω](g)(X1X2) = [ρω](g)(X1) · [ρω](g)(X2)

[ρω](g)(X1 +X2) = [ρω](g)(X1) + [ρω](g)(X2).

We call [ρω] the classical action of G on Kform induced by ρ and ω.

The most important consequence of this definition is that a classical field theory
D is G-invariant with respect to the geometric action u if and only if the largest
corresponding Dform is G-invariant with respect to the classical action [ρω] (or, as
we normally say, if and only if Dform is [ρω](G)-invariant). We can therefore analyse
classical spacetime symmetries in terms of the symmetries of formal field theories.

2.4. Quantum field theories and spacetime symmetries. The situation
for quantum field theories is formally the same: a theory is typically specified by a
Lagrangian or Hamiltonian density I, which is given by a differential formula. If we
take Dform to be the set of all formulae that define the same I, then the invariance
of Dform under appropriate transformations of the field symbols corresponds to the
existence of spacetime symmetries of the quantum field theory.

How exactly to interpret the density I, and how to construct a field theory
from it, are questions much more difficult in the quantum than in the classical case.
They are, at least heuristically, the subject of standard textbooks on quantum field
theory. The theorems in this paper focus on the narrow question of the invariance
of formal field theories. In doing so, we will also be silent about spontaneous and
anomalous symmetry breaking, which disrupt the inference from symmetries of I
to symmetries of the quantum field theory.

Nonetheless, we must at least say enough to make clear the quantum analogue of
Definition 2. That definition was determined by the particular relationship between
classical and formal field theories, so we cannot rely upon it here. It turns out that
the right ‘quantum action’ [ρω]q differs from the classical action [ρω] for those g ∈ G
such that ω(g) is time-reversing. Here, and henceforth, we assume that spacetime
M is equipped with a temporal orientation that is either preserved or reversed by
each ω(g). Let us give the definition, and then some motivating comments.
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Definition 3. Let ([ρω]q, G,Kform) be the unique representation satisfying the
following properties:

(1) For all g ∈ G, λ ∈W , and ξ1 · · · ξn ∈M,

[ρω]q(g)(Φλξ1···ξn) =

Φ
∗◦λ◦ρ(g−1)
ω(g)ξ1···ω(g)ξn

if ω(g) is time-reversing

Φ
λ◦ρ(g−1)
ω(g)ξ1···ω(g)ξn

otherwise.

(Here ∗ : C→ C is complex conjugation.)
(2) Every [ρω]q(g) is an automorphism of algebras: for all X1, X2 ∈ Kform,

[ρω]q(g)(X1X2) = [ρω]q(g)(X1) · [ρω]q(g)(X2)

[ρω]q(g)(X1 +X2) = [ρω]q(g)(X1) + [ρω]q(g)(X2).

We call [ρω]q the quantum action of G on Kform induced by ρ and ω.

Our general assumption, then, is that for each quantum field theory D of interest,
there exists a formal field theory Dform such that Dform is [ρω]q(G)-invariant if and
only if G acts by spacetime symmetries on D. Our theorems, which are results
about formal field theories, will apply to quantum field theories insofar as this
assumption holds.

In the remainder of this section, we sketch one story about why this assump-
tion holds, following (and, we hope, clarifying) typical textbook treatments of CPT
invariance. In doing so, our aim is solely to provide the reader with a bridge to the
literature: we do not claim that the view of quantum field theory offered here is par-
ticularly perspicacious, and indeed it is well known that Haag’s Theorem severely
undermines the ‘interaction picture’ to which we (following the textbooks) even-
tually appeal.7 (The reader already happy that [ρω]q is the appropriate definition
can skip to section 3.)

What, first of all, is a quantum field theory? According to the ideal articu-
lated by the Wightman axioms, 8 a quantum field theory is at heart is a triple
(Ktest,H, Q), where Ktest is a space of ‘test functions’ M → V ∗, H is a Hilbert
space, and the ‘quantization map’ Q associates to each f ∈ Ktest a Hermitian op-
erator Q(f) on H. Let A be the space of all Hermitian operators. The eponymous
‘quantum field’ is a distribution Φ on M with values in A ⊗R V . It is defined by
the property that Q(f) is the integral of f against Φ, contracting V with V ∗. As in
the classical case, we can speak of the derived components of Φ, defined by (2); but
these components are operator-valued distributions on M , rather than functions
M → C.

A symmetry of (Ktest,H, Q) is naturally defined to be an automorphism of the
data, i.e. a pair of maps (u : Ktest → Ktest, U : H→ H) such that

U ◦Q(f) ◦ U−1 = Q(u(f)) for all f ∈ Ktest.

U should also preserve some of the structure of H: it should map rays to rays, and
preserve transition probabilities. According to a theorem of Wigner, this means
that U is either complex-linear and unitary or else anti-linear and anti-unitary.9

7See (?, ?) for a discussion.
8We omit some features that are unimportant to our present aim. For a complete axiom-

atization, and a proof of the CPT theorem within this framework, see (Streater & Wightman,
1964).

9See the Appendix A to chapter 2 in (Weinberg, 19xx).
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As in the classical case, however, our interest is not in arbitrary ‘symmetries’
in this minimal sense, but in those corresponding in a certain way to underlying
actions of the same group on V and on M . We again start from the notion of a
geometric action of G on K, as defined in section 2.3. In the quantum case, the
issue is whether a given geometric action10 u of G on Ktest extends to an action
of G by symmetries of (Ktest,H, Q): that is, whether for each g ∈ G there exists a
transformation U(g) of H such that

(9) U(g) ◦Q(f) ◦ U(g)−1 = Q(u(g)f) for all f ∈ Ktest.

If so, we can say that G acts by spacetime symmetries on the quantum field theory.
Remember that, in principle, each U(g) is allowed to be either complex-linear or
anti-linear. However – and here is the key point – the requirement of a positive
energy spectrum entails that

(10) U(g) is anti-linear if and only if ω(g) reverses the direction of time

(cf. (Weinberg, 19xx), ch. 2.6). This rule and (9) completely determine how the
derived components of Φ transform when conjugated by U(g):
(11)

U(g) ◦ Φλξ1···ξn(x) ◦ U(g)−1 =

Φ
∗◦λ◦ρ(g−1)
ω(g)ξ1···ω(g)ξn

(ω(g)x) if ω(g) is time-reversing

Φ
λ◦ρ(g−1)
ω(g)ξ1···ω(g)ξn

(ω(g)x) otherwise.

Conversely, if (11) holds for all g ∈ G and all derived components, then U defines an
action of G by spacetime symmetries. This establishes the salience of Definition 3:
suppose that IF (x) is a polynomial in the derived components11 of Φ, as specified
by a differential formula F ∈ Kform. Then [ρω]q is the unique representation of G
on Kform such that

(12) U(g) ◦ IF (x) ◦ U(g)−1 = I[ρω]q(g)F (ω(g)x).

This is the quantum analogue of (8).
Formulas (9)–(12) explain what it means for U(g) to be a spacetime symmetry

of a given quantum field theory, corresponding to a given geometric action u of G.
But nothing we have said so far establishes whether such a symmetry U(g) exists. In
order for our results concerning formal field theories to be relevant to quantum field
theories, we need this existence condition to be equivalent to the [ρω]q(g)-invariance
of a formal field theory. To establish that it is so equivalent, textbooks typically turn
to the ‘interaction picture.’ One starts from a well-understood free (‘interaction pic-
ture’) quantum field theory. One constructs the interacting (‘Heisenberg picture’)
theory using an ‘interaction Hamiltonian density’ I, a normal-ordered polynomial
in the derived components of the free field. The construction is such that if G
acts by spacetime symmetries on the free theory, and the density I transforms as
a scalar

(13) U(g) ◦ I(x) ◦ U(g)−1 = I(ω(g)x),

10Note that elements of Ktest are classical fields with values in V ∗ rather than V (heuristically,
elements of Ktest are classical observables rather than classical fields). But if G acts geometrically
on K via ω and ρ, then it also acts geometrically on Ktest via ω and the dual representation ρ∗.

11There is no simple way to make sense of a ‘polynomial combination of the derived components’
because of the distributional nature of the quantum field. Some regularization must be used. For
example, when (as below) the field in question is the free ‘interaction picture’ field, IF can be
defined by a normal ordered polynomial.
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then G also acts by spacetime symmetries on the interacting theory. However,
given (12), (13) is equivalent to the [ρω]q(g)-invariance of the set Dform of all dif-
ferential formulae defining I. Thus, modulo the relatively straightforward study
of free quantum field theories, the existence of quantum spacetime symmetries can
be deduced from the invariance of this formal field theory. We will consider the
case of CPT symmetries of free theories in section 9.1. Of course, other (perhaps
more satisfactory) ways of understanding interacting theories may not require any
reduction to the free case.

Remark 2.1. In defining Dform we were vague about which formulae define the
same density I. This will be determined by the way in which the field components
commute with one another, and hence relies on the spin-statistics connection. A
secondary consideration is that one may wish to consider Lagrangian densities to
be ‘the same’ if they differ only by a total derivative.

Remark 2.2. Classical and quantum symmetries are closely related, even when
they reverse time. Our perspective in sections 6 and 9 is that (C)PT theorems for
classical and quantum field theories are immediate corollaries of the same more
general result – strong reflection invariance.

3. PT, CPT, and Charge Conjugation

With our general framework in hand, we can turn to the main focus of this
paper: PT and CPT symmetries. Our characterisation of PT and CPT trans-
formations does not presuppose the existence of transformations that separately
reverse C, P, or T. However, to round out the picture, we also develop the notion
of a charge conjugation that relates PT to CPT.

In this section, we focus on Minkowski spaceM of dimension at least 2, although
most of what we say generalises to other spacetimes. Thus M is equipped with an
inner product η of signature (−+ · · ·+) or (+− · · ·−).

PT vs. CPT. The Lorentz group L consists of all linear isometries of M :

L = {g ∈ GL(M) | η(gv, gw) = η(v, w) for all v, w ∈M}.

L has four connected components: the proper orthochronous Lorentz group L↑+
(those transformations, including the identity, that preserve both spatial parity P
and time sense T ), the improper orthochronous component L↑− (reversing P only),
the improper nonorthochronous component L↓− (reversing T only), and the proper
nonorthochronous component L↓+ (reversing both P and T).

Both PT and CPT symmetries are spacetime symmetries corresponding to
proper nonorthochronous transformations of M , that is, to elements of L↓+. The
nomenclature comes from the particle phenomenology of quantum field theory:
CPT transformations exchange particles and anti-particles (thus also reversing the
charge, C), while PT transformations do not.12

Although there are no particles in our framework, we can nonetheless draw
the appropriate formal distinction between PT and CPT. To do this we need an
additional datum: a decomposition W = W+⊕W 0⊕W− into complex subspaces,

12In the literature on CPT symmetry in four dimensions, it is very common to focus on the single
element of L↓+ given by ‘total reflection’ x 7→ −x. But note that in odd spacetime dimensions,
total reflection lies in L↓− rather than L↓+, and so has nothing to do with CPT.
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such that complex conjugation λ 7→ λ∗ = ∗ ◦λ interchanges W+ and W− and fixes
W 0.13 We callW+⊕W 0 the particle sector andW−1⊕W 0 the anti-particle sector.
Thus W 0 corresponds to ‘neutral particles that are their own anti-particles.’

Remark 3.1. In practice this decomposition arises in the following way. Sup-
pose first that V is given as a complex vector space. Then W splits as W =
W+ ⊕ W−, where W+ consists of complex-linear maps, and W− of anti-linear
maps. Second, if V is merely real, we define W 0 = W . In general, V is given
as the direct sum of a complex and a merely real vector space, and therefore
W = W+ ⊕ W− ⊕ W 0. For motivation and a more detailed version of much
the same story, see (?, ?). The question of whether V counts as complex or merely
real is tied to the existence of internal U(1) symmetries.

Definition 4. We say that a real-linear map σ : W →W is charge-preserving
if σ(W ε) = W ε, and charge-conjugating if σ(W ε) = W−ε, for every ε ∈ {+, 0,−}.

Note that ifW = W 0, then σ may count as both charge-preserving and charge-
conjugating, and, in general, σ may be neither.

Now suppose that G acts geometrically. Let σ denote either the quantum action
σ = [ρω]q or the classical action σ = [ρω] of G on Kform. Either way, each σ(g)
preserves W ⊂ Kform, and so may be charge-preserving or charge-conjugating (or
neither).

Definition 5. For any g ∈ G with ω(g) ∈ L↓+, σ(g) is a PT transformation if
it is charge-preserving and it is a CPT transformation if it is charge-conjugating.

Remark. It is somewhat arbitrary how (and indeed whether) we choose to
extend the PT/CPT distinction from quantum to classical field theories, since the
state space of a classical field theory does not decompose into particle and anti-
particle sectors. One fairly natural stipulation would be that [ρω](g) is a CPT
transformation if and only if [ρω]q(g) is a CPT transformation. We choose instead to
insist on Definition 5, which turns out to have the opposite effect: by our convention,
[ρω](g) is a CPT transformation if and only if [ρω]q(g) is a PT transformation.
However, nothing beyond terminological convenience hangs on this choice.

Charge conjugation. We now define a general form of automorphism that
will play a key role in the interpretation of our general theorems (i.e. Theorems 3
and 6), and of which charge conjugation in the usual sense is a special case.

For the general construction, let $ be an involution of W = Hom(V,C), that
is, a real-linear map $: W →W such that $ ◦ $ = id. Define

(14) C$(Φλξ1···ξn) = Φ
$(λ)
ξ1···ξn

and extend this to an automorphism of Kform by the rules

C$(XY ) = C$(X)C$(Y ) C$(X + Y ) = C$(X) + C$(Y )

for all X,Y ∈ Kform. Assuming that $ is either complex-linear ($(iλ) = i$(λ))
or anti-linear ($(iλ) = −i$(λ)), this defines a unique complex-linear or anti-linear
automorphism of Kform, which we call $-conjugation. There are two main cases of
interest.

First, by an internal charge conjugation we mean an involution #: V → V such
that λ 7→ #(λ) := λ ◦ # is a charge-conjugating transformation of W . C# is the

13Recall that W := Hom(V,C), where V is the fields’ target space.
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type of ‘charge conjugation’ standard in QFT. We claim that if σ is a classical or
quantum PT transformation, then C# ◦ σ is a similarly classical or quantum CPT
transformation. Indeed, we can use # to define a new representation14 ρ# of G on
V , by

ρ#(g) =

{
# ◦ ρ(g) if ω(g) reverses time

ρ(g) if ω(g) preserves it.

Then, for example, if ω(g) is time-reversing, C# ◦ [ρω](g) is just the classical action
[ρ#ω](g), and it is clear that if [ρω](g) is charge-preserving then [ρ#ω](g) is charge-
conjugating, and vice versa.

It is also interesting to consider $ = ∗, i.e. $(λ)(v) = λ(v)∗. Then the quantum
and classical actions of a group G are related by C∗:

[ρω]q(g) =

{
C∗ ◦ [ρω](g) if ω(g) reverses time

[ρω](g) if ω(g) preserves it.

Moreover, C∗ is always charge-conjugating. Therefore C∗ relates classical PT to
quantum CPT, and classical CPT to quantum PT.

Example 4. Consider a theory of a ‘complex scalar field.’ This means that the
target space V is R2, and that L acts geometrically via the usual action ω onM and
the trivial action ρ on V . Define λ : V → C by λ(x, y) = x+ iy. We divide W into
particle and anti-particle sectors by setting W+ = Cλ, W− = Cλ∗, and W 0 = 0.
Then we have an internal charge conjugation defined by #(x, y) = (x,−y). Indeed
C#(Φλ) = Φλ

∗
. For any g ∈ L↓+, one has [ρω](g)(Φλ) = Φλ, so in this case [ρω](g) is

charge-preserving, so a (classical) PT transformation. Thus F = iΦλ = Φiλ ∈ Kform

transforms as
[ρω](g)(iΦλ) = iΦλ

[ρω]q(g)(iΦλ) = −iΦλ
∗

C# ◦ [ρω](g)(iΦλ) = iΦλ
∗

C# ◦ [ρω]q(g)(iΦλ) = −iΦλ

under classical PT, quantum CPT, classical CPT, and quantum PT respectively.
One usually says that V = C and that # is complex conjugation. This is

convenient and harmless as long as one carefully distinguishes between the complex
structure of V and the complex structure of W and Kform. (This corresponds in
QFT to the distinction between the way that fields can be complex and the way
that Hilbert space is complex.) For example, C∗ and C# are not equal, even though
they are both ‘complex-conjugation.’ Indeed, C#, as usual for charge-conjugation
in QFT, is complex-linear on Kform, while C∗ is anti-linear.

Remark. We can use an internal charge conjugation #: V → V to define a
geometric action of the group Z2 = {±1}, acting trivially on M . C# is just the
corresponding classical or quantum action of Z2 on Kform (it makes sense in both
contexts). Thus, in our language, charge conjugation can count as a ‘spacetime
symmetry’ (cf. footnote 6). These comments do not apply to C∗, since it does not
come from a transformation of V .

14Strictly speaking, for ρ# to be a representation, we must assume that # commutes with
every ρ(g).
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4. PT and CPT Theorems: An Overview

We now give an overview of our main results. From now on we assume that M
is Minkowski space of dimension at least 3. We will consider the two-dimensional
case and other possible generalisations in section 10.

4.1. A Classical PT Theorem for Tensors. Initially we are interested in
geometric actions of the proper Lorentz group L+ = L↑+ ∪ L

↓
+. Such field theories

are called tensorial, in contrast to spinorial theories in which the Lorentz group
is replaced by a covering group. When speaking of geometric actions of L+, we
assume in this section that the action of L+ on M is the standard one; in terms of
differential operators, this means that partial derivatives transform as expected.

Our first result (section 5) has the following form:
Classical PT Theorem for Tensors. Every geometric action of L↑+ ex-
tends, in a certain way, to a geometric action of L+, such that, with respect
to the corresponding classical actions on Kform:
(1) every L↑+-invariant formal field theory is L+-invariant;
(2) if L↑+ is charge-preserving, then so is L↓+.

In short, the theorem predicts the existence of classical PT symmetries for any L↑+-
invariant formal field theory. It is obviously not true that the invariance predicted
in part (1) holds for an arbitrary geometric action of L+. Rather, our claim is that
there exists a specific universal way to extend geometric actions from L↑+ to L+,
relative to which L↑+-invariance implies L+-invariance.

Example 5. For the case of Maxwell’s equations (Example 1), we can observe
that (a) the theory is invariant under L↑+ and L↓+, if we stipulate that F transforms
as a contravariant rank-two tensor, and J as a vector; (b) the theory is invariant
under L↑+ but not L↓+ if we stipulate that F transforms as a tensor and J as a
pseudo-vector (so that under a total reflection r : x 7→ −x of spacetime, we have
F 7→ F ◦ r and J 7→ J ◦ r).

4.2. A Quantum CPT Theorem for Tensors. In section 6 we use the
above classical PT theorem to derive a result that we call strong reflection invari-
ance (see 4.4 below). This implies a quantum CPT theorem of the following form.

Quantum CPT Theorem for Tensors. Every geometric action of L↑+
extends, in the same way as before, to a geometric action of L+. With
respect to the corresponding quantum actions on Kform:
(1) every L↑+-invariant formal field theory (satisfying some conditions) is

L+-invariant;
(2) if L↑+ is charge-preserving, then L↓+ is charge-conjugating.

The extra conditions in (1) are that the formal field theory is Hermitian and com-
mutative: the latter amounts to half of the spin-statistics connection, that tensor
fields commute (see footnote 18 for discussion). Note that these conditions are
irrelevant to the preceding classical PT theorem.

4.3. A Quantum CPT Theorem for Spinors. If we were convinced that
fields in all theories of interest to physics took values in true representations of
L↑+, the above results would suffice to establish the generality of classical PT and
quantum CPT invariance. However, this is not the case: in many examples, the
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fields take values in projective representations of the Lorentz group.15 We call such
field theories ‘spinorial.’ They include the earlier ‘tensorial’ theories as a special
case.

Projective representations of L↑+ are the same as true representations of a
double covering group L̃↑+ of L↑+.

16 Thus the assumption of a spinorial (C)PT
theorem is invariance under L̃↑+, and the conclusion should be invariance under, not
L+ itself, but a covering group of L+ containing L̃↑+. We investigate such covering
groups in section 7. It turns out (section 8) that the classical PT theorem fails to
generalise naively to spinors, and yet strong reflection invariance does generalise
(section 9). This yields (inter alia) a theorem of the following form.

Quantum CPT Theorem for Spinors. There exists a covering group
bL̃+ = L̃↑+ ∪ bL̃

↓
+ of L+, such that every geometric action of L̃↑+ extends, in a

certain way, to a geometric action of bL̃+. With respect to the corresponding
quantum actions on Kform:
(1) every L̃↑+-invariant formal field theory (satisfying some conditions) is

bL̃+-invariant;
(2) if L̃↑+ is charge-preserving, then bL̃↓+ is charge-conjugating.

The conditions required in (1) are that the theory is Hermitian and supercommu-
tative. The latter is a version of the full spin-statistics connection.

4.4. Strong Reflection Invariance. Our exposition of the quantum CPT
theorems in both sections 6 and 9 proceeds by first establishing a more general
invariance theorem, which predicts invariance under what the we call strong re-
flections.17 A strong reflection is a transformation of Kform defined by applying a
classical PT transform to the field symbols, while reversing the order of products.
Strong reflection invariance depends on L↑+-invariance and spin-statistics; unlike
the CPT theorems, it does not require any Hermiticity assumption. On the other
hand, strong reflections cannot be directly interpreted as spacetime symmetries.

Strong reflection invariance easily implies the quantum CPT and classical PT
theorems, as well as quantum PT and classical CPT theorems (with restrictive
premisses). This justifies our earlier remark that classical and quantum invariance
theorems are ‘instances of the same more general result.’

15One standard motivation for considering projective representations is that ‘physical states’
in quantum theory correspond to rays, rather than vectors, in a Hilbert space H. Thus the action
of the Lorentz group on the state space amounts to a projective representation on H. Such a
representation can be constructed by quantizing a classical field theory with values in a finite-
dimensional projective representation, of the type we consider here.

However, it also makes perfect sense to consider classical fields that transform under covering
groups of L+, with or without the quantum-mechanical motivation. Indeed, such spinor fields
play an important role in some approaches to general relativity.

16L̃↑+ is the universal covering group of L↑+ (section A.2.1), except when dimM = 3 (see
Remark 7.1). For an arbitrary connected Lie group in place of L↑+, projective representations may
not correspond to representations of a covering group – one must also allow for central extensions
of the Lie algebra. See (Weinberg, 19xx, §2.7).

17The idea of strong reflections is prevalent in the early CPT literature (see the discussion
in Pauli (?, ?), who attributes it to Schwinger). Some authors (e.g. (?, ?)) argue that strong
reflection invariance is just what one should mean by ‘CPT invariance.’ We are not convinced by
these arguments, but since we prove both strong reflection invariance and CPT invariance, there
is room to disagree.
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5. The Classical PT Theorem for Tensor Fields

We now explain in detail the Classical PT Theorem of section 4.1.

Extending Representations. We must first show how to extend any geo-
metric action of L↑+ to a geometric action of L+. This means that, given a repre-
sentation (ρ, L↑+, V ) of L↑+, we must extend it to a representation (ρ′, L+, V ) of all
of L+ on the same space V . We do this in such a way that if ω is the standard
representation of L↑+ on M , then (letting V = ω in our construction) ω′ is also the
standard representation of L+ on M . We proceed in three steps.

Step 1: Complexification. Recall (A.10–A.12) that any connected Lie group
G has a complexification GC, which is a complex Lie group, and any representation
(ρ,G, V ) extends canonically to a holomorphic representation ρC ofGC on V C = C⊗
V.We can apply this to the case G = L↑+ to obtain a representation (ρC, (L↑+)C, V C).
Thus, to make explicit our requirements, we have used

(PT-1) L↑+ is connected.

Step 2: Restriction to L+. Now we want to restrict from a representation of
(L↑+)C to a representation of L+. This uses:

(PT-2) L+ is a subgroup of the complexification (L↑+)C of L↑+.

To prove (PT-2), we identify (L↑+)C with something familiar: the proper complex
Lorentz group. Recall the definition. Complex Minkowski space is the complex
vector spaceMC = C⊗M . The inner product η onM extends by complex-linearity
to a complex-valued inner product ηC on MC:

(15) ηC(a+ bi, c+ di) := η(a, c)− η(b, d) + i[η(a, d) + η(b, c)].

The complex Lorentz group L(C) ⊂ GLC(MC) consists of those complex-linear maps
preserving ηC:

L(C) = {g ∈ GLC(MC) | ηC(gv, gw) = ηC(v, w) for all v, w ∈MC}.
The proper complex Lorentz group L+(C) is the identity component of L(C); it
consists of those elements with determinant +1. In particular, L+(C) contains L+

as a subgroup, but it is connected, unlike L+, which has two components. Here is
a precise restatement of (PT-2).

Lemma 5.1. The inclusion L↑+ → L+(C) identifies L+(C) with the complexifi-
cation (L↑+)C. In particular, L+ is a subgroup of (L↑+)C.

For the proof of this and other intermediary results, see Appendix C.

Step 3: Restriction to V . By (PT-2), we can restrict (ρC, (L↑+)C, V C) to a
representation of L+ on V C; but what we want is a representation of L+ on V .
Fortunately, we have the following lemma.

Lemma 5.2. The transformations ρC(L+) preserve V ⊂ V C.

Now the following definition makes sense.

Definition 6. Let (ρ′, L+, V ) be the restriction of (ρC, (L↑+)C, V C) to a repre-
sentation of L+ on V .

The proof of Lemma 5.2 in Appendix C relies on the following more basic fact:
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(PT-3) Every g ∈ L+ is fixed by complex conjugation of (L↑+)C.
The following example establishes (PT-3), as well as the fact that when ω is the
standard representation of L↑+, ω′ is the standard representation of L+.

Example 6. The standard action of L+(C) on MC is holomorphic, so it must
be the complexification ωC of the standard action ω of L↑+ on M . Restricting to
L+, we find that ω′ is just the standard action of L+ on M . Complex conjugation
on MC is just ∗ : v1 + iv2 7→ v1 − iv2, for v1, v2 ∈ M ; the v ∈ MC fixed by ∗ are
just the real vectors v1 ∈M . The complex conjugate of g ∈ L+(C) is characterised
by the property that (gv)∗ = g∗v∗, for all v ∈MC. Thus the g fixed by ∗ are those
preserving M ⊂MC. This of course includes all elements of L+, whence (PT-3).

Example 7. Suppose, more generally, that (ρ, L↑+, V ) is the tensor representa-
tion of type (m,n). That is, ρ is the canonical action of L↑+ on V := M⊗m⊗(M∗)⊗n.
Then the same sort of argument shows that the representation (ρ′, L+, V ) is just
the canonical representation of L+ on V . Compare to Example 5.

Invariance. We are now in a position to state and prove our first fundamental
theorem. Suppose that L↑+ acts geometrically via ρ and ω.

Theorem 1 (Classical PT Invariance for Tensors). If a formal field theory is
invariant under [ρω](L↑+), then it is invariant under [ρ′ω′](L↓+).

Of course, the most interesting case is when ω and hence ω′ are the standard
actions of L↑+ and L+ on M .

Proof. In outline, our proof has two parts. First, the classical action [ρω] of
L↑+ on Kform extends to a holomorphic representation [ρω]hol of (L↑+)C on the same
Kform. Our first step consists in establishing

Lemma 5.3. If Dform is [ρω](L↑+)-invariant, then it is [ρω]hol(L+)-invariant.

This is not yet our goal: we wish to show that Dform is invariant under
[ρ′ω′](L+), not [ρω]hol(L+). However, in fact these two representations are identi-
cal; the bulk of our proof consists in establishing this:

Lemma 5.4. [ρω]hol = [ρ′ω′] as representations of L+ on Kform.

The proofs of these two lemmas are found in Appendix C. �

PT, not CPT. Suppose we are given a particle/anti-particle decomposition
W = W+ ⊕ W 0 ⊕ W−, and that the transformations [ρω](L↑+) of W ⊂ Kform

are charge-preserving, i.e preserve this decomposition. For each ε ∈ {+, 0,−}, we
can apply Theorem 1 to Dform = W ε. The conclusion is that W ε is preserved by
[ρ′ω′](L↓+); thus [ρ′ω′](L↓+) is charge-preserving, so Theorem 1 is a PT (not a CPT)
theorem.

6. Strong Reflection and CPT Invariance for Tensors

Theorem 1 was relevant only for classical field theories, and established only PT
(not CPT) invariance. We now turn to the question of strong reflection invariance,
as previewed in section 4.4. This implies a range of PT and CPT theorems for
both classical and quantum field theories, including especially the quantum CPT
theorem for tensors previewed in section 4.2.
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Formally speaking, the results in this section are trivial variants of Theorem
1, but it is these results, and not Theorem 1, that will generalise to the case of
spinors. Stating them independently gives us the opportunity to introduce some
fundamental ideas that will find non-trivial application in the general spinorial case.

Commutativity. The basic assumption in this section is that multiplication
of field symbols is commutative. This means that we assume identities of the form

Φλξ1···ξmΦµη1···ηn = Φµη1···ηnΦλξ1···ξm .

These identities do not hold in Kform. Rather, they are the defining relations of
the free commutative algebra Kform

c = Fc(W ⊗R TM) (see A.8). Thus we define a
commutative formal field theory to be a complex affine subspace Dform

c ⊂ Kform
c .

However, any commutative formal field theory can also be seen as a formal
field theory in the original sense. Indeed, there is a map c : Kform → Kform

c which
identifies two formulae if they differ only by commutation. Instead of talking about
a subspace Dform

c ⊂ Kform
c , we equivalently talk about its inverse image Dform =

c−1(Dform
c ) ⊂ Kform. This observation allows us to apply the constructions of

section 5 to commutative formal field theories.
From the point of view of classical field theory, commutativity is a very natural

assumption, because multiplication of the derived components of classical fields
is commutative; from the point of view of quantum field theory, it amounts to
imposing one half of the ‘spin-statistics’ assumption: that, since we are dealing
here exclusively with true (rather than projective) representations of the Lorentz
group, all field operators commute with one another (see footnote 18 for clarifying
discussion).

Strong Reflection Invariance. Let S be the transformation of Kform that is
the identity on field symbols –

S(Φλξ1···ξn) = Φλξ1···ξn

– and is an anti-automorphism of algebras:

S(X + Y ) = S(X) + S(Y ) but S(XY ) = S(Y )S(X).

A strong reflection is a transformation of Kform of the form S ◦ σ for some classical
PT (or CPT) transformation σ.

Theorem 2 (SR Invariance for Tensors). If a commutative formal field theory
is invariant under [ρω](L↑+), then it is invariant under S ◦ [ρ′ω′](L↓+).

Proof. S is just the identity map on Kform
c , since there XY = Y X. Thus any

commutative formal field theory is S-invariant. According to Theorem 1, Dform is
also [ρ′ω′](L↓+)-invariant, hence invariant under the combination S ◦ [ρ′ω′](L↓+). �

Strong reflections, being anti-automorphisms of Kform, are not candidates for
spacetime symmetries by the lights of Definitions 2 and 3. However, we can obtain
spacetime symmetries by combining strong reflections with other anti-automorph-
isms of Kform, like Hermitian conjugation.
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Hermiticity. Following the discussion of charge conjugation in section 3, let
$ be any involution of W = Hom(V,C), assumed to be either complex-linear or
anti-linear, so that it defines an automorphism C$ : Kform → Kform. Define a corre-
sponding anti-automorphism †$ by

†$ = S ◦ C$ = C$ ◦ S

so that †$ acts the same way (14) as C$ on field symbols, but reverses the order of
products. We say that any Dform ⊂ Kform is $-Hermitian if it is invariant under †$.

Example 8. The most interesting case is when $ = ∗ is complex conjugation.
As we have noted, the complex structure onW corresponds to the complex structure
of the quantum Hilbert space; †∗ corresponds exactly to Hermitian conjugation of
operators in QFT. (Note that Hermitian conjugation, like †∗, reverses the order of
products.)

PT and CPT theorems. We have

Theorem 3 (General PT/CPT Theorem for Tensors). Suppose that a commu-
tative formal field theory is invariant under [ρω](L↑+). Then it is invariant under
C$ ◦ [ρ′ω′](L↓+) if and only if it is $-Hermitian.

Proof. Theorem 2 gives invariance under S◦[ρ′ω′](L↓+) = †$◦(C$◦[ρ′ω′](L↓+)).
Thus †$-invariance is equivalent to C$ ◦ [ρ′ω′](L↓+)-invariance. �

Now we interpret Theorem 3 for different choices of the involution $ (these
comments rely heavily on section 3). Throughout, Dform is a commutative, L↑+-
invariant formal field theory.

A Classical PT Theorem. First take $ = id to be the identity map. Then
†id = S, and any commutative formal field theory is automatically †id-invariant.
Thus Theorem 3 says that Dform is invariant under the classical PT transforma-
tions [ρ′ω′](L↓+). This is a slight weakening of Theorem 1, which did not assume
commutativity.

A Quantum CPT Theorem. Second, take $ = ∗ to be complex conjugation.
Theorem 3 says that Dform is invariant under the quantum CPT transformations
C∗ ◦ [ρ′ω′](L↓+) — equivalently, [ρ′ω′]q(L

↓
+) — if and only if it is ∗-Hermitian. Since

†∗ amounts to the usual Hermitian conjugation of operators in QFT, this condition
will be met if the interaction density is Hermitian in the usual sense. This is widely
assumed to be the case: a ∗-Hermitian Hamiltonian, at least, is needed for unitary
time evolution. Thus we get a general prediction of quantum CPT invariance.

A Classical CPT Theorem. Third, take $ = # to be an internal charge con-
jugation (see section 3). Then Theorem 3 says that Dform is invariant under the
classical CPT transformations C# ◦ [ρ′ω′](L↓+) if and only if it is #-Hermitian. This
Hermiticity serves as a convenient criterion for classical CPT invariance, but there
is no general reason it should be met.
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A Quantum PT Theorem. Finally, define $(λ)(v) = λ(#v)∗ for some internal
charge conjugation #; we write ‘$ = ∗#.’ Theorem 3 now says that Dform is
invariant under the quantum PT transformations C∗# ◦ [ρ′ω′](L↓+) — equvialently,
C#◦[ρ′ω′]q(L↓+) — if and only if it is ∗#-Hermitian. There is again no general reason
this condition should be met. Note this result does not assume that the theory is
Hermitian in the usual sense, i.e. ∗-Hermitian. However, when, as usual, Dform

is ∗-Hermitian, being ∗#-Hermitian is equivalent to being C#-invariant. In other
words, we have the usual implication of the CPT theorem, that charge-conjugation
invariance is equivalent to PT invariance.

Remark. The commutativity assumption is required for the results in this
section, though it plays no role in Theorem 1. We could not instead assume anti-
commutativity, because an anti-commutative formal field theory would not be in-
variant under S. As a trivial example, consider the complex scalar field of Example
4. The formula F = ΦλΦλ

∗
+ 1 is ∗-Hermitian and L↑+-invariant, but under quan-

tum CPT transforms to Φλ
∗
Φλ + 1. If Φλ and Φλ

∗
commute, then this is just F

again; but if they anti-commute, it equals −F + 2, and F is not CPT invariant.

7. Covers of the Lorentz Group

We now begin to generalise our results to spinors, as explained in section 4.3.
The purpose of this section is to describe the covering groups of L+, and, in particu-
lar, to construct the covering group bL̃+ mentioned in our Quantum CPT Theorem.

We continue to assume that the dimension of Minkowski space M is at least
three. At the end we work out an explicit description of all the groups in the
four-dimensional case (Example 9).

Covering groups of L+(C). It is convenient to start our discussion with
covering groups of the complex proper Lorentz group. L+(C) is connected, but
not simply connected. Since it is connected, it has a universal cover L+(C)∧; since
it is not simply connected, L+(C)∧ is not just equal to L+(C). In fact L+(C)∧

is a double cover. For future reference, it is convenient to state this directly as
a property of L↑+, using the fact (Lemma 5.1) that L+(C) is the complexification
(L↑+)C of L↑+:

(PT-4) The universal cover π : ((L↑+)C)∧ → (L↑+)C is a double cover.
We now use this double cover to define a four-fold cover π : L̃+(C)→ L+(C).

Definition 7. Let {1, τ} ⊂ L+(C)∧ be the preimage of 1 ∈ L+(C). Let L̃+(C)
be the group generated by L+(C)∧ together with a symbol I such that I2 = τ , and
such that I commutes with elements of L+(C)∧. Defining π(I) = 1, we obtain a
four-fold covering map π : L̃+(C)→ L+(C).

The situation is illustrated in Figure 1 (with further details explained below).

Covering groups of L+. Let L̃↑+ be the preimage of L↑+ in L+(C)∧. This is
a double cover of L↑+; in fact it is the universal cover (except when dimM = 3; see
Remark 7.1). We similarly define two different double-covers of L+, illustrated in
Figure 1. First, let aL̃+ = L̃↑+ ∪ aL̃

↓
+, where aL̃

↓
+ is the preimage of L↓+ in L+(C)∧.

Second, let bL̃+ = L̃↑+ ∪ bL̃
↓
+, where bL̃

↓
+ = I · aL̃↓+. It can be shown that any double

cover of L+ containing L̃↑+ is isomorphic to either aL̃+ or bL̃+ (we omit the proof).
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Figure 1. A four-fold cover L̃+(C) of the complex proper Lorentz
group L+(C), with two components. It contains the two double
covers of L+ extending L̃↑+: aL̃+ = L̃↑+ ∪ aL̃

↓
+ and bL̃+ = L̃↑+ ∪ bL̃

↓
+.

Example 9. In four dimensions we have L̃↑+ ∼= SL(2,C), the group of 2 × 2
matrices with complex entries and unit determinant. It is important to bear in
mind that, despite notation, L̃↑+ is only a real Lie group; it has no natural com-
plex structure. The covering map π : SL(2,C) → L↑+ can be specified as follows.
Arbitrarily choosing an inertial coordinate system, we can identify L↑+ with a sub-
group of GL(4,R). Hence, to specify a covering map, it suffices to specify an
action π of SL(2,C) on R4 preserving the Minkowski norm x2

0 − x2
1 − x2

2 − x3
3. For

x = (x0, x1, x2, x3) ∈ R4, write

(16) 〈x〉 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
;

then, the desired action of A ∈ SL(2,C) is given by the matrix multiplication

(17) 〈π(A)(x)〉 = A · 〈x〉 · ĀT

(here Ā is the complex-conjugate of A, and T denotes transpose). The Minkowski
norm of x is equal to det 〈x〉, which is preserved under (17) since detA = det ĀT =
1. Note that π is two-to-one: π(A) = π(−A) for all A ∈ SL(2,C).

The universal cover L+(C)∧ of L+(C) is isomorphic to SL(2,C)×SL(2,C). The
covering map is defined as follows. For x ∈ MC = C4, define 〈x〉 as in (16). For
(A,B) ∈ SL(2,C)× SL(2,C), π(A,B) is the linear transformation of C4 given by

(18) 〈π(A,B)(x)〉 = A · 〈x〉 ·BT .

Thus L̃↑+ is identified with the subgroup of pairs (A, Ā), and τ is represented by
the pair (−1,−1) of scalar matrices. To describe the four-fold cover L̃+(C), we
represent I by the pair (i,−i) of scalar matrices. This brings us to the following
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picture, where H is the group of 2× 2 complex matrices with determinant ±1.

L̃+(C) ∼= {(A,B) ∈ H ×H | detA = detB}
L+(C)∧ ∼= {(A,B) ∈ H ×H | detA = detB = 1}

L̃↑+
∼= {(A, Ā) ∈ H ×H | detA = 1}

aL̃↓+
∼= {(A,−Ā) ∈ H ×H | detA = 1}

bL̃↓+
∼= {(A,−Ā) ∈ H ×H | detA = −1}.

The covering map π : L̃+(C) → L+(C) is still given by (18). It is four-to-one: for
all (A,B) ∈ L̃+(C), π(A,B) = π(−A,−B) = π(iA,−iB) = π(−iA, iB).

Remark 7.1. If dimM = 3, then L̃↑+ is not the universal cover (L↑+)∧ (which
turns out to be an infinite cover of L↑+). However, it is still true that any projec-
tive representation of L↑+ comes from a representation of L̃↑+, so there is no loss
of generality in considering L̃↑+ rather than (L↑+)∧. Note that any representation
of L̃↑+ determines a representation of (L↑+)∧, by composing with the covering map
(L↑+)∧ → L̃↑+. The claim is that every representation of (L↑+)∧ arises in this way.
One can check that the map (L↑+)∧ → L̃↑+ ⊂ L+(C)∧ identifies L+(C)∧ with the
complexification of (L↑+)∧ (compare to Lemma 8.1). This means that any repre-
sentation ρ of (L↑+)∧ on V extends to a representation ρC of L+(C)∧ on V C, and
therefore ρ(g) depends only on the image of g in L̃↑+.

8. A Classical PT Theorem for Spinor Fields?

Having described the covering groups of L+, we now naively attempt to gener-
alise Theorem 1 to the case of spinors. In fact, we will fail in this attempt, but the
argument will lead to a generalisation of Theorems 2 and 3 in the next section.

Following the exposition in section 5, we can complexify any representation
(ρ, L̃↑+, V ) to get (ρC, (L̃↑+)C, V C). Next, we wish to restrict ρC to either aL̃+ or bL̃+.
In analogy to Lemma 5.1, we have

Lemma 8.1. The inclusion L̃↑+ → L+(C)∧ identifies L+(C)∧ with the complex-
ification (L̃↑+)C. In particular, aL̃+ is a subgroup of (L̃↑+)C.

The proof is in Appendix C. The result is that we can restrict ρC to a repre-
sentation of aL̃+ (but not of bL̃+) on V C. However, this does not mean that aL̃+

preserves V ⊂ V C, and, in fact, the analogue of Lemma 5.2 fails; rather, one has

Lemma 8.2. Let (ρ, L̃↑+, V ) be a representation of L̃↑+, and (ρC, (L̃↑+)C, V C) its
complexification. Decompose V as V = V0 ⊕ V1 where ρ(τ) acts as (−1)n on Vn.
Then ρC(aL̃↓+) preserves V0 but maps V1 to iV1 ⊂ V C.

Since ρC(aL̃↓+) does not preserve all of V ⊂ V C, there is no obvious way to
define a representation of aL̃+ on V , and therefore no obvious way to associate PT
transformations to elements of aL̃↓+.

Remark. A representation V0 on which τ acts by the identity is the same thing
as a representation of L↑+. Thus we can speak of V0 as the space of ‘tensors’ and
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V1 as the space of ‘pure spinors.’ When V = V0, V is preserved by aL̃↓+, and we do
get a PT theorem – namely, Theorem 1.

Remark. Just as Lemma 5.2 relied on property (PT-3), so the proof of Lemma
8.2 in Appendix C reduces to the following fact:

(PT-5) For any g ∈ aL̃↓+, g∗ = gτ .

It is automatic from (PT-1)–(PT-4) and the fact that L↓+ is connected, that either
(PT-5) holds or else g∗ = g for all g ∈ aL̃↓+. In the latter case, we would have
obtained a classical PT theorem in analogy to Theorem 1.

Example 10. We continue Example 9. Let ρ be the standard representation of
L̃↑+ = SL(2,C) on C2. The complexity of V is completely irrelevant (cf. Example
4), so to avoid confusion, let us write V = R4. For v = (x, y, z, w) ∈ V define
[v] = (x+ iy, z + iw, x− iy, z − iw) ∈ C4. Then ρ is given by

[ρ(A)v] =

(
A 0
0 Ā

)
· [v].

Since τ is represented by A = −1, we find V = V1. The complexification of V = R4

is V C = C4. For v ∈ V C, define [v] ∈ C4 as before. Then the complexified
representation ρC of (L̃↑+)C = L+(C)∧ = SL(2,C)× SL(2,C) on V C is given by

[ρC(A,B)v] =

(
A 0
0 B

)
· [v].

Following Example 9, aL̃↓+ consists of pairs (A,−Ā). In particular, one finds that
(1,−1) ∈ aL̃↓+ acts on V C by

ρC(1,−1)(x, y, z, w) = (iy,−ix, iw,−iz).

As predicted by Lemma 8.2, this maps real vectors into purely imaginary ones.

A Holomorphic Spinorial PT Theorem. As consolation, there is a class
of field theories for which we can define a geometric action of aL̃+ and prove a PT
invariance theorem. We will sketch the idea here, but this discussion is merely an
aside, and is not used in the rest of the paper.

Suppose that our representation (ρ, L̃↑+, V ) is complex in the sense that V is
a complex vector space and L̃↑+ acts complex-linearly. This is already enough to
define a geometric action of aL̃+: there is a unique extension of ρ to a holomorphic
representation (ρhol, (L̃↑+)C, V ), and, in particular, an action of aL̃+ on V .

However, we will only get aL̃+-invariance for certain special field theories. Here
is one class of them. LetW+ ⊂W be the subspace of complex-linear maps V → C,
and Kform

+ = F(W+ ⊗R TM) the free complex algebra generated by W+ ⊗R TM .
This is a subalgebra of Kform, and it is invariant under the classical action of L̃↑+.
We call a formal field theory Dform ⊂ Kform holomorphic if it is contained in Kform

+ .
The following theorem is closely parallel to Theorem 1; we omit its proof.

Theorem 4. If a holomorphic formal field theory is invariant under [ρω](L̃↑+),
then it is invariant under [ρholω′](aL̃↓+).

However, most theories of physical interest are not ‘holomorphic’ in this sense.
If the original representation ρ is not complex (e.g. the case of Majorana spinors),
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then Lemma 8.1 tells us that aL̃↓+ takes fields with values in V1 to fields with values
in iV1 – i.e., outside the original space of kinematically allowed fields. Similarly,
if the original representation ρ is complex but the dynamics cannot be described
by a subspace of Kform

+ , then aL̃↓+ preserves the kinematical space, but not the
dynamical subspace. Theorem 4 therefore does not yield an invariance theorem for
field theories that are ‘non-holomorphic’ in either of these two ways.

Example 11. For the standard theory of the Dirac equation, the space V is
a 4-dimensional complex vector space of ‘Dirac spinors.’ The classical field theory
given by the Dirac equation (1) can be modelled by a holomorphic formal field
theory, since the equation depends complex-linearly on the field ψ. Corresponding
to the total reflection in L+, there are two elements of aL̃↓+, which yield classical
PT transformations ψ 7→ ±γ5ψ = ±iγ0γ1γ2γ3ψ. It is easy to check that these are
symmetries of the Dirac equation. On the other hand, consider the constraint

ψ̄ψ = 1

in the standard Dirac-bilinear notation. This cannot be modelled by a holomorphic
formal field theory, because ψ̄ depends anti-linearly on ψ. And in fact our PT
transformation γ5 is not a symmetry: ψ̄ψ 7→ −ψ̄ψ, whereas 1 7→ 1. (Similarly,
Theorem 4 cannot be applied to the standard Dirac Lagrangian.)

9. Strong Reflection, PT, and CPT Invariance for Spinors

At last we turn to our main results, previewed in sections 4.3–4.4. Through-
out we assume that L̃↑+ acts geometrically via any representation ρ on V and the
standard representation ω on M .

Extending Representations. In the last section we tried and (in general)
failed to define classical PT transformations for spinor fields. Recall that V splits
as a direct sum V = V0 ⊕ V1, where ρ(τ) acts by (−1)n on Vn. The problem was
that candidate transformations corresponding to elements of aL̃↓+ do not preserve
the real space V of field values, instead mapping the space V1 of pure spinors into
iV1 (Lemma 8.2). However, this very fact allows us to define a representation of
bL̃+ (as opposed to: aL̃+) that does preserve V :

Definition 8. Let (ρ, L̃↑+, V ) be any representation of L̃↑+. Define a represen-
tation (ρ′, bL̃+, V ), extending ρ, by:

ρ′(g)v =

{
ρC(g)v for g ∈ L̃↑+

inρC(I−1g)v for g ∈ bL̃↓+ and v ∈ Vn.

It follows from Example 6 that if ρ = ω is the standard representation of L̃↑+
on M , then ω′ is the standard representation of bL̃+ on M – that is, ω′ is just the
projection bL̃+ → L+ ⊂ GL(M).

Example 12. We continue Example 10. Recall (Example 9) that aL̃↓+ is rep-
resented by matrix pairs (A,−Ā) with A ∈ SL(2,C), and I by the pair of scalar
matrices (i,−i). Thus bL̃↓+ = I · aL̃↓+ is represented by matrix-pairs (iA, iĀ). Thus
the action ρ′ of bL̃↓+ on V C is given by

[ρ′(iA, iĀ)v] = i

(
A 0
0 −Ā

)
· [v].
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In particular, one finds that (i, i) ∈ bL̃↓+, corresponding to a total reflection of M ,
acts on V by ρ′(i, i)(x, y, z, w) = (−y, x,−w, z).

Having shown how to extend geometric actions of L̃↑+ to bL̃+, we can at least
formulate analogues of Theorems 1 and 2. However, one cannot expect a direct
generalisation of Theorem 1 actually to hold, because ρ′ is not merely a restriction
of the complexification of ρ. It turns out that we can nonetheless get a direct
generalisation of Theorem 2, with the assumption of commutativity replaced by
supercommutativity, which we now explain.

Supercommutativity. If V = V0, then supercommutativity is just commu-
tativity, as in section 6. If V = V1, we impose instead anti-commutativity,

Φλξ1···ξmΦµη1···ηn = −Φµη1···ηnΦλξ1···ξm .

In general, the decomposition V = V0⊕V1 leads to a decompositionW = W0⊕W1,
where Wn = Hom(Vn,C). Then supercommutativity means that

(19) Φλξ1···ξmΦµη1···ηn = (−1)abΦµη1···ηnΦλξ1···ξm

holds for all λ ∈ Wa and µ ∈ Wb. The relations (19) define the free supercommu-
tative algebra Kform

s = Fs(W ⊗R TM) (A.7 and A.8). Thus we can define a super-
commutative formal field theory to be a complex affine subspace Dform ⊂ Kform

s .
As with commutative theories, we can consider a supercommutative formal field
theory to be a special kind of formal field theory in the original sense, using the
map Kform → Kform

s that conflates all formulae related by supercommutation (19).
Supercommutativity is our version of the full spin-statistics connection.18 It

has a natural interpretation, and independent motivation via the spin-statistics
theorem, in the quantum case. In contrast, our discussion of classical field theories
in section 2 leads to purely commutative rather than supercommutative formal field
theories, since the derived components of classical fields commute. Nonetheless, it
is possible to make some sense of supercommutative classical spinorial field the-
ories. First a trivial but important example: field theories determined by linear
dynamical equations can be modelled in this way (see Remark 9.1 below). In the
absence of further compelling examples, we only sketch one general approach, which
mirrors the non-commutativity of quantum fields. Suppose that A = A0 ⊕A1 is a

18 There are several closely related statements that can be called ‘the spin-statistics connection.’
In our approach, we formalize it by taking the theory-specifying differential formulae to live
in the supercommutative algebra Kform

s . This agrees with the functional-integral approach to
QFT, in which the Lagrangian density is interpreted by means of Grassmann-valued fields, which
supercommute exactly as we have described.

From another point of view, however, our approach may seem to involve a false premiss. If we
are to interpret the field symbols Φλξ1···ξn as fields, then, on the face of it, we seem to claim that
the values of these fields at any given point commute or anti-commute. This is of course false
of the operator-valued fields of QFT, where commutators (or anti-commutators) vanish only at
space-like separations. The key to resolving this apparent contradiction is to remember that one
cannot simply multiply together quantum field components at a single point: such products are
not usually well defined. One must regularize these products in some way, and whatever method is
used should ultimately reproduce the supercommutativity seen in the functional integral approach.
For example, in the interaction picture of section 2.4, the interaction density is not simply a sum
of products of free quantum fields and their spacetime derivatives, but, rather, the normal-ordered
counterpart of such an expression. And field operators do strictly supercommute within normal-
ordered expressions.
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supercommutative algebra; let K = C∞(M,A0⊗R V0⊕A1⊗V1). Then the derived
components of any Φ ∈ K are functions with values in AC, and thus supercommute.

Invariance. We arrive at our main results:

Theorem 5 (Strong Reflection Invariance). If a supercommutative formal field
theory is invariant under [ρω](L̃↑+), then it is invariant under S ◦ [ρ′ω′](bL̃↓+).

Strong reflection invariance entails PT and CPT theorems, by the same argu-
ments as in section 6. To spell things out, we consider, as in section 6, an arbitrary
complex-linear or anti-linear involution $ of W , and we extend this to an automor-
phism C$ and an anti-automorphism †$ of Kform. Then it is easy to deduce

Theorem 6 (General PT/CPT Theorem). Suppose that a supercommutative
formal field theory is invariant under [ρω](L̃↑+). Then it is invariant under C$ ◦
[ρ′ω′](bL̃↓+) if and only if it is $-Hermitian.

Note that Theorems 5 and 6 subsume Theorems 2 and 3, which correspond
to the the special case V = V0. The proof of Theorem 5 is in Appendix C. The
deduction of Theorem 6 from Theorem 5 is completely parallel to the deduction of
Theorem 3 from Theorem 2.

PT and CPT. The same argument as in section 5 shows that if [ρω](L̃↑+) is
charge-preserving, then [ρ′ω′](bL̃↓+) is too. To spell it out: since each sector W ε ⊂
Kform
s is assumed [ρω](L̃↑+)-invariant, it is S ◦ [ρ′ω′](bL̃↓+)-invariant, by Theorem 5;

but it is obviously S invariant, so it must be [ρ′ω′](bL̃↓+)-invariant. Thus [ρ′ω′](bL̃↓+)
is charge-preserving, as claimed.

As in section 6, a quantum CPT theorem is recovered from Theorem 6 by
setting $ = ∗; for $ = id,#, ∗# we obtain, respectively, a classical PT theorem, a
classical CPT theorem, and a quantum PT theorem. The quantum CPT theorem
is the most important of these: it is the CPT theorem of Lagrangian QFT, in which
its premisses (supercommutativity and ∗-Hermiticity) are widely accepted.

Example 13. Again the particular spin-statistics connection that we have as-
sumed is indeed required for Theorem 6. Suppose instead we assumed that spinors
commute with one another. Consider the equation

(20) ψ̄ψ = 1,

where ψ is a Dirac spinor field (cf. Example 11). The total reflection in L+

corresponds to two elements of bL̃↓+, which act on ψ by ψ 7→ ±iγ5ψ under [ρ′ω′].
But if spinors commute then under the CPT transformation ψ 7→ (iγ5ψ)∗ we have
ψ̄ψ 7→ −ψ̄ψ (cf. the appeal to fermion anti-commutation in equation (3.147) of
(Peskin & Schroeder, 1995)). Hence, (20) transforms to −ψ̄ψ = 1, which is actually
incompatible with (20).

Remark 9.1. The classical PT theorem of section 6 applied only to commu-
tative tensor fields, for which the requirement of id-Hermiticity is trivial. It is no
longer trivial for spinor fields, although it holds for a wider class than merely tensor
fields. For example, suppose that a classical spinorial field theory D is specified by
linear differential formulae, like the free Dirac equation. The span Dform ⊂ Kform

s

of those linear formulae is an id-Hermitian, supercommutative formal field theory,
and its classical spacetime symmetries correspond exactly to spacetime symmetries
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of D. Thus if D is L↑+-invariant, so is Dform, and our present classical PT theorem
predicts PT invariance. Note that in this case, we have made Dform supercommu-
tative in order to apply the theorem, but this supercommutativity is irrelevant to
the interpretation of Dform as a classical field theory: for linear equations, there
is no substantial question of commutativity or supercommutativity, since there are
no products to commute or supercommute.

9.1. Symmetries of free quantum theories. Following the discussion in
section 2.4, it is useful to explain separately how Theorem 6 yields symmetries
of free quantum field theories. Recall that the free theory is specified by a qua-
dratic Lagrangian density, giving rise to linear field equations. The Hilbert space
is related by a Fock space construction to the classical theory defined by these lin-
ear equations. As explained in (?, ?), the construction is such that classical and
quantum L↑+-invariance are equivalent, and classical PT invariance is equivalent to
quantum CPT invariance. So we can argue as follows. If the free quantum theory
is L↑+-invariant, so is the classical theory. Our classical PT theorem (which applies
by Remark 9.1) then predicts classical PT invariance, which implies quantum CPT
invariance. (The hypothesis that the Lagrangian density is Hermitian is implicit
in this story. For one thing, it guarantees that there are enough solutions to the
classical field equations. It is also used to define the inner product on the Hilbert
space.)

A similar argument establishes that a free QFT is PT invariant if the free
Lagrangian density is ∗#-Hermitian. This Hermiticity implies that the system of
linear field equations is ∗#-Hermitian as well. Now, classical field equations can
always be written using only real coefficients (cf. the discussion around (1)). This
shows that the system of field equations is C∗-invariant, hence #-Hermitian, hence,
by Theorem 6, classically CPT invariant. And this implies that the free QFT is
PT invariant.

10. Other Spacetimes, Other Groups

Our theorems apply in principle to other spacetimes besides Minkowski space,
and to other groups besides the Lorentz group. Any group L+ = L↑+∪L

↓
+ will satisfy

‘tensorial’ invariance theorems like Theorems 1–3 as long as it satisfies conditions
(PT-1)–(PT-3) of section 5. We will obtain ‘spinorial’ invariance theorems like
Theorems 5–6 if L+ also satisfies (PT-4) of section 7 and (PT-5) of section 8.

In this section we consider one setting to which our results extend, and several to
which they don’t. Of course, we have not shown that properties (PT-1)–(PT-3) are
necessary for any invariance theorem to hold. However, in cases where these axioms
fail, we have no general grounds to expect invariance theorems, and understanding
how they fail provides a conceptual complement to ad hoc counterexamples.

General Non-Euclidean Signatures. Let M be a vector space with any
non-Euclidean inner product (i.e. at least one ‘timelike’ and one ‘spacelike’ di-
mension), and dimM ≥ 3. Let L+ be the group of linear isometries of M with
determinant +1. Then L+ = L↑+ ∪ L

↓
+ has two components, and satisfies (PT-

1)–(PT-5); our constructions and Theorems 1–6 work without change. However,
there are two conceptual points to make. First, L↓+ consists of transformations that
reverse parity and the orientation of time. We must understand ‘time-reversing’
in Definition 3 in this sense. Note that it is possible for some timelike vectors to
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be reversed but others fixed: for example, with two timelike and one spacelike di-
rection, (t1, t2, x) 7→ (t1,−t2,−x) defines an element of L↓+ that fixes the timelike
vector (1, 0, 0). The second point is that the preimage L̃↑+ of L↑+ in L+(C)∧ may
not be the universal cover of L↑+. However, as in Remark 7.1, there is no loss of
generality in using L̃↑+ instead of (L↑+)∧.

No CPT Theorem in Dimension 2. Let M be two-dimensional Minkowski
space. Then L+ = L↑+ ∪ L

↓
+ satisfies (PT-1) but not (PT-2) or (PT-3). In fact, if

g ∈ (L↑+)C is fixed by complex conjugation, then g ∈ L↑+. This is closely related
to the failure of (PT-4): the universal cover of (L↑+)C is an infinite cover. Thus we
do not expect any PT or CPT theorem; the following example shows that there
cannot be one.

Example 14. Choose a null-vector ξ ∈ M . Then for each g ∈ L↑+ there is
some j(g) ∈ R such that g · ξ = ej(g)ξ. This gives an isomorphism j : L↑+ → R. Let
(ρ, L↑+, V ) be the one-dimensional representation of L↑+ given by V = R, ρ(g)v =

ej(g)/4v. Consider the classical field theory given by the single dynamical equation

Φ3∂ξΦ = 1.

It is easy to check that this equation is L↑+-invariant. However, if there is a PT
(or CPT) transformation, it must act on V by some scalar α ∈ R, and transform
∂ξ 7→ −∂ξ. Then it transforms our dynamical equation by Φ3∂ξΦ 7→ −α4Φ3∂ξΦ.
Our theory will only be PT invariant if α4 = −1; this is impossible since α is real.
Nor can we salvage the situation by the use of anti-commuting fields.

No P or T Theorems. If in Minkowski space we consider L↑+ ∪ L
↑
− or L↑+ ∪

L↓−, then condition (PT-2) fails to hold: the only conjugation-fixed elements of
(L↑+)C are elements of L+. Thus we do not expect invariance under (C)P or (C)T
transformations, and it is well known that such symmetries fail to exist in some
physical examples.

No Galilean Theorems. Let M be a Galilean spacetime of dimension d,
with a fixed origin. In detail, the data is a quadruple (M,Ms, ηs, ηt), where M
is a vector space, Ms ⊂ M is a hyperplane, ηs is a Euclidean metric on ‘space’
Ms, and ηt is a Euclidean metric on ‘time’ M/Ms. As in Minkowski space, the
automorphism group L of (M,Ms, ηs, ηt) has four components, L↑+∪L

↑
−∪L

↓
−∪L

↓
+.

In this case, the only conjugation-fixed elements of (L↑+)C lie in L↑+ itself. Thus we
do not expect general (C)PT, (C)T, or (C)P theorems in Galilean spacetime; the
following example shows that there cannot be one.

Example 15. Consider fields taking values in V = R, with the trivial action of
L↑+. Choose a basis ξ0, ξ1, . . . , ξd−1 forM with ξ1, . . . ξd−1 ∈Ms. Then the classical
field theory given by the differential equations

∂ξ0Φ = Φ ∂ξ1Φ = · · · = ∂ξd−1
Φ = 0

is L↑+-invariant but cannot be invariant under any transformation that reverses
time. In particular, this rules out PT and CPT theorems.
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11. Conclusions

The CPT theorem follows from the following assumptions:
(1) The theory is specified by polynomials in the fields and their spacetime

derivatives, i.e. by a formal field theory Dform.
(2) Dform is invariant under a classical/quantum action of the proper or-

thochronous Lorentz group, or of a covering group (the classical and quan-
tum actions being equivalent for the orthochronous group).

(3) The spin-statistics connection holds (in that Dform is supercommutative).
(4) Dform is invariant under Hermitian conjugation.

These four assumptions lead to the CPT invariance of Dform; there is a further
interpretive assumption that this implies the CPT invariance of the underlying
(non-formal) theory.

We are not aware of any way of substantially weakening these assumptions while
retaining the CPT result. There are two partial exceptions. First, it is possible
to treat some non-polynomial theories (see Example 2). Second, one can replace
the proper Lorentz group by any group satisfying our axioms (PT-1)–(PT-5) (see
section 10).

The proof of the CPT theorem given in the present paper differs from those
in Lagrangian QFT texts primarily in its completeness and its reliance on basic
geometric facts. The usual approach works only in 3+1 spacetime dimensions, and
typically restricts consideration to scalars, vectors, and Dirac spinors. It introduces
apparently ad hoc C, P, and T transformations in these cases, and establishes CPT
invariance by computing its effects on an exhaustive list of sixteen ‘Dirac bilinears.’
These calculations are then (if ever) generalised by appealing to a detailed classi-
fication of representations of the four-dimensional Lorentz group. In contrast, we
use the general notion of complexification to define and study canonical CPT trans-
formations, at no point appealing to exhaustive classifications. As a consequence,
our proof applies at once to representations of higher spin, and to Weyl as well as
Dirac spinors for the case of spin 1

2 . It also applies in any spacetime that shares
the essential group-theoretic facts: it works for Minkowski space and, with only
minor modifications, for any non-Euclidean signature in dimension at least 3. Our
approach also differs from the axiomatic treatments of e.g. Streater and Wightman
in that it applies directly to the the kind of Lagrangian quantum field theories that
enjoy empirical success.

Our proof of the quantum CPT theorem also establishes quantum PT, classical
PT and classical CPT theorems. All are equally theorems; the reason for regarding
the quantum CPT result as the most interesting of the four is (‘only’) that the
required supercommutativity assumption has independent motivation in the quan-
tum but not in the classical case, while the required Hermiticity assumption has
independent motivation in the quantum CPT but not in the quantum PT case.

Appendix A. Mathematical Background

In this appendix we recall the mathematical background used in the main text.
The aim is to point out the important ideas, rather than to provide a detailed
exposition. In doing so, we fix some useful terminology and notation.

I. Representations and Algebras



THE CPT THEOREM 29

A.1. Vector Spaces. All vector spaces we consider will be real, and all maps
between vector spaces are real-linear. We also consider complex vector spaces, which
may be considered as real ones with additional structure. If V, V ′ are complex vector
spaces, then a (real-linear) map f : V → V ′ is complex-linear if f(iv) = if(v) for
all v ∈ V , and anti-linear if f(iv) = −if(v) for al v ∈ V .

A complex subspace of a complex vector space V is a subset closed under addi-
tion and multiplication by complex numbers. In contrast, a complex affine subspace
W ⊂ V is a subset such that if x, y ∈ W and a ∈ C then ax + (1 − a)y ∈ W . A
complex affine subspace is a complex subspace if and only if it contains 0 ∈ V .

A.2. Lie groups. A Lie group is a manifold G that is also a group, for which
the multiplication and inversion maps are smooth. Homomorphisms between Lie
groups are required to be smooth.

Example 16. For any finite-dimensional vector space V , the group GL(V ) of
(real-linear) automorphisms of V is naturally a Lie group. It has two connected
components. The component GL+(V ) containing the identity consists of those
linear maps with positive determinants.

A Lie group is ‘complex’ if it is in fact a holomorphic manifold, and the multi-
plication and inversion maps are holomorphic. A homomorphism between complex
Lie groups may or may not be holomorphic in the usual sense for maps between
holomorphic manifolds.

Example 17. IfW is a finite-dimensional complex vector space, then the group
GLC(W ) of complex-linear automorphisms is a complex Lie group.

A.2.1. Covering Groups. A homomorphism G′ → G of Lie groups is a cov-
ering map if it is surjective and a local diffeomorphism; we say that G′ is a covering
group or simply a cover of G. A covering π : G′ → G is trivial if there is a section,
i.e. a homomorphism s : G → G′ such that π ◦ s is the identity map. If G′ is
connected, then π is trivial if and only if it is an isomorphism.

Covering groups have a path lifting property. The case we need is that any
homomorphism R→ G of Lie groups lifts uniquely to a homomorphism R→ G′.

If G is connected, then it has a unique universal cover G∧. The covering
map πG : G∧ → G is uniquely characterised by the following property: for any
covering map α : G′ → G, with G′ connected, there exists a unique covering map
πG′ : G

∧ → G′ such that πG = α ◦ πG′ . It follows that this πG′ is the universal
covering map for G′. It also follows that if π : G′ → G∧ is a covering map, and
G′ is connected, then π is an isomorphism. (Indeed, πG ◦ π : G′ → G is a covering
map, so we obtain a covering map πG′ : G∧ → G′, which must be inverse to π.)

A.2.2. Lie Algebras. Given a Lie group G, let Lie(G) denote the tangent
space to G at the identity. If G is a complex Lie group, then Lie(G) is a complex
vector space. A homomorphism α : G→ H induces a linear map Lie(α) : Lie(G)→
Lie(H) (the derivative of α at the identity); if G is connected, α is completely
determined by Lie(α). If G and H are connected, then α is a covering map if and
only if Lie(α) is an isomorphism.

Example 18. For any finite-dimensional vector space V , Lie(GL(V )) is the
vector space of all linear maps f : V → V . For L↑+ ⊂ GL(M), one can show that
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Lie(G) ⊂ Lie(GL(M)) consists of those f such that

η(f(v), w) + η(v, f(w)) = 0 for all v, w ∈M.

If V is complex, then Lie(GLC(V )) is the space of all complex -linear maps V → V .

A.3. Representations. All representations in this paper are either finite di-
mensional or what we call quasi-finite. A finite-dimensional representation of a
Lie group is a triple (ρ,G, V ), where V is a finite-dimensional vector space, G is a
Lie group, and ρ : G → GL(V ) is a homomorphism of Lie groups. Often we speak
of ‘the representation (or action) ρ of G on V .’ A representation is holomorphic
if V is a complex vector space, G a complex Lie group, and ρ is a holomorphic
homomorphism.

A.3.1. Quasi-finite Representations. We also consider certain infinite-dimen-
sional representations (ρ,G, V ). Again V is a vector space and ρ is a homomorphism
G → GL(V ). But there is a technicality here in that if V is infinite dimensional,
then GL(V ) is not a Lie group in the usual sense. However, all representations
that we consider are quasi-finite in the following sense: there is a sequence of
finite-dimensional subspaces V 1 ⊂ V 2 ⊂ · · · such that the union is V , each V n is
ρ(G)-invariant, and the resulting homomorphisms ρn : G → GL(V n) are smooth.
These conditions allow us to apply notions that are initially valid only for finite
dimensional representations. For example, a quasi-finite representation is ‘holo-
morphic’ if every ρn is holomorphic. We will use this technical device without
further comment.

A.4. Algebras. An algebra is a real vector space A with a bilinear, associa-
tive, unital multiplication A ⊗R A → A. A homomorphism of algebras is a linear
map preserving the multiplication and the unit. An algebra is complex if A is a
complex vector space, and the multiplication is complex-bilinear. A (real-linear)
homomorphism f between complex algebras may be complex-linear or anti-linear.

A.5. Graded Vector Spaces and Algebras. A vector space V is Z-graded
(or merely graded) if it is given as a direct sum

V =
⊕
n∈Z

Vn

of vector spaces Vn labelled by integers. An algebra is graded if it is a graded
vector-space and ab ∈ Am+n for all a ∈ Am, b ∈ An.

II. Free Algebras

A.6. Tensor Algebras. Suppose that V is a real vector space. The tensor
(or free) algebra TV consists of formal sums of products of elements of V . More
precisely, if v1, . . . , vn is a basis for V , then TV consists of non-commutative poly-
nomials in variables v1, . . . , vn, with real coefficients. More conceptually,

TV = R⊕ V ⊕ (V ⊗R V )⊕ (V ⊗R V ⊗R V )⊕ · · · =
⊕
n≥0

V ⊗n.

The key property of TV is that any real-linear map V → V extends uniquely to a
homomorphism TV → TV of algebras.
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A.7. Free Complex Algebras. The analogous construction for a complex
vector space V is the free complex algebra F(V ) defined by

F(V ) = C⊕ V ⊕ (V ⊗C V )⊕ (V ⊗C V ⊗C V )⊕ · · · =
⊕
n≥0

V ⊗n.

If v1, . . . , vn is a complex basis for V , then F(V ) consists of non-commutative
polynomials in variables v1, . . . , vn, with complex coefficients. The key property is
that any complex-linear or anti-linear map V → V extends uniquely to a complex-
linear or anti-linear homomorphism F(V )→ F(V ) of algebras.

A.8. Commutativity and Supercommutativity. The free commutative
complex algebra Fc(V ) is constructed from F(V ) by imposing the relation

ab = ba ∈ Fc(V ) for all a, b ∈ V.

Thus elements of F(V ) that differ only by commutation are considered equal as
elements of Fc(V ). Concretely, if v1, . . . , vn is a basis for V , then Fc(V ) is the
algebra of (usual, commutative) polynomials in variables v1, . . . , vn, with complex
coefficients.

If V is a graded complex vector space, then the free supercommutative complex
algebra Fsc(V ) is constructed from F(V ) by imposing the ‘supercommutativity’
relations

ab = (−1)mnba for all a ∈ Vm, b ∈ Vn.
For example, if V = V0 then Fsc(V ) = Fc(V ), and if V = V1 then Fsc(V ) is
known as the Grassmann or exterior algebra of V . If V is a graded vector space,
then Fsc(V ) (like TV , F(V ), or Fc(V )) is naturally a graded algebra. Concretely,
(Fsc(V ))m is spanned by products vd1 · · · vdn , with each vdk ∈ Vdk and

∑
dk = m.

A.9. Extending Representations. As we have said, any complex-linear or
anti-linear map V → V extends uniquely to a homomorphism F(V ) → F(V ) of
algebras. In particular, suppose that (ρ,G, V ) is a representation such that each
transformation ρ(g) is either complex-linear or anti-linear; then there is a unique
representation (ρF , G,F(V )) such that each ρF (g) is an algebra automorphism.
Explicitly: ρF (g) : F(V ) → F(V ) is the unique homomorphism of algebras ex-
tending ρ(g) : V → V . One similarly obtains representations (ρFc , G,Fc(V )) and
(ρFsc , G,Fsc(V )).

III. Complexification

A.10. Vector Spaces. Complexification is a universal way to replace real
objects by complex ones. For a real vector space V , its complexification V C is the
tensor product

V C = C⊗R V := {a+ bi | a, b ∈ V }.
It is characterised by the property that any real-linear map α : V → V ′ into a
complex vector space V ′ extends uniquely to a complex-linear map αhol : V C → V ′.
In other words, the set of real-linear maps V → V ′ is naturally identified with the
set of complex-linear maps V C → V ′.

Remark. If V is complex, then we can still form its complexification V C. This
is not equal to V , unless of course V = 0. In general, if V has n real dimensions,
then V C has 2n real dimensions.



32 HILARY GREAVES AND TERUJI THOMAS

A.11. Lie Groups. Given a connected Lie group G, its complexification GC

is a complex Lie group, equipped with a homomorphism i : G→ GC, characterised
by the following property: any homomorphism α : G→ G′ into a complex Lie group
G′ extends uniquely to a holomorphic homomorphism αhol : GC → G′. That is, αhol

uniquely satisfies αhol ◦ i = α.
For the construction of GC, see (?, ?, Ch. 3, §6, Prop. 20). The essential fact

for us is that Lie(GC) = (LieG)C (the right-hand side being the complexification
in the sense of vector spaces).

Remark. Note that, in general, G may not be a subgroup of GC; there is
only a homomorphism between them. However, this homomorphism happens to be
injective in most cases of interest, and in particular for the Lorentz group.

Example 19. If V is a finite-dimensional real vector space, then GL+(V ) is
a connected Lie group. If dimV > 1 then GL+(V )C = GLC(V C). However, if
dimV = 1 then GL+(V ) is isomorphic to the additive group of real numbers,
and GL+(V )C to the additive group of complex numbers, whereas GLC(V C) is
isomorphic to the multiplicative group of non-zero complex numbers.

A.12. Extending Representations. Consider a representation (ρ,G, V ) of
a connected Lie group G. If V is complex, and every ρ(g) is complex-linear, then
(ρ,G, V ) extends uniquely to a holomorphic representation (ρhol, GC, V ). Namely,
ρhol : GC → GLC(V ) is the unique holomorphic homomorphism extending ρ : G →
GLC(V ). If V is not assumed to be complex, (ρ,G, V ) extends uniquely to a
holomorphic representation (ρC, V C, GC) ofGC on V C. That is, ρC : GC → GLC(V C)
is the unique holomorphic homomorphism extending ρ : G→ GL(V ) ⊂ GLC(V C).

Example 20. Suppose V is a finite-dimensional vector space of dimension at
least two, and (ρ,GL+(V ), V ) is the usual representation of GL+(V ) on V . Then
ρC is just the natural representation of GLC(V C) on V C.

A.13. Complex Conjugation. For a vector space V , one has the standard
complex conjugation on V C, defined by ∗V : a+ bi 7→ (a+ bi)∗ = a− bi. Note that
such a map is not automatically defined on every complex vector space, but only
on a complexification. Similarly, for a connected Lie group G there is a complex
conjugation ∗G : GC → GC, characterised by the equation Lie(∗G) = ∗Lie(G) as
maps Lie(GC)→ Lie(GC). The essential fact for us is this:

Let (ρ,G, V ) be a representation of a connected Lie group. Then
(ρC(g)v)∗ = ρC(g∗)v∗ for all g ∈ GC, v ∈ V C.

Appendix B. Clifford Algebras and Pin Groups

In section 7, we described covering groups of L+ in terms of the universal cover
L+(C)∧. Another description, more common but less suited to our needs, can be
given in the language of Clifford algebras. Since Clifford algebras are routinely used
in spinor theory, we now explain how our covering groups appear in that framework.

B.1. The Clifford algebra C̀ is derived from the free algebra F(MC) by impos-
ing the relations vw + wv = 2ηC(v, w) for all v, w ∈MC.

Any sequence v1, . . . , vn ∈ MC defines a product v1v2 · · · vn ∈ C̀ . The Pin
group19 P consists of all such products in which v1, . . . , vn satisfy ηC(vi, vi) = ±1.

19Sometimes this term refers only to what we call aP .
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This is a group because each vi has a multiplicative inverse, equal to ±vi. P has
four connected components

P = aP+ ∪ bP+ ∪ aP− ∪ bP−
which can be described as follows. The identity component of P is aP+. The
subgroup P+ = aP+ ∪ bP+ consists of products v1 · · · vn ∈ P with n even; the
subgroup aP = aP+∪aP− consists of products v1 · · · vn ∈ P with every ηC(vi, vi) = 1.
The Pin group P is a covering group of the complex Lorentz group L(C); the
covering map π : P → L(C) associates to a unit vector v ∈MC the reflection in the
plane orthogonal to v:

π(v) : x 7→ 2
ηC(x, v)

ηC(v, v)
v − x.

This is a four-fold cover, with π(g) = π(−g) = π(±ig) for all g ∈ P . In particular,
the preimage of the identity element of L(C) is {±1,±i} ⊂ C̀ .

B.2. We now describe the covering groups from §7 in terms of P . The four-fold
cover L̃+(C) of L+(C) can be identified with the preimage of L+(C) in P . Thus

L̃+(C) = P+ = aP+ t bP+.

The double cover L̃↑+ of L↑+ is the preimage of L↑+ in aP+. This extends to a double
cover of L+ in two different ways:

(a) aL̃+ = L̃↑+ t aL̃
↓
+, where aL̃

↓
+ is the preimage of L↓+ in aP+.

(b) bL̃+ = L̃↑+ t bL̃
↓
+, where bL̃

↓
+ is the preimage of L↓+ in bP+.

The element called τ in §7 is −1 ∈ C̀ , and what we called I is i ∈ C̀ .

B.3. We can view C̀ as the complexification of the real Clifford algebra C̀ R,
constructed from the tensor algebra TM by the relations vw+wv = 2η(v, w). The
subgroup of P+ fixed by complex conjugation is exactly the cover bL̃↓+. This is a
direct analogue of (PT-3) and can be used to give an alternative proof of (PT-5).

Appendix C. Proofs

C.1. Proof of Lemma 5.1. Let j be the inclusion of L↑+ into L+(C). It
extends to a holomorphic map jhol : (L↑+)C → L+(C). The claim is that jhol is an
isomorphism.

First we prove that the corresponding map Lie(jC) of Lie algebras is an iso-
morphism, so that jhol is a covering map (A.2.2). This is perhaps clearest in
coordinates. Choose an orthonormal basis of M , so that M = Rd and the metric is
represented by a diagonal matrix η = diag(1,−1, . . . ,−1). Standard considerations
identify Lie(L+(C)) with a set of matrices

Lie(L+(C)) = {f ∈ Mat(d,C) | fη = −ηfT }

and Lie(L↑+) ⊂ Lie(L+(C)) with the subspace of real such matrices. The claim is
just that for any real matrices f1 and f2, f = f1 + if2 lies in Lie(L+(C)) if and
only if f1 and f2 lie in Lie(L↑+). This is easy to check.

By A.2.1 we therefore have covering maps

L+(C)∧
π−→ (L↑+)C

jhol−→ L+(C)
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whose composition is the universal covering map πL+(C) : L+(C)∧ → L+(C). Now
we appeal to two well-known topological facts. First, πL+(C) is two-to-one. There-
fore either π or jhol must be an isomorphism. Second, the preimage of L↑+ in L+(C)∧

is a non-trivial double cover of L↑+ (in fact it is the universal cover if dimM > 3).
In particular, there can be no map i : L↑+ → L+(C)∧ such that πL+(C) ◦ i = j. But
by definition of jhol, there is a map i : L↑+ → (L↑+)C such that jhol ◦i = j. Therefore
jhol rather than π must be the isomorphism.

C.2. Proof of Lemma 5.2. The claim is that for any g ∈ L+ and v ∈
V , ρC(g)v is in V . This is equivalent to saying that it is fixed by the complex
conjugation on V C: (

ρC(g)v
)∗

= ρC(g)v.

Since ρC is a complexification, (ρC(g)v)∗ = ρC(g∗)v∗ (§A.13), and by assumption
v∗ = v. The lemma therefore follows from the property g∗ = g stated as (PT-3)
and established by Example 6.

C.3. Proof of Lemma 5.3. This is just a special case of the following:

Lemma C.1. Let (R,G,A) be a complex-linear representation of a connected Lie
group G on a complex vector space A, and (Rhol, GC, A) its holomorphic extension.
Any complex affine subspace A′ ⊂ A invariant under R(G) is also invariant under
Rhol(GC).

Proof. We can assume that A is finite-dimensional. Let H ⊂ GLC(A) be
the group of all complex-linear maps preserving A′ ⊂ A. This H is a holomor-
phic subgroup of GLC(A). The representation R factors through a homomorphism
R1 : G → H. This extends to a holomorphic map Rhol

1 : GC → H ⊂ GLC(A). By
the uniqueness of Rhol, we must in fact have Rhol

1 = Rhol, so Rhol(GC) preserves
A′. �

C.4. Proof of Lemma 5.4. For each g ∈ L+, [ρω]hol(g) is a complex-linear
automorphism of Kform, as is [ρ′ω′](g); to show that they are equal, it suffices to
show that they transform the spaceW ⊗RTM ⊂ Kform of field symbols in the same
way. Consider the representation R of (L↑+)C on W ⊗R TM defined by

(21) R(g)(λ⊗ (ξ1 · · · ξn)) = (λ ◦ ρC(g)−1)⊗ (ωC(g)ξ1 · · ·ωC(g)ξn).

Some explanation is needed for this formula to make sense. First, we have defined
W to be the space of real-linear maps V → C. According to §A.10, we could
equivalently defineW to be the space of complex-linear maps λ : V C → C. With this
in mind, the expression λ◦ρC(g)−1 defines an element ofW . Second, we consider the
ξi as complex vectors, i.e. elements ofMC, so that ξ1 · · · ξn and ωC(g)ξ1 · · ·ωC(g)ξn
both lie in the complex tensor algebra F(MC). This is legitimate because any
complex coefficients can be absorbed into W : formally, we have

W ⊗R TM = W ⊗C C⊗R TM = W ⊗C F(MC).

Thus the right-hand side of (21) makes sense as an element of W ⊗R TM .
Now R is a holomorphic representation of (L↑+)C on W ⊗R TM , and its restric-

tion to L↑+ ⊂ (L↑+)C is just [ρω]. This property uniquely characterises [ρω]hol, so
R = [ρω]hol. On the other hand, for g ∈ L+, (21) is the very definition of [ρ′ω′](g).
Therefore [ρω]hol = [ρ′ω′] as representations of L+.
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C.5. Proof of Lemma 8.1. The inclusion j : L̃↑+ → L+(C)∧ extends to a
holomorphic homomorphism jhol : (L̃↑+)C → L+(C)∧. Since L̃↑+ is a cover of L↑+,
and L+(C)∧ is a cover of L+(C), they have the same Lie algebras as L↑+ and L+(C)

respectively; the map Lie(jhol) of Lie algebras is exactly the one appearing in the
proof of Lemma 5.1. The argument there shows that (L̃↑+)C must be a covering
space of L+(C)∧. But L+(C)∧ is the universal covering space of L+(C). Therefore
the covering map (L̃↑+)C → L+(C)∧ must be an isomorphism (see A.2.1).

C.6. Proof of Lemma 8.2. Momentarily assume (PT-5), that g∗ = gτ for
all g ∈ aL̃↓+. Suppose given v ∈ Vn. It’s enough to show is that inρC(g)v lies in Vn.

First we show that it lies in V , i.e. that it is fixed by complex conjugation (cf.
the proof of Lemma 5.2). We have (inρC(g)v)∗ = (−i)nρC(g∗)v∗ = (−i)nρC(gτ)v =
(−i)nρC(g)ρC(τ)v = (−i)nρC(g)(−1)nv = inρC(g)v. Thus inρC(g)v lies in V .

Next, to show that it lies in Vn, it remains to note that ρC(τ)(inρC(g)v) =
inρC(g)ρC(τ)v = (−1)n(inρC(g)v).

Finally, to establish (PT-5), choose a unit timelike vector e0 and an orthogonal
unit spacelike vector e1. Let R(θ) ∈ L+(C) be the transformation defined by
rotating MC by θ in the plane spanned by ie0 and e1. That is,

R(θ)ie0 = (cos θ)ie0 − (sin θ)e1 R(θ)e1 = (sin θ)ie0 + (cos θ)e1

and R(θ)v = v if v is orthogonal to e0 and e1. Thus R is a homomorphism R →
L+(C) of Lie groups, and (§A.2.1) there is a unique way to liftR to a homomorphism
R∧ : R → L+(C)∧. R([0, 2π]) is a loop in L+(C), starting and finishing at the
identity. This loop is well known to be homotopically non-trivial ; that just means
that R∧(2π) = τ . It is also easy to check that R(θ)∗ = R(θ)−1, and the uniqueness
of the lifting then implies R∧(θ)∗ = R∧(θ)−1.

Set h = R∧(π). Then h ∈ aL̃↓+, h2 = R∧(2π) = τ , and h∗ = h−1. Therefore
h∗ = hτ . It follows that g∗ = gτ for any g ∈ aL̃↓+: there exists g0 ∈ L̃↑+ such that
g = g0h, and then g∗ = g∗0h

∗ = g0hτ = gτ .

C.7. Proof of Theorem 5. We proceed in three steps.
Step 1. Since the formal field theory Dform is invariant under [ρω](L̃↑+), it fol-

lows (via Lemma C.1) that Dform is invariant under [ρω]hol(aL̃+). This is the
analogue of Lemma 5.3.

Step 2. Recall now that Kform
s is a graded algebra,

Kform
s = (Kform

s )0 ⊕ (Kform
s )1 ⊕ (Kform

s )2 ⊕ · · ·

with (Kform
s )m spanned by monomials containing m fermionic field symbols – that

is, m factors from W1 ⊗R TM . We next establish that

(22) S ◦ [ρ′ω′](g)(X) = im
2

[ρω]hol(I−1g)(X)

for X ∈ (Kform
s )m and g ∈ bL̃↓+. This is an analogue of Lemma 5.4.

Formula (21) and subsequent comments define a representation R of (L̃↑+)C on
W ⊗RTM , and the argument there shows that R = [ρω]hol. In this case, evaluating
(21) at I−1g ∈ aL̃↓+ shows that

[ρω]hol(I−1g)(λ⊗ (ξ1 · · · ξn)) =

{
[ρ′ω′](g)(λ⊗ (ξ1 · · · ξn)) for λ ∈W0

i[ρ′ω′](g)(λ⊗ (ξ1 · · · ξn)) for λ ∈W1.
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These formulae determine the action of [ρω]hol(I−1g) on all of Kform
s :

(23) [ρω]hol(I−1g)(X) = im[ρ′ω′](g)(X)

for X ∈ (Kform
s )m. On the other hand, it is easy to check that

(24) S(X) = (−1)m(m−1)/2X.

This is analogous to the statement that S is the identity map on Kform
c ; it is here

and only here that we use supercommutativity. Equations (23) and (24) imply (22).
Step 3. Applying Steps 1 and 2, it only remains to argue that Dform is invariant

under the transformation α defined on X ∈ (Kform
s )m by

α(X) = im
2

X =

{
X if m is even
iX if m is odd.

Note that

[ρω](τ)(X) =

{
X if m is even
−X if m is odd.

From this it is easy to check that, for any F ∈ Kform
s ,

(25) α(F ) =

(
1 + i

2

)
F +

(
1− 1 + i

2

)
[ρω](τ)F.

Now, suppose given F ∈ Dform. Since Dform is [ρω](L̃↑+)-invariant, we also have
[ρω](τ)F ∈ Dform. Since Dform is an affine subspace, F ∈ Dform, and [ρω](τ)F ∈
Dform, it follows from (25) that α(F ) lies in Dform as well.
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