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Abstract

Richard Feynman has claimed that anti-particles are nothing but
particles ‘propagating backwards in time’; that time reversing a par-
ticle state always turns it into the corresponding anti-particle state.
According to standard quantum field theory textbooks this is not so:
time reversal does not turn particles into anti-particles. Feynman’s
view is interesting because, in particular, it suggests a nonstandard,
and possibly illuminating, interpretation of the CPT theorem.

This paper explores a classical analog of Feynman’s view, in the
context of the recent debate between David Albert and David Mala-
ment over time reversal in classical electromagnetism.
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1 Introduction

A backwards-moving electron when viewed with time mov-
ing forwards appears the same as an ordinary electron, ex-
cept it’s attracted to normal electrons - we say it has pos-
itive charge. For this reason it’s called a ‘positron’. The
positron is a sister to the electron, and it is an example of
an ‘anti-particle’. This phenomenon is quite general. Every
particle in Nature has an amplitude to move backwards in
time, and therefore has an anti-particle. (Feynman, 1985):98

Note that Feynman is not making any claims about backwards
causation. He is merely claiming that if you time reverse a sequence of
particle states you get a sequence of corresponding anti-particle states.
According to standard quantum field theory textbooks this is not so:
the charge conjugation operator turns particles into antiparticles, but
time reversal does not. So we read Feynman as suggesting that the
real time reversal operation (whatever that may mean—on which more
below!) is not the operation that is usually given that name. Or,
at least, that is the view that we are interested in comparing to the
standard view, and that is the view we will call ‘Feynman’s view’.

Feynman’s remarks, of course, were made in the context of quantum
field theory. Meanwhile, in classical electromagnetism: David Albert
(Albert, 2000) has argued that classical electromagnetism is not time
reversal invariant, because (according to him) there is no justification
for flipping the sign of the magnetic field under time reversal. David
Malament (Malament, 2004) has replied in defense of the standard
view of time reversal, according to which the B field does flip sign and
the theory is time reversal invariant.

Malament’s discussion may leave one with the feeling that one only
has to appreciate both (i) the four-dimensional formulation of classical
electromagnetism and (ii) what we mean, or ought to mean, by ‘time
reversal’, and the standard transformation B T7−→ −B will follow. This,
however, is incorrect: there is an alternative to Malament’s account,
consistent with both (i) and (ii). It is an account according to which
the magnetic field does not flip sign under time reversal (the electric
field does), but the theory is time reversal invariant anyway; it is the
classical analog of Feynman’s view.

This paper has two main aims: (i) to explore the ‘classical Feynman’
view, with the hope that this may later illuminate important issues in
quantum field theory, and, relatedly, (ii) to explore a novel conception
of time reversal, distinct from the usual notions of ‘active’ and ‘passive’
time reversal, that we think is implicit in Malament’s work and deserves
further attention.

The structure of the paper is as follows. In section 2 we discuss the
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standard account of what time reversal is, and why one should care
about it. Section 3 is a critical review of the existing debate concerning
time reversal in classical electromagnetism: the standard ‘textbook’
account, Albert’s objection, and Malament’s reply. One of the things
this discussion throws up is the contrast between Malament’s notion
of time reversal, which we call ‘geometric’ time reversal, on the one
hand, and the familiar notions of ‘active’ and ‘passive’ time reversal
on the other; we articulate the ‘geometric’ notion in the course of
discussing Malament’s reply. In section 4 we articulate the ‘Feynman’
account, in terms of geometric time reversal. Section 5 investigates the
possibility of ‘deflating’ the apparent dispute between the ‘Malament’
and ‘Feynman’ accounts, and regarding them as equivalent descriptions
of the same underlying reality. Section 6 is the conclusion.

2 Time reversal and the direction of time

Let’s start with the more-or-less standard account of what time reversal
is, and why one should be interested in it.

Suppose we describe a world (or part of a world) using some set
of coordinates x, y, z, t. A passive time reversal is what happens
to this description when we describe the same world but instead use
coordinates x, y, z, t′ where t′ = −t. An active time reversal is
the following: keep using the same coordinates, but change the world
in such a way that the description of the world in these coordinates
changes exactly as it does in the corresponding passive time reversal.
(So active and passive time reversal have exactly the same effect on
the coordinate dependent descriptions of worlds.)

Suppose now that we have a theory which is stated in terms of
coordinate dependent descriptions of the world, i.e. a theory which says
that only certain coordinate dependent descriptions describe physically
possible worlds. Such a theory is said to be time reversal invariant
iff time reversal turns solutions into solutions and non-solutions into
non-solutions. (Since active and passive time reversals have the same
effect on the coordinate dependent descriptions of worlds, it follows
that coordinate dependent theories will be invariant under active time
reversal iff they are invariant under passive time reversal.)

Why might one be interested in the time reversal invariance of the-
ories? Because failure of time reversal invariance of a theory indicates
that time has an objective direction according to that theory. Why
believe that? Well, suppose that we start with a coordinate dependent
description of a world (or part of a world) which our theory allows.
And suppose that after we do a passive coordinate transformation our
theory says that the new (coordinate dependent) description of this
world is no longer allowed. This seems odd: it’s the same world af-
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ter all, just described using one set of coordinates rather than another.
How could the one be allowed by our theory and the other not? Indeed,
this does not make much sense unless one supposes that the theory, as
stated in coordinate dependent form, was true in the original coordi-
nates but not in the new coordinates. And that means that according
to the theory there is some objective difference between the x, y, z, t
coordinates and the x, y, z, t′ coordinates (where t′ = −t). So time has
an objective direction: that is, there is an objectively preferred tem-
poral orientation. And if we want to write our theory in a coordinate
independent way we are going to have to introduce a representation of
this temporal orientation into our formalism.

Let’s now clarify and modify this standard account a little bit. Let’s
start by asking a question that is rarely asked in physics texts, namely,
what determines how things transform under a time reversal transfor-
mation? Well, space-time has some coordinate independent structure,
and it is inhabited by coordinate independent quantities. We often
describe that structure and those quantities in a coordinate dependent
manner, but the structure of space-time itself is a coordinate indepen-
dent geometric structure, and the quantities that inhabit space-time
are coordinate independent quantities. This coordinate independent
structure and those coordinate independent quantities determine what
the coordinate dependent representations of that structure and of those
quantities look like, and therefore determine how those coordinate de-
pendent representations transform under space-time transformations.
That’s all there is to it.

Now, what we have just said might seem rather obvious, rather
vague, and hence rather useless. However, there are a few important
lessons to be learned from what we have said that are not always
heeded.

Firstly, it means some quantities transform non-trivially (i.e. do
not remain identical) under time reversal. (Why it is worth noting
this will become clear when we discuss David Albert’s views on time
reversal.)

Secondly, it means that it is not arbitrary how a quantity trans-
forms under time reversal: how a quantity transforms under time rever-
sal is determined by the (geometric) nature of the quantity in question,
not by the absence or presence of a desire to make some theory time
reversal invariant. For instance, one might think that one can show
that some theory which, prima facie, is not time reversal invariant in
fact is time reversal invariant, simply by making a judicious choice for
how the fundamental quantities occurring in the theory transform un-
der time reversal. However, if one changes one’s view as to what the
correct time reversal transformations are for the fundamental quan-
tities occurring in a theory, then one is thereby changing one’s view
as to the geometric nature of those fundamental quantities, and hence
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one is producing a new, and different, theory of the world rather than
showing that the original theory was time reversal invariant. That is
to say, in such a circumstance one faces a choice: this theory with these
quantities and these invariances or that theory with those quantities
and those invariances. If the competing theories are empirically equiv-
alent then one should make such a choice in the usual manner: on the
basis of simplicity, naturalness etc.

Thirdly, even if a coordinate dependent formulation of a theory is
not invariant under a passive time reversal, this does not yet imply that
space-time must have an objective temporal orientation. For coordi-
nate system x, y, z, t and coordinate system x, y, z, t′ where t′ = −t not
only differ in their temporal orientation, they also differ in their space-
time handedness. So failure of invariance of the theory under time
reversal need not be due to the existence of an objective temporal ori-
entation, it could be due to the existence of an objective space-time
handedness. That is to say, one might be able to form two rival co-
ordinate independent theories, one of which postulates an objective
temporal orientation but no space-time handedness, while the other
postulates an objective space-time handedness but no temporal orien-
tation. In order to decide which is the better theory, one will have to
look at other features of the theories (such as other invariances).

More generally, what we want to know is what structure space-time
has, and what quantities characterize the state of its contents. If we
have in our possession an empirically adequate coordinate dependent
theory, then what we should do is manufacture the best corresponding
coordinate independent theory that we can, and see what space-time
structure and what quantities this coordinate independent theory pos-
tulates. In fact, in the end the issue of what the correct time reversal
transformation is is a bit of a red herring. What we are really inter-
ested in is what space-time structure there is and what quantities there
are (and of course we are interested in the equations that govern their
interactions). But the invariances and non-invariances of empirically
adequate coordinate dependent formulations of theories are useful for
figuring that out.

The above discussion was perhaps a bit abstract. So let us turn to
a specific case which has been the subject of a fair amount of debate
and controversy, namely that of classical electromagnetism.
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3 Classical electromagnetism: the story so
far

3.1 The standard textbook view

Let’s start with the standard textbook account of time reversal in
classical electromagnetism. The interaction between charged parti-
cles and the electromagnetic field is governed by Maxwell’s equations
and the Lorentz force law. In a particular coordinate system x, y, z, t,
Maxwell’s equations can be written as

∇ ·E = ρ (1)

∇×B =
∂E
∂t

+ j (2)

∇ ·B = 0 (3)

∇×E = −∂B
∂t
, (4)

and the Lorentz force law can be written as:

F = q(E + v ×B). (5)

Now let us ask how the quantities occurring in these equations
transform under time reversal. According to the standard account the
active time reverse of a particle that is moving from location A to
location B is a particle that is moving from B to A. So, according to
the standard view, the ordinary spatial velocity v must flip over under
active time reversal. Obviously, the current j will also flip over under
active time reversal, while the charge density ρ will be invariant under
time reversal.

Next let us consider the electric and magnetic fields. How do they
transform under time reversal? Well, the standard procedure is simply
to assume that classical electromagnetism is invariant under time re-
versal. From this assumption of time reversal invariance of the theory,
plus the fact that v and j flip under time reversal while ρ is invariant,
it is inferred that the electric field E is invariant under time reversal,
while the magnetic field B flips sign under time reversal. Summing up,
we have:
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v T7−→ −v; (6)

j T7−→ −j; (7)

E T7−→ E; (8)

B T7−→ −B; (9)

ρ
T7−→ ρ; (10)

∇ T7−→ ∇; (11)

t
T7−→ −t. (12)

It follows from this time reversal transformation, as straightforward
inspection of Maxwell’s equations and the Lorentz force law can verify,
that time reversal turns solutions into solutions and non-solutions into
non-solutions.

3.2 Albert’s proposal

David Albert ((Albert, 2000), chapter 1) takes issue with the text-
books’ account of time reversal in classical electromagnetism. The
point of contention is whether or not the magnetic field flips sign un-
der time reversal. The standard account, we have seen, says that it
does: B T7−→ −B. Albert suggests, however, that by ‘time reversal’ one
ought to mean ‘the very same thing ’ happening in the opposite tem-
poral order; it follows (according to Albert) that the magnetic field
(on a given timeslice) will be invariant under time reversal; and it fol-
lows from that (given Maxwell’s equations) that the theory is not time
reversal invariant. (Albert is happy with a non-trivial time reversal
operation for, say, velocity. But that is because velocity is just tempo-
ral derivative of position, so of course it flips sign under time reversal.
Albert’s point is that the magnetic field is not the temporal derivative
of anything.)

The difference in direction of argument between Albert and the
textbooks is worth highlighting. In the textbooks’ account reviewed
above, the desideratum that the theory should be time reversal invari-
ant enters as a premise. One finds some transformation on the set of
instantaneous states that has the feature that, if it were the time rever-
sal transformation, then the theory would be time reversal invariant,
and one concludes that this is the time reversal operation. Albert is
insisting on the opposite direction of argumentation: one should first
work out which transformation on the set of instantaneous states im-
plements the idea of ‘the same thing happening backwards in time’;
then and only then one should compare one’s time reversal operation
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to the equations of motion, and find out whether or not the theory
is time reversal invariant. He is further insisting that, in the case of
electromagnetism, this has not adequately been done.

Albert has a point here. One should, indeed, be wary of taking
the textbooks’ strategy to extremes: it is not difficult to show that,
under very general conditions, any theory, including ones that are (in-
tuitively!) not time reversal invariant, can be made to come out ‘time
reversal invariant’ if we place no constraints on what counts as the
‘time reversal operation’ on instantaneous states.1

So something in Albert’s objection seems to be right. We do not,
however, endorse his account of time reversal in electromagnetism. We
will come back to this after discussing an alternative account, due to
David Malament.

3.3 Malament’s proposal

Malament seeks to ‘justify’ the usual textbook time reversal operation
for classical electromagnetism, and for the B field in particular.

At first sight, one might think that this is done as soon as one thinks
relativistically, and conceives of the E and B fields as components of
the Maxwell-Faraday tensor F ab. A moment’s thought, however, shows
that this is not the case. The electric field is read off from the space-
time components of F ab, while the magnetic field is read off from the
space-space components:2

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (14)

If the Maxwell-Faraday tensor F ab itself (as a tensor) is invariant under
time reversal, then it will be the electric field, not the magnetic field,

1Here is an example. Suppose that we have a single particle in one dimension. Let r
denote its position; let its instantaneous state space be given by (0,∞]. Let its equation
of motion be given by

dr

dt
= −kt, (13)

where k > 0 is a positive constant. This theory is (intuitively) not time reversal invariant:
it says that the particle’s position coordinate always decreases. However, if we are really
willing to let the time reversal operation be whatever is required to secure time reversal
invariance, the intuition of asymmetry can easily be violated: simply let the time reversal
operation be r 7→ 1

r
.

2Roman subscripts and superscripts indicate that we are using the abstract index
notation: F ab is a rank two tensor, not a component of such a tensor in a particular
coordinate system. When we wish to refer to coordinate-dependent components of tensors,
we use Greek indices, as in Fµν .
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that flips sign when we perform a passive time reversal (since the former
appears as the time-space components of the Maxwell-Faraday tensor,
whereas the latter appears as the space-space components). To justify
the standard textbook transformation, we need to justify a sign flip for
F ab: F ab T7−→ −F ab. This is the task that Malament takes up.

Malament’s treatment of electromagnetism embodies a particular
conception of what it means to ‘justify’ a time reversal operation, and,
relatedly, a third conception (alongside active and passive time rever-
sal) of what time reversal is. We will first state these explicitly (but
somewhat abstractly), then let our exposition of Malament’s treatment
of electromagnetism illustrate them:

• To give a justification of a non-trivial time reversal operation
X

T7−→ X ′ for a state description X is to postulate a particu-
lar fundamental ontology for the theory, and to explain how the
representation relation between X and the objects of the fun-
damental ontology depends on temporal orientation, in such a
way that it follows that if we flip the temporal orientation but
hold the remainder of the fundamental objects fixed, the state
description changes as X T7−→ X ′.

• Geometric time reversal: To time-reverse a kinematically pos-
sible world, hold all the fundamental quantities fixed [with the
exception of the temporal orientation, if that is a fundamental
object], and flip the temporal orientation.

We emphasise that this ‘geometric’ notion of time reversal does
not coincide either with active, or with passive, time reversal. We
can see that geometric and passive time reversal are distinct by, for in-
stance, noting that geometric time reversal generates non-trivial trans-
formations of coordinate-independent models—for example, as we will
see below, according to Malament the geometric time reversal of the
Maxwell-Faraday tensor (that is, the tensor itself, not its components
in any coordinate system) is Fab 7→ −Fab. Hence, one can perform a
geometric time reversal while holding the coordinate system fixed, and
thus induce a nontrivial transformation on the coordinate-dependent
description of the model in one and the same coordinate system—
something that is obviously impossible under the ‘passive’ notion of
time reversal, which just is a change of coordinate system. We can
see that geometric and active time reversal are distinct by noting that
geometric time reversal does not, while active time reversal does, move
material objects around on the manifold. A further point, and at least
part of Malament’s own motivation for introducing this notion of time
reversal (cf. ibid., p2), is that the geometric notion is applicable in
curved spacetimes, in which there may not be any conformal mapping

9



that reverses temporal orientation (as is required in order for active
and passive time reversal operations to be well-defined).

Malament’s treatment of electromagnetism. Malament’s ac-
count is as follows. There are two fundamental types of objects in a
classical electromagnetic world. There are charged particles, and there
is the electromagnetic field. Now, the dynamics happens to be such
that it will be convenient, mathematically, to represent the motions
of particles by means of four-velocities, where the four-velocity at any
point on the worldline is tangent to the worldline at that point. The
crucial fact now is that a world-line does not have a unique tangent
vector at a point: at each point on a world-line, there is a continuous
infinity of four-vectors that are tangent to the world-line at the point
in question. We can narrow things down somewhat by stipulating that
four-velocities are to have unit length, but this still does not quite do
the trick: one can associate two unit-length four-vectors that are tan-
gent to the world-line at the point in question (if va ∈ Tp is one, then
−va is the other; see figure 1).

FIGURE 1 AND ACCOMPANYING CAPTION HERE
Next, how should we conceive of an electromagnetic field at a point

p in spacetime? According to Malament, we should think of the elec-
tromagnetic field at p as a quantity which, for any tangent line L at p
and charge q, determines what 4-force a (test) particle with charge q
and tangent line L at p would experience. More formally, Malament
conceives of the electromagnetic field F (not F ab) at a point p as a
map from pairs 〈L, q〉 at p to four-vectors at p.

How do Malament’s fundamental quantities (tangent lines, maps
from tangent lines to 4-vectors) relate to the standard quantities (4-
vectors, Maxwell-Faraday tensor) occurring in our three equations?
The relation is simple: relative to a choice of temporal orientation, one
can associate a unique unit-length tangent vector with each location on
a timelike world-line, namely, the one that is ‘future’-directed according
to that temporal orientation. So, given a temporal orientation, we can
represent any given tangent line by a unique unit length four-vector,
i.e. a four-velocity. Given such a representation, the electromagnetic
field can be represented by a linear map from four-vectors to four-
vectors. And that just means that, given a temporal orientation we
can represent the electromagnetic field as a rank 2 tensor, which we
can identify as the standard representation of the electromagnetic field
by the Maxwell-Faraday tensor F ab.

So, given a temporal orientation, Malament can formulate classi-
cal electromagnetism using the usual covariantly-formulated equations:
the Maxwell equations,
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∇[aFbc] = 0, (15)
∇nFna = Ja, (16)

and the Lorentz force law,

qF abV
b = mvb∇ bv

a. (17)

Using the geometric conception of time reversal, it is then straight-
forward to see how the quantities in these equations transform under
time reversal. Recall that on the geometric conception, to ‘time re-
verse’ is to leave all the fundamental quantities fixed, and to flip tem-
poral orientation. We then hold fixed (also) our conventions about how
non-fundamental quantities are derived from the fundamental ones in
an orientation-relative way, and we see which transformations for the
non-fundamental quantities result. Now, on Malament’s picture, four-
velocity is not fundamental: it is defined only relative to a choice of
temporal orientation. If va is the four-velocity, i.e. is the unit-length
future-directed tangent, to a given worldline at some point p relative
to our original choice of temporal orientation, then −va will be the
four-velocity relative to the opposite choice of temporal orientation.
Similarly, if F ab correctly maps four-velocities four-forces relative to
our original orientation, then, in order to represent the same map from
tangent lines to four-forces relative to the opposite choice of temporal
orientation, we will have to flip the sign of the tensor, to compensate
for the sign flip in four-velocity: F ab 7→ −F ab. We have now given
justifications for Malament’s time reversal operations for va and F ab:

va
T7−→ −va; (18)

F ab
T7−→ −F ab. (19)

Electric and magnetic fields. As Malament notes, the frame-
independent formulation suffices to write down the dynamics of the
theory and establish their time-reversal invariance. Like Malament,
however, we wish to make contact with Albert and the textbooks; to
do this, we need to consider decompositions of our four-dimensional
F ab into electric and magnetic fields.

Following Malament ((2004):pp.16-17), we make the following two
definitions:

• A volume element εabcd on M is a completely antisymmetric
tensor field satisfying the normalization condition εabcdε

abcd =
−24.

• A frame ηa is a future-directed, unit, timelike vector field that
is constant (∇aηb = 0).
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We can now decompose the electromagnetic field into electric and
magnetic fields, relative to a given frame and volume element:

Ea := F abη
b; (20)

Ba :=
1
2
εabcdηbFcd. (21)

Note that the electric field Ea is defined relative to temporal orien-
tation and frame; the magnetic field Ba is defined relative to temporal
orientation, frame and volume element. The volume element itself is a
more subtle case; we follow Malament in stipulating that it, too, flips
sign under time reversal.3

It follows that (as Malament explains) the time reversal transfor-
mation acts as follows:

τ
T7−→ −τ ; (22)

ηa
T7−→ −ηa; (23)

εabcd
T7−→ −εabcd; (24)

va
T7−→ −va; (25)

F ab
T7−→ −F ab; (26)

Ea
T7−→ Ea; (27)

Ba
T7−→ −Ba. (28)

Note that the electric field, Ea, is invariant under time reversal,
while the magnetic field, Ba, flips sign. This is exactly the time rever-
sal operation suggested by standard textbooks in classical electromag-
netism. So, Malament’s proposal provides a justification, based on his
geometric conception of time reversal, for the standard view.

3.4 Albert revisited

We noted that, as soon as one thinks of the E and B fields as de-
rived from a more fundamental Maxwell-Faraday tensor, either E or B
must flip sign under time reversal. On Albert’s account, neither flips
sign. But, of course, Albert is perfectly aware of the four-dimensional
formulation of electromagnetism. So why does he say what he says?

Well, on Albert’s view, pace any arguments for interpreting elec-
tromagnetism in terms of a Minkowski spacetime, spacetime is in fact

3The point here is just that we choose to mean, by ‘time reversal’, ‘flip the temporal
orientation and hold the spatial handedness fixed’ (so the total orientation, represented
by the sign of the volume element, has to flip), rather than ‘flip the temporal orientation
and hold the total orientation fixed’ (in which case the spatial handedness would have to
flip).

12



Newtonian, velocities are good old spatial 3-vectors, and so are the
electric and magnetic fields.4 The dynamics governing the develop-
ment of the E and B fields, and the particle worldlines, happens to
be ‘pseudo-Lorentz invariant’: that is, there exist simple transforma-
tions on the E and B fields such that, if those were the ways E and
B transformed under Lorentz transformations, then the theory would
be Lorentz invariant. This is perhaps surprising—there’s no a pri-
ori reason to expect the dynamics to have this feature of ‘pseudo
Lorentz invariance’, if one thinks that spacetime is Newtonian. But
then, there’s no a priori reason why the dynamics in a Newtonian
spacetime shouldn’t be pseudo Lorentz invariant, either. Similarly: it
follows from this pseudo Lorentz invariance that observers will never
be able to discover, merely by means of ‘mechanical experiments’ (i.e.
observations of particle worldlines), what their absolute velocity is, or
pin down the E and B fields uniquely. So if one thought that all fea-
tures of reality must be empirically accessible to the human machine
with its coarse-grained perceptive capacities, one would be very suspi-
cious of Albert’s view; but why, Albert might well ask in reply, should
one think that?

What should one make of all this? Well, while we agree that Al-
bert’s view is internally coherent, we regard it as insufficiently moti-
vated, for the following reason. A straightforward application of Ock-
ham’s razor prescribes that, faced with a choice between two empir-
ically equivalent theories, one of which is strictly more parsimonious
than the other as far as spacetime structure goes, one should (ceteris
paribus) prefer the more parsimonious theory. In other words, one
should commit to the minimum amount of spacetime structure needed
to account for the empirical success of one’s theories. Now, on Al-
bert’s view, spacetime is equipped with a preferred foliation and a
standard of absolute rest; further, it must also be equipped with an
objective temporal orientation, in order to account for the non-time-
reversal invariance of classical electromagnetism. On the Minkowskian
view, spacetime has none of this structure. If other things are equal,
this gives us a reason to prefer a Minkowskian view; further, as far as
we can see, other things are equal. We conclude that, insofar as classi-
cal electromagnetism is to be trusted at all, spacetime is Minkowskian
rather than Newtonian, it is the unified electromagnetic field, rather
than the E and B fields separately, that is fundamental, and that Al-
bert’s view of time reversal is false.

We will say no more about Newtonian interpretations. What is
more interesting, for the purposes of our paper, is that even given a

4To our knowledge, Albert has not stated this view in print. Our attribution of it to
him is based on conversations between Albert and one of us over a period of several years.
We also do not know whether he still holds the view in question.
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Minkowskian interpretation of relativity, the ontology, and hence the
time reversal operation, for classical electromagnetism remains under-
determined. Malament has suggested one candidate ontology; we turn
now to alternatives.

4 The ‘Feynman’ proposal

In this section, we turn to the view of time reversal that will corre-
spond to Feynman’s view of antiparticles. Our discussion here will not
differ from our discussion of Albert’s or Malament’s proposals in terms
of what time reversal is or how non-trivial time reversal operations are
justified; that is, we are still thinking in terms of geometric time rever-
sal. The ‘Feynman’ proposal is simply a different proposed ontology, a
different view as to what fundamental quantities there in fact are out
there in nature. It provides an geometric justification for a third time
reversal operation for the electric and magnetic fields, distinct from
both Albert’s and Malament’s.

Fundamental ontology. The distinctive feature of the ‘Feyn-
man’ proposal is the suggestion that there is a fundamental, temporal
orientation-independent fact as to the sign of the four-velocity of a
given particle. That is, we change our hypothesis about the funda-
mental properties possessed by particles: rather than supposing that
particles’ worldlines are mere sets of spacetime points, and hence in-
trinsically undirected, we now suppose that particles’ worldlines are
intrinsically directed: each worldline comes equipped with an arrow,
and there is an objective, temporal-orientation-independent fact about
which way the arrow on any given worldline points. In that case, we no
longer have Malament’s motivation for saying that the electromagnetic
field is a map from tangent lines to four-vectors. So, on the ‘Feynman’
proposal, we take the electromagnetic field to be (fundamentally!) a
map from four-vectors to four-vectors, or, equivalently, a rank 2 tensor
field. Thus, the electromagnetic field, independent of a temporal ori-
entation, corresponds to a unique rank 2 tensor: the Maxwell-Faraday
tensor F ab.

The electric and magnetic fields, Ea and Ba, are then defined
from F ab, relative to a frame and volume element, just as they are on
Malament’s proposal.
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Time reversal. The corresponding time reversal transformation
is:

τ
T7−→ −τ (29)

εabcd
T7−→ −εabcd (30)

ηa
T7−→ −ηa (31)

F ab
T7−→ F ab (32)

va
T7−→ va (33)

Ea
T7−→ −Ea (34)

Ba
T7−→ Ba. (35)

Note that this is not the textbook time-reversal transformation.
The Feynman proposal has the consequence that the electric field flips
sign under time reversal5, and that the magnetic field does not6—but
it, too, has the consequence that the theory is time reversal invariant.7

More on the ‘Feynman’ proposal. Certain features of the
time-reversal operation sanctioned by the ‘Feynman’ proposal seem
rather odd, however; let’s take a closer look. Consider, for example,
a particle travelling between Harry and Mary (see figure 2). Sup-
pose that, prior to time reversal, the particle’s four-velocity happens
to be ‘future’-directed, and points from Harry’s worldline to Mary’s.
Then, the following two observations can be made about the time-
reversed situation. First, in the time-reversed situation the particle’s
four-velocity will be ‘past’-directed. (This follows from the fact that
the four-velocity itself does not change, while the description of a given
temporal direction on the manifold as ‘future’/‘past’ does change when
we flip the temporal orientation.) Second, the four-velocity will still
point from Harry to Mary. On the ‘Feynman’ proposal, that is, we are

5In contrast to the explanation given in the context of passive time reversal following
equation 14 above, this is now because the (coordinate-independent) electric field Ea is
defined as the contraction of the Maxwell-Faraday tensor with a ‘future’-directed frame,
and the frame will flip sign under geometric time reversal while, on the Feynman view,
the Maxwell-Faraday tensor is invariant

6Because sign flips in the frame and total orientation that appear in the definition of
Ba cancel one another out.

7The time reversal invariance of this theory is easy to see, by looking at the Lagrangian
L = − 1

4
FabF

ab− qvaAa. Under ‘Feynman’ time reversal, all four of the objects appearing

in this Lagrangian—the Maxwell-Faraday tensor F ab, the charge q, the four-velocity va

and the four-potential Aa — are invariant under time reversal. So of course the Lagrangian
itself (a scalar field on M) is invariant under time reversal, and, consequently, there will
never be a set of field configurations and particle worldlines that is dynamically permitted
relative to one temporal orientation and not the other.
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asked to make sense of a notion of ‘time reversal’ according to which
the time-reverse of a particle traveling from Harry to Mary is not a
particle traveling from Mary to Harry. This seems an odd feature of
the ‘Feynman’ view.

FIGURE 2 AND ACCOMPANYING CAPTION HERE
However, let us suppose that it is not the case that the four-

velocities of all particles point in the same temporal direction. That
is, let us suppose that, relative to a fixed choice of temporal orien-
tation, some particles have future-directed four-velocities, and others
have past-directed four-velocities. Suppose, then, that we have a model
of electromagnetism which consists of a single particle of charge q, mov-
ing in an electromagnetic field F ab with four-velocity va. One can then
trivially produce another model by keeping the electromagnetic field
F ab the same and the trajectory the same, while flipping the sign of the
charge (q 7→ −q) and of the four-velocity (va 7→ −va). (One can see
that this operation does indeed turn models into models by inspecting
Maxwell’s equations and the Lorentz force law, or, alternatively, by in-
specting the Lagrangian. The only changes in any of these quantities
are in the signs of q and va, which always occur together, so that the
changes cancel; so, changing the sign of the charge and of the four-
velocity must turn a solution into a solution, and a non-solution into
a non-solution.)

Let us put this another way: a particle with charge q and four-
velocity va behaves, in a given electromagnetic field, exactly as if it
is a particle with charge −q and velocity −va: it follows exactly the
same trajectory, so that, given only access to the results of ‘mechanical
experiments’, the two possible situations cannot be distinguished in
any way. This observation opens the door for the following hypothesis:
particles that we have regarded as belonging to different types, related
by the ‘is the antiparticle of’ relation—electrons and positrons, say—
are really of the same type as one another. In particular, they have
the same electric charge as one another. Things appear otherwise
only if we erroneously assume that all four-velocities must point in
the same temporal direction as one another. In other words, we can
achieve parsimony in particle types at the cost of the ‘extravagance’ of
endowing particle worldlines with an intrinsic direction; the Feynman
proposal is that we do so. If this hypothesis is right, then it is indeed
true that an anti-particle is nothing but a particle traveling in the
opposite direction of time.

5 Structuralism: A Third Way?

We have been assuming so far that the Malament and Feynman pro-
posals represent distinct alternatives, at most one of which can be
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correct. One can have a different time reversal operation for the same
formalism, we said, only if one makes a different postulate about the
fundamental ontology ; but if one does that, then (we said) one has
changed one’s theory, in the clear sense that one has changed one’s
hypothesis about the fundamental nature of the world.

Be that as it may, one might still (on the other hand) have the gut
feeling that the ‘disagreement’ between the Malament and Feynman
ontologies is not a genuine one; that the two ‘rival theories’ are, in
some sense, saying the same thing in different ways.

Clearly, one cannot fully hold onto both of these ideas: one says that
the Malament and Feynman proposals are distinct, the other says they
are not. In the present section, however, we will sketch a third set of
hypotheses about the fundamental nature of a classical electromagnetic
world that does justice to the basic principles behind both ideas. It will
do justice to the just-mentioned gut feeling, in that it will provide a way
of regarding the claim that worldlines have arrows on them and that
four-velocities can be past-directed (as Feynman says), and the claim
that worldlines have no intrinsic arrows and four-velocities are always
future directed (as Malament says), as equivalent descriptions of the
same underlying situation. However, it will also do justice to our earlier
insistence that this business of formulating alternative descriptions is
not ontologically innocent, because it will be a third, rival, suggestion
for what the fundamental nature of electromagnetic reality might be,
rather than a claim that the original Malament and Feynman theories
are equivalent.

The ‘third way’ is structuralism. In the broader context, structural-
ism arises as an attempt to steer the correct course between (on the
one hand) an excessively deflationary positivism, according to which
empirical equivalence is supposed straightforwardly to entail equiva-
lence of meaning, and (on the other) an excessively realistic position,
according to which every difference in notation (the use of the boldface
letter D rather than E for the electric field, say) is taken to correspond
to a difference in postulated physical reality. The sort of ‘structural-
ism’ we are interested in typically proceeds – either on a case-by-case
basis (i.e. applying the structuralist strategy where and only where it
happens to seem appropriate) or as a sweeping claim about the possi-
bility of knowledge, reference and/or the nature of reality – by reifying,
at the fundamental level, relations, but not monadic properties. This
(fundamental reification of relations only) will be our tactic here too.

5.1 Structures: the debate recast

Before setting out the relationist’s attempt to deflate the debate be-
tween the Malament and Feynman views, it will serve the interests of
clarity if we recast the moves that have been made so far in a more
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formal framework.
In the beginning , we were representing classical electromagnetic

worlds using one-parameter families of standard Newtonian structures.
A standard Newtonian structure is a mathematical entity of the form

SNewt = 〈Σ× T, P,x,m, qs,E,B〉, (36)

where:

• Σ× T is a Newtonian spacetime: that is, Σ is a Euclidean three-
space, and T ∼ (R,+) is the set of times.

• P is a set of particles. (In the first instance, P is structureless;
structure is added by the functions x,m, qs below.)

• x : P × T → Σ is an assignment of a three-position to each
particle at each point in time.

• m : P → M is an assignment of a (determinate) mass prop-
erty, such as 9.11 × 10−31kg, to each particle. The space M of
mass properties has the structure M ∼ (R+

0 ,+): that is, M is
isomorphic to the nonnegative part of the real line, where ‘iso-
morphism’ is understood in the restricted sense of ‘preserving
addition’. (The structure of the space of mass properties is not
as rich as that of the reals; in contrast to real numbers, one cannot
multiply two masses to obtain a third.)

• qs : P → Qs is an assignment of a (determinate) charge property,
such as −1.6022 × 10−19C, to each particle. The space Qs of
‘standard’ charge properties has the structure Qs ∼ (R,+), i.e.
Qs is isomorphic (in the same restricted sense) to the real line.
(The subscript ‘s’ (and corresponding adjective ‘standard’) is for
contrast with the later case of ‘Feynman’ charges.)

• E is a three-vector field—the electric field. (Formally: E : Σ ×
T → TΣ, with (E(x, t) ∈ TxΣ) for all x ∈ Σ, t ∈ T .)

• B is another three-vector field—the magnetic field. (Formally:
B : Σ× T → TΣ, with B(x, t) ∈ TxΣ for all x ∈ Σ, t ∈ T .)

Albert’s view, described in section 3.2, amounts to the claim that
structures of this form SNewt contain no element of conventional-
ity; that is, that such structures ‘carve electromagnetic reality at the
joints’.

Then we noticed that we could have Lorentz invariance if we allowed
E and B to transform nontrivially under Lorentz transformations; but
we took it that this required regarding E and B as non-fundamental,
and as defined in terms of something more fundamental only relative
to a choice of frame. We therefore introduced a class of structures
that (for want of a better name) we will call Minkowski structures, i.e.
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mathematical entities of the form

SMink = 〈M, g;P, va,m, q, Fab〉, (37)

where:

• (M, g) is a Minkowski spacetime;

• va is an assignment of a four-vector (four-velocity) field to each
particle (vanishing except on the particle’s worldline). (Formally:
va : P ×M → TM , with va(p, x) ∈ TxM for all p ∈ P, x ∈M .)

• Fab is a two-form field: the Maxwell-Faraday tensor field. (For-
mally: Fab : M → ΛT (0, 2)M , with Fab(x) ∈ ΛTx(0, 2)M for all
xinM .)

• Other elements of the structure are as above.

And we noted that, given a Minkowski structure, we could represent
it by a Newtonian structure relative to a choice of frame ηa or, equiv-
alently, a choice of simultaneity convention; but we recognized that
the choice of frame or simultaneity convention was arbitrary, that it
did not latch onto anything of metaphysical privilege, and, hence, that
different Newtonian structures obtainable from the same Minkowskian
structure were to be regarded as different ways of representing the same
underlying reality:

FIGURE 4 HERE
But, we noticed, the idea that Minkowski structures were funda-

mental seemed to force upon us a nonstandard time reversal operation,
according to which the E field, but not the B field, flips sign. Then
we (Malament) noticed that we could recover the standard time rever-
sal operations if we allowed Fab to transform nontrivially under time
reversal (specifically, if Fab picked up a sign flip under time reversal);
but we took it that this required regarding Fab (and, in consequence,
also va) as non-fundamental, and as defined in terms of something
more fundamental only relative to a choice of temporal orientation.
We therefore introduced the notion of a Malament structure, i.e. a
mathematical entity of the form

SMal = 〈M, g;P,wu,m, qs, fm〉, (38)

where:

• P is a set of particles.

• wu : P →Wu is an assignment of an undirected worldline to each
particle. (The set Wu of undirected worldlines can be identified
with the set of images of inextendible timelike curves in M .)

• fm : Lu × Qs → TM is the (Malament) electromagnetic field.
Here, Lu is the set of undirected tangent lines; it can be identified
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with the set TM\ ∼ of equivalence classes under the equivalence
relation: va(1) ∼ va(2) iff va(1) = λva(2) for some λ ∈ R. We have
fm(lu, q) ∈ TxM whenever lu is a line in TxM .

• Other elements of the structure are as above.

We then noted that, given a Malament structure, we could represent
it by a unique Minkowski structure relative to a choice of temporal ori-
entation; but we recognized that the choice of temporal orientation was
arbitrary, that it did not latch onto anything of metaphysical privilege,
and, hence, that different standard Minkowskian structures obtainable
from the same Malament structure were to be regarded as different
ways of representing the same underlying reality:

FIGURE 5 HERE
‘Feynman”s point was then that there was an alternative to Mala-

ment structures, apparently at least as defensible, although this al-
ternative did not recover the standard time reversal operations: we
could hypothesize instead that the more fundamental reality was well-
represented by mathematical entities of the form

SFeyn = 〈M, g;P,wd,m, qf , ff 〉, (39)

where

• wd : P → Wd is an assignment of a directed worldline to each
possible particle. (The space Wd of directed worldlines can be
identified with a set of equivalence classes of inextendible timelike
curves, under the equivalence relation that relates all and only
pairs of curves whose parameters increase in the same time sense
as one another.)

• qf : P→ Qf is an assignment of a determinate Feynman charge
property to each possible particle. The space Qf of ‘Feynman’
charge properties has the structure Qf ∼ (R+

0 ,+), corresponding
to our earlier remark that, for Feynman, ‘all charges are positive’.

• ff : Ld × Qf → TM is the (Feynman) electromagnetic field.
Here, Ld is the set of directed tangent lines; it can be identified
with the set TM\ ∼ of equivalence classes under the equivalence
relation: va(1) ∼ va(2) iff va(1) = λva(2) for some λ > 0. We have
ff (ld, q) ∈ TxM whenever ld is a (directed) line in TxM .

To complete the summary of our account thus far: We then noted
that, given a Feynman structure, a representation convention can be
set up according to which there is a unique standard 4D structure that
represents the given Feynman structure, even without the selection
of any conventional temporal orientation, or indeed any conventional
pieces of structure:

FIGURE 6 HERE
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The ‘structuralist’ wants to continue this pattern: whereas the ad-
vocate of (say) the fundamentality of standard Minkowskian structures
regards a large class of Newtonian structures as differing from one an-
other only on choices of convention (‘choice of frame’), not on mat-
ters of fundamental ontology (which latter are given by SMink); and
whereas the advocate of the fundamentality of Malament structures
regards a class of two standard Minkowskian structures as differing
from one another only on choices of convention (in this case, temporal
orientation), while the fundamental ontology is given by SMal; so the
‘structuralist’ wants to regard the elements of a class that contains
both Malament and Feynman structures as differing from one another
only on choices of convention. Malament and Feynman structures, ac-
cording to the structuralist, will be equally good representors of some
more fundamental underlying reality.

So far so good. It seems8 reasonable, however, to require that we
say more directly what the nature of this underlying reality is, rather
than just ‘it’s something that can equally well be represented by this
Malament or this Feynman structure.’ That is, it seems reasonable to
demand that we ‘fill in the question-marks’ in the following diagram:

FIGURE 3 HERE
It is in this attempt at more direct description of the nature of

reality that the emphasis on relations arises. The idea is to articulate
a fifth type of structure, that of ‘relationist structure’, to hypothesize
that that captures the fundamental nature of electromagnetic reality
better than any of the four alternatives we have articulated so far, and
to show how a given structure of this fifth type can be represented by
a Malament, Feynman, Minkowskian or Newtonian structure relative
to the selection of a certain number of arbitrary, but well-understood,
conventions.

5.2 Relational structures

Suppose that the more fundamental story is as follows. Let M, g, P,wu
and m be (respectively) a manifold, metric, set of particles, assignment
of undirected worldlines to particles, and assignment of mass properties
to particles, as before. But, in place of a space of monadic charge
properties (Qm or Qf ) and an ascription (qm, qf respectively) of these
monadic properties to particles, we have a binary relation qr : P×P →
R ∪ {∞}, satisfying the following constraints:

8Perhaps there are limits to how far this demand can be pushed. Perhaps, that is, we
eventually reach a level at which we are compelled to recognize the existence of convention-
ality, but we cannot describe the representation relations, or give a more direct description
of the underlying, convention-independent reality. Interesting questions concern whether
or not this happens and, if so, where it happens, and why it happens where it does.
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‘Reflexivity’: ∀p ∈ P, qr(p, p) = 1.
[‘Antisymmetry’: ∀p1, p2 ∈ P, qr(p1, p2) = qr(p2, p1)−1.
[‘Transitivity’: ∀p1, p2, p3 ∈ P, qr(p1, p2) · qr(p2, p3) = qr(p1, p3);

Heuristically : in terms of Malament structures, qr corresponds to
a ‘charge ratio’ relation; while, in terms of Feynman structures, the
absolute value of qr corresponds to the charge ratio, while the sign
of qr encodes whether or not the worldlines of the two particles have
the same temporal direction as one another. But it is crucial to note
that neither of these translation schemata forms part of the relationist
account per se. According to the relationist, there is just qr.

We are then dealing with relational structures: mathematical enti-
ties of the form

Srel = 〈M, g;P,wu,m, qr, fr〉, (40)

where

• qr is as above.

• fr : Lu × P → TM is a map assigning a four-vector in TxM to
every pair (lu, p) such that lu is a line in TxM (for some x ∈M).

• Other elements of the structure are as above.

A relational structure represents an electromagnetic world as con-
taining point particles p ∈ P that have monadic mass properties9, and
that bear a ‘charge-ratio’-like relation to one another; the electromag-
netic field is accordingly reconceived as fr rather than fm or ff , so
that it makes no reference to monadic charge properties.

5.3 Malament and Feynman structures as conven-
tional representors of a relational reality

We now wish to explore the (‘structuralist’) suggestion that it is the re-
lational structures that best ‘carve electromagnetic reality at its joints’,
and that Malament and Feynman structures arise as convenient math-
ematical tools which, however, require us to make some choices of
arbitrary convention that need not be made by the pure relational ap-
proach. Specifically, we wish to explore the nature of the representation
relation between (represented) relational structures and (representing)
Malament or Feynman structures.

The following definition will prove useful: Say that a particle p ∈ P
has zero charge iff for some p′ ∈ P , qr(p, p′) = 0.10

9A more thorough-going structuralism, of course, would treat mass, as well as charge,
in a relational way. We omit this complication for brevity.

10This definition has the consequence that if, intuitively, all particles have zero charge,
none will count as having zero charge according to the definition. This consequence
is unwanted, but does not create any problems. In such cases, the indifference of the
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Suppose, then, that we are given a relational structure, i.e. an
entity of the form (40). We first wish to represent this via a Malament
structure. To do so, we proceed as follows:

1. Let Qm be a space with the structure Qm ∼ (R,+). (This struc-
ture suffices to define a notion of multiplication by an arbitrary
real number on Qm.)

2. Define a function qm : P → Qm as follows:

• Choose arbitrary p̃ ∈ P such that p̃ has nonzero charge.
(The existence of some such particle, providing that P is
nonempty, is guaranteed by the axioms governing qr; cf.
footnote 10. If P is empty, then, of course, any function
with domain P is trivial.)

• Choose arbitrary nonzero charge q̃ ∈ Qm − {0}.
• Define a function qm : P → Qm as follows:

(a) qm(p̃) = q̃.

(b) For all p′ ∈ Pr, qm(p′) = qm(p) · qr(p′, p).
3. Define a map fm : Lu ×Qm → TM as follows:

∀lu ∈ Lu,∀q ∈ Qm, fm(lu, qm) =
q

q̃
fr(〈lu, p̃〉). (41)

4. Form the Malament structure 〈M, g;P,wu,m, qm, fm〉.
We note that, given a relational structure, we have the following

arbitrary choice of convention to make, in order to determine the Mala-
ment structure that would represent it: the charge qm(p̃) ∈ Qm − {0}
for an arbitrarily selected charged particle p̃.

To represent our given relational structure using a Feynman struc-
ture, on the other hand, we would proceed as follows:

1. Let Qf be a space with structure Qf ∼ (R+
0 ,+). (This struc-

ture suffices to define a notion of multiplication by an arbitrary
nonnegative real number on Qf .)

2. If all particles in Pr have zero charge, set qm(p) = 0 ∈ Qf , for
all p ∈ Pr. If some particle in Pr has nonzero charge, then:

• Choose arbitrary p̃ ∈ P with nonzero charge.
• Choose arbitrary nonzero charge q̃ ∈ Qf − {0}.
• Define qf : P → Qf as follows:

(a) qf (p̃) = q̃.

(b) For all p′ ∈ P, qf (p′) = qf (p) · |qr(p′, p̃)|.

particles to the EM field will be encoded in fr (which would everywhere take zero vectors
as its values).
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3. Construct the ascription wd of directed worldlines to particles,
as follows. First, note that the set Wd has two natural pieces of
structure. (i) If w1, w2 ∈ Wd, say that w1 is codirected with w2

iff w1 ‘points in the same temporal direction as’ w2.11 Codirect-
edness is then an equivalence relation on Wd, partitioning Wd

into two mutually exclusive and jointly exhaustive classes. (ii)
If w3, w4 ∈ Wd, or if w3 ∈ Wd and w4 ∈ Wu, say that w3 is
coextensive with w4 iff w3, w4 occupy the same set of points of
M . Coextensiveness (in the first sense) is also an equivalence re-
lation on Wd, this time partitioning Wd into uncountably many
equivalence classes of two elements each. Then:

• Select an arbitrary directed worldline w that is coexten-
sive with the undirected worldline wu(p) that our relational
structure ascribes to p; let wd(p) = w.

• For all other particles p′ ∈ P:
– If qr(p′, p) > 0, let wd(p′) be the unique element of
Wd that is coextensive with wu(p′) and codirected with
wd(p).

– If qr(p′, p) < 0, let wd(p′) be the unique element of Wd

that is coextensive with wu(p′) and not codirected with
wd(p).

4. Define a map ff : Ld ×Qf → TM as follows:

∀ld ∈ Ld,∀q ∈ Qf , ff (ld, q) = ±q
q̃
fr(ld, p̃), (43)

where the positive sign applies iff the orientation of ld is the same
as that of wd(p̃).

5. Form the Feynman structure 〈M, g;P,wd,m, qf , ff 〉.

In this case, we had to make two arbitrary choices of convention:
the charge qf (p̃) ∈ Qf −{0} of our arbitrarily selected charged particle
p̃, and the orientation of its worldline. The superficial appearance
that this involves ‘more conventionality’ than does the construction
of a Malament from a relational structure, however, is no more than
that: on any reasonable way of quantifying ‘degree of conventionality’,
the selection of an arbitrary element of Qm ∼ R will count as the
introduction of ‘just as much convention’ as will the selection of an

11Rigorously: w1 ∼ w2 iff, for any continuous nowhere-vanishing timelike vector field
τa on M and any s1, s2 ∈ R,(

ηab

(
dw1

ds

)a
|s1τ

b(w1(s1))

) (
ηcd

(
dw1

ds

)c
|s2τ

d(w1(s2))

)
> 0. (42)
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arbitrary element of Qf ∼ R+
0 and an arbitrary orientation for a given

worldline.
To sum up our structuralist program, then: we have written down

prescriptions for constructing Malament and Feynman structures from
a given relational structure 〈M, g;P,wu,m, qr, fr〉. In this way, it can
be a consequence of our third candidate ontology, according to which
it is the relational structures that best ‘carve electromagnetic reality
at the joints’, that the choice between representation via a Malament
structure and representation via a Feynman structure is merely a choice
of convention:

FIGURE 7 HERE
Thus (given our earlier accounts of how the ontologies on which

Malament and Feynman structures are based give rise to distinct ge-
ometrical time reversal operations), we have shown how a relationist
can support the claim that answers to questions like whether or not
four-velocity flips sign under time reversal, whether time reversal turns
particles into antiparticles, and so on, are convention-dependent: ques-
tions that have no determinate answers until we implicitly choose our
convention (by answering the question, or otherwise).

6 Conclusions and open questions

In this final section, we summarize our conclusions to date, and then
indicate some open issues that we would like to resolve.

Summary of conclusions from this paper. We have elabo-
rated the ‘geometric’ notion of time reversal introduced by Malament,
according to which time reversal consists in leaving all [other] funda-
mental quantities alone, and merely flipping the temporal orientation.
This allows us to give an account, as the passive and active notions
of time reversal cannot, of how it may come about that a coordinate-
independent quantity such as F ab transforms nontrivially under time
reversal. We have then discussed four approaches to time reversal in
classical electromagnetism in the light of this geometric conception:
Albert’s, Malament’s, the ‘Feynman’ approach, and the structuralist
approach. Only according to Albert is the theory not time reversal
invariant; we have rejected Albert’s account by appeal to Ockham’s
Razor.

Theory choice. This does, however, leave us with an apparent
case of underdetermination: how might one choose between the Mala-
ment, Feynman and Structuralist ontologies, and which seems to be
preferable all things considered? We are not sure how best to answer
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this question; so let us merely list several considerations that may tell
one way or another.

Firstly: one feeling is that Structuralism is preferable because it
eliminates distinctions that seem to be devoid of differences. But it
would be better if this ‘feeling’ could be replaced with argument, and
it is difficult to turn the sentiment expressed in the preceding paragraph
into an argument for structuralism without falling foul of the point that
the choice between structuralism and its alternatives is itself a choice
that is, in a very similar sense, ‘underdetermined by the physics’.

Secondly: it is not clear that the Feynman account can give a rea-
sonable treatment of neutral particles. We skirted over this difficulty
in our above discussion, but it is not hard to see, particularly in the
context of the attempt to define a Feynman structure to represent a
relational reality: in the case of a neutral particle, there is nothing ‘in
the physics’ to determine what the orientation of the particle’s world-
line should be. To insist that even in this case there must nevertheless
be a fact about the worldline’s orientation seems ontologically extrav-
agant; to treat neutral particles in Malament’s way, while retaining a
Feynman treatment of charged particles, though, seems to amount to
adopting an ugly hybrid position.

Thirdly: it is not clear that the Structuralist account can give a
reasonable treatment of the electromagnetic field, either of cases in
which all particles are neutral, or of vacuum solutions of the Maxwell
equations. Let us take up the second point first. The point here is that
if the relationist electromagnetic field fr just is a map from Lu × P
to TM then, if P is empty, fr is a map with empty domain; thus, the
structuralist account does not seem to have the resources to underwrite
a genuine physical difference between any one vacuum solution and any
other. Going back to the case of neutral particles: similarly, in any case
in which all actual particles are neutral, the relationist electromagnetic
field must assign the zero four-vector to every pair (lu, p); thus, again,
it cannot underwrite genuine physical differences between solutions of
the Maxwell equations that differ radically on the value of the Maxwell-
Faraday field Fab. Of course, the structuralist could bite the bullet and
say that, indeed, there is no genuine physical difference between such
pairs of solutions; whether or not this (bullet-biting) move would lead
to trouble is an open question.

Fourthly: the Malament account does not seem to sit particularly
well with the idea that, at a rather fundamental level, the Maxwell-
Faraday tensor is to be thought of as the curvature of a U(1) connection
one-form Aa. If one takes this latter idea seriously, one seems to be
led to something like the Feynman view: the most fundamental rep-
resentation of the electromagnetic field is (according to this idea) as a
two-form, not as a map from tangent lines and either charges or par-
ticles to four-vectors. Thus, connection realism seems to lead to the
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Feynman view of time reversal by default.
One final (and very plausible) possibility is that the underdeter-

mination in question simply cannot be correctly resolved within the
confines of classical electromagnetism, and that it is only by viewing
classical electromagnetism as the classical limit of a quantum field the-
ory, and thus obtaining further ontological insight as to the nature of
charged particles and of the electromagnetic field, that one runs across
considerations that favor the true ontological position over others. The
investigation of these possibilities is a future project.

Conventionality of spacetime structure? An intriguing is-
sue arises on the supposition that structuralism is indeed correct. In
that case, as we have emphasized, the difference between the Mala-
ment and Feynman languages is just that — a difference in language;
one’s choice of language is a convention. In the case of classical electro-
magnetism, nothing of ontological substance even threatens to hang on
the choice of convention; in particular, the existence or nonexistence
of a preferred temporal orientation does not, since the theory comes
out time reversal invariant according to both Malament and Feynman.
A more interesting case would be one, if any such there be, in which
the time reversal invariance of the theory was (according to structural-
ism) a convention-dependent matter. Given the standard link between
spacetime symmetries and spacetime structure, this would render the
question of whether or not a privileged temporal orientation exists a
convention-dependent matter. It is not immediately clear whether or
not this makes sense. If it does, the details have yet to be worked
out; if it does not, this seems to be a strong argument against the
structuralist position.

Field theory. Finally, let us return to a comment we made at the
outset. The original motivation for this project was the feeling that
the existence of a CPT theorem is rather puzzling—why should charge
conjugation be so intimately related to spacetime symmetries? The
point here is that, according to the ‘Feynman’ proposal, the operation
that ought to be called ‘time reversal’—in the sense that it bears the
right relation to spatiotemporal structure to deserve that name—is
the operation that is usually called TC; on this proposal, the theorem
known as the ‘CPT theorem’ would be more properly called a PT
theorem, and (the thought continues) perhaps this opens the door to
new insights into why that theorem should hold. A future project is to
investigate a geometrical understanding of the (classical and quantum
field-theoretic) ‘CPT’ theorems, drawing on this suggestion.
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Figure 1: w is the worldline of a particle of mass m and charge q. L is
the tangent line to w at the point p. Until we have specified a temporal
orientation τ , we have left it open whether the four-velocity is va or −va.
vb∇bv

a is the four-acceleration; it is independent of temporal orientation.
The electromagnetic field F maps < L, q > to the four-force mvb∇bv

a.

FIGURES AND CAPTIONS:
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Figure 2: The time-reverse of a particle traveling from Mary to Harry, ac-
cording to the Feynman view, is (still) a particle traveling from Mary to
Harry.
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