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Abstract

While a significant literature in political economy has recently focused on the
relationship between inequality and redistribution preferences, it is unclear that these
preferences have any influence over political behavior. In this paper we argue that
redistribution preferences are indeed a most significant determinant of voting. We
will show that voting for the Democratic Party by the rich is highly dependent on state
inequality levels. The rich in more unequal states are more supportive of redistribution
than the rich in more equal states. We contend that it is precisely these redistribution
preferences that make them more likely to vote for the Democratic Party. Our analysis
goes beyond previous research by explicitly studying this preference mechanism in
a potential-outcomes framework. We disentangle the direct and indirect effects of
inequality to obtain estimates of inequality’s effect on voting through preferences.
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I. INTRODUCTION

Many observers would agree that an individual’s income affects her political be-
havior. In political science there is an influential literature on how pocketbook issues
(Downs 1957; Key 1966; Fiorina 1981) and class (Lipset 1983; Evans 1999; Brooks
and Manza 1997), both strongly related to relative income, influence voting choice.
Inequality and redistribution in America have seen a resurgence in academic interest
in recent times. Bartels (2009) has shown the spectacular increase in inequality over
the past 35 years to be the product of policy choices in a political system dominated
by partisanship and particularly receptive to the preferences of the wealthy. Hacker
and Pierson (2011) coincide not only in the appreciation of the attention that policy-
makers pay to the rich but also about the fact that politics is the main factor behind
inequality (“American politics did it”).

This paper’s analysis addresses one of the implications of most arguments about
the importance of economic circumstances to political outcomes. If income matters
to individual political behavior, it seems reasonable to assume that it does so through
its influence on redistribution preferences. These redistribution preferences may (or
may not) then be reflected on party positions and, eventually, government policy. In
the US, rising inequality has become a visible feature of the economy (e.g., Levy and
Murnane 1992; Gottschalk 1997; Piketty and Saez 2003) as well as of mainstream
political debates. At the same time, as observed by Gelman et al. (2008), affluent
people in some states are much more likely to vote for the Democratic party than in
other states (while for the poor, this difference is much less pronounced).

While a voluminous political economy literature has emerged on the influence
of income and inequality on preferences, we know much less about whether these
preferences do in fact affect political behavior at all. Most political economy arguments
start from the assumption that an individual’s position in the income distribution
determines her preferences for redistribution. The most popular version of this
approach is the theoretical model proposed by Romer (1975) and developed by
Meltzer and Richard (1981). And there is some evidence supporting the argument
that relative income (whether an individual is rich or poor) influences preferences for
redistribution. In the US American data, a relative income effect is found in, among
others, Gilens (2005), McCarty, Poole, and Rosenthal (2008), and Page and Jacobs
(2009). Do these preferences translate into political behavior?
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As we will show below, the support of the rich for the Democratic party is highly
dependent on local levels of inequality. In states where inequality is high, the rich
are more likely to vote Democrat. Why would this be the case? We argue below that
redistribution preferences are an important part of the story. Our arguments add to
those prevalent in the literature in at least three important ways. First, most political
economy models link individual income (and sometimes individual preferences) to
policy outcomes. The central assumed political mechanism is the relationship between
preferences and voting. This paper’s contribution is to specify explicitly the theoretical
mechanisms that determine preferences and party choice, and to test them empirically.
Second, much of the debate about the lack of redistributive policies in the US has
centered around the perception that second-dimension issues are disproportionately
important to the poor. Perhaps the most well-known example of this is the contention
that cultural, religious and social values outweigh economic concerns for the American
working class in some states (see Frank 2004 and, more recently, Hersh and Nall 2015).
The implication of these arguments is that the solution to the (lack of) redistribution
puzzle in the US concerns demand. We show in this paper that this may not be the case.
We find the poor to be uniformly in favor of redistribution and, in agreement with
Gelman et al. (2008), therefore uniformly more likely to vote Democrat. Third, while
a number of important contributions to our understanding of partisanship (McCarty,
Poole, and Rosenthal 2008) and voting (Gelman et al. 2008) focus on the role of state
wealth (are rich and poor states different?), we emphasize the importance of state-
level inequality. We argue that individual-level relative income captures individuals’
material self-interest and use state-level macro inequality as a measure of concerns
unrelated to the pocketbook. We provide theoretical reasons (and empirical evidence)
why we need to pay attention to inequality if we want to understand the determinants
of voting.

II. ARGUMENT

Our theoretical argument proceeds in two stages. First, we detail the influence of
redistribution preferences on voting choices. We argue that those who are supportive
of redistribution will be more likely to vote for the Democratic Party. Second, we
address the formation of preferences for redistribution, proposing that macro-levels of
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inequality will matter most to the rich. We argue that higher levels of macro inequality
will make the affluent more likely to support redistribution and therefore more likely
to vote Democrat.

In the first stage of our argument, we argue for the relevance of redistribution
preferences to voting. Our starting point here is the assumption that economic
factors affect individual preferences and voting behavior. We therefore follow a
well-established literature on the relationship between income and political behavior.
As mentioned above, most political economy arguments start from the assumption
that an individual’s position in the income distribution determines her preferences
for redistribution (see Romer 1975 and Meltzer and Richard 1981). The literatures
on economic voting and class voting are based on similar arguments. Like authors
in the economic voting tradition (e.g., Duch and Stevenson 2008), our argument
posits that there is a relationship between an individual’s economic interests and her
likelihood to vote for a particular party. Class voting analyses (e.g., Evans and de Graaf
2013 and Evans 1999) emphasize the effects of socio-economic cleavages on political
preferences, but their focus on occupational factors is largely compatible with our
arguments. Our approach is also related to a recent literature that emphasizes risks and
skills as determinants of preferences. While this literature associates unemployment
vulnerability with skill profiles (e.g, Cusack, Iversen, and Rehm 2006), we highlight
the importance of redistribution preferences (regardless of skills).

Like the traditional economic voting literature (Downs 1957) we conceive of voters
as instrumental rational actors. Individuals will vote following a comparison of
what they gain or lose from the policies proposed by each party. In the words of
Duch and Stevenson, we assume that “voters rationally derive expected utilities for
competing political parties and that these determine their vote choice” (2008: 9). As
in the pioneering work of Kramer (1971) and Fair (1978), we consider that economic
well-being (and therefore income) is a significant factor affecting a voter’s utility
function.

A substantial literature debates the issue of how exactly economic considerations
enter into the voter’s utility function. Two main approaches can be distinguished,
one emphasizing sanctioning and the other focusing on selection (here, we follow the
analysis provided in Duch and Stevenson 2008). The sanctioning model is characterized
by the consideration that voters are narrowly retrospective and mostly motivated
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by punishing or rewarding incumbents (see the classic works of Kramer 1971, Key
1966 and Fiorina 1981). Focusing on moral hazard, i.e., the risk of rent-seeking by
incumbents if not punished for bad economic outcomes, Barro (1973) and Ferejohn
(1986) also belong within this tradition. The selection/competency model argues that
voters gather more information to assess the likely economic outcomes associated
with competing political alternatives. Downs (1957) and Stigler (1973) are classical
examples of this approach but we would argue that this is also the understanding
of voting underlying Meltzer and Richard (1981) and subsequent political economy
treatments of redistribution and voting (Persson and Tabellini 2000). While the
sanctioning model has dominated the economic voting literature, it is clear that our
argument implies a selection logic. We propose that individuals who are in favor of
redistribution will identify the Democratic Party as more likely to promote equality
and therefore be more likely to vote for it.

While the intuition explained above is pretty straightforward, it has not received
enough attention in the existing American literature. In fact, we agree with McCarty
et al. when they argue that:

“Although much recent work in comparative political economy has sought
to link inequality to political conflict and back to economic policy, few
of these insights have been applied to American politics. (...) Perhaps
one reason for the dearth of interest is that income or wealth has not
been seen as a reliable predictor of political beliefs and partisanship in
the mass public, especially in comparison to other cleavages, such as race
and region, or in comparison to other democracies” (McCarty, Poole, and
Rosenthal 2008: 73).

Two clear illustrations of this are major recent works on partisan identification
and voting by Green, Palmquist, and Schickler (2004) and Lewis-Beck (2009). Both
analyses underplay the importance of income (and, even more so, of its connection to
redistribution preferences). To the extent that income and redistribution preferences
are considered in this literature, it is through the prism of “class voting.”3 But this

3Lewis-Beck (2009) finds class to have become less significant a determinant of voting in presidential
elections, while Manza and Brooks (1999) find the class cleavage to be stable from 1952 to 1996.
In a more recent contribution, Hersh and Nall (2015) find income-based voting to be less important
than racial context.
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approach is quite distinct from the political economy arguments that we present in
this paper.

The approach most similar to ours is that of McCarty, Poole, and Rosenthal (2008),4

and their finding that voting in presidential elections is increasingly linked to income
is compatible with our arguments. But the equilibrium in most political economy
models (including McCarty, Poole, and Rosenthal 2008) is achieved by individuals
deriving their preferences over optimal fiscal policy based on their income position,
which are then “aggregated into an economywide policy via the collective choice
mechanism in place” (Drazen 2000: 312). Thus the two central concepts are citizens’
redistribution preferences (or ideal points) and vote choices (the collective choice
mechanism). The traditional mode of empirical analysis has then been to relate
income to economy-wide outcomes, such as spending (see, e.g., the summaries of
empirical research in Persson and Tabellini 2000 and Mueller 2003). This, however,
simply assumes that our central argument – the relationship between preferences
and voting – is indeed the mechanism at work. This paper’s contribution is to specify
explicitly the theoretical mechanisms that determine preferences and party choice,
and to test them empirically.

Thus, the second stage of our argument involves the relationship between macro-
levels of inequality and redistribution preferences. As in the Meltzer-Richard model,
our argument implies that a rise in inequality that increases the distance between
an individual’s income and the mean will change her distribution preferences. More
importantly, our argument also implies that the current pocketbook consequences of
inequality are fully contained in the individual income distance changes produced by
this inequality shift. In other words, the tax and transfer consequences of inequality
are picked up by individual income changes.

Macro levels of inequality, however, can indirectly affect the individual utility
function implicit in the previous paragraph. Following Alesina and Giuliano (2011),
we can think about this utility function as one in which individuals care not only

4But see also Brooks and Brady (1999), who argue that income shapes voting behavior indirectly (by
affecting evaluations of social welfare and government size).
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about their current tax and transfers but also about some macro measure of income
distribution.5

There are several reasons why macro levels of inequality can affect the redistribution
preferences of the rich, but not those of the poor. Perhaps most clearly related
to this paper’s argument, Rueda and Stegmueller (Forthcoming) argue in a recent
contribution that macro inequality promotes economic externalities. They propose that
the poor have shorter-term motivations than the rich.6 They conclude that the relative
importance of receiving benefits is greater for the poor than the relative importance
of paying taxes is for the rich. Longer time horizons and lower stakes (in relation
to current tax and transfer considerations) mean that the negative externalities of
inequality will be more important to the rich.7 In this argument, relative income is still
negatively correlated with redistribution preferences, but the rich in high-inequality
states become more likely to support redistribution than the rich in low-inequality
states.8

The hypotheses that emerge from this paper’s arguments are summarized in Figure 1.
Because of negative economic externalities (and possibly other-regarding motivations),
we expect inequality to make the rich more likely to support redistribution and
therefore more likely to vote Democrat. Since we argue that voting for the Democratic
Party is partly determined by redistribution preferences, and since redistribution

5As suggested by Alesina and Giuliano (2011), different individuals may be affected by different
kinds of inequality. For simplicity, in this paper we focus on the Gini coefficient, which is the most
commonly used measure of inequality in the political economy literature.

6This has been explored in the economics and sociology literature. In economics, the poor have
been argued to be more constrained in their investment decisions than the rich (explaining the
lower likelihood by the poor to invest in long-term objectives like increasing human capital or
saving for retirement). See, for example, Lawrance (1991) or Dynan, Skinner, and Zeldes (2004).
Complementarily, sociological research has illustrated that lower social class (itself closely related
to low income) leads to shorter time horizons (see, for example, O’Rand and Ellis 1974).

7McCarty, Poole, and Rosenthal (2008) (like Gelman et al. (2008)) emphasize the relative wealth of
a state as a macro explanatory variable. We focus on macro levels of inequality and find the rich to
be affected by it very differently from the poor (even when controlling for state wealth).

8An alternative theoretical approach with similar observable implications focuses on the role of
other-regarding motivations. There are different ways to think about altruism, from the “reference-
dependent inequity aversion” preferences proposed by Fehr and Schmidt (1999) to the “fairness”
preferences in Alesina and Angeletos (2005). Dimick, Rueda, and Stegmueller (2014) argue argue
that altruism towards the poor by the rich is more significant when macro inequality is high (they
show that altruism becomes a “luxury good,” the demand for it increases as income increases when
inequality is high).
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Figure 1: Macro-Inequality and Democratic vote

preferences converge regardless of the macro-level of inequality as income declines,
we expect the voting behavior of the poor to be similar whether macro inequality
is high or low. Thus, the probability of voting Democrat for an individual with low
income zi in a low-inequality state wj, denoted P(zi, wj), and in a high-inequality
state P(zi, w0j) do not differ by much. In contrast, we expect the likelihood to vote
Democrat of a rich individual in a low-inequality state P(z0i , wj) to differ starkly from
that of a rich individual in a high-inequality state P(z0i , w0j).

To make transparent how we think about these questions conceptually, it is useful
to use the framework of potential outcomes to study explicitly our hypothesized
causal mechanism (Imai et al. 2011; VanderWeele and Vansteelandt 2009).9 Start
with a scenario where individual i (i = 1, . . . , N) receives some level of income, zi

and lives in a state with a level of inequality, wj. Our individual prefers a certain
level of redistribution, which is a function of her income and the level of inequality,
which we write as Ri(zi, wj|x1i). Possibly confounding variables are denoted by x1i.
At an election, she casts her vote in part based on her redistribution preferences and
on a number of other factors shaped by inequality, as well as (again) a number of
possible confounders, x2i. We write this vote function as Vi(zi, wj, Ri(zi, wj|x1i)|x2i).

9For a recent example of using the causal mechanism framework to explicate mechanisms in an
observational study, see Becher and Donnelly (2013).
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Note that inequality appears twice: as a factor changing preferences (which in turn
shape vote choice) and as a factor shaping vote choice (via possibly infinitely many
other possible channels).

To analyze the role of inequality, denote a counterfactual shift in inequality, w0j.
Holding everything else constant, we get the total effect of inequality on vote choice
by (we omit possible confounders for clarity):

T E ⌘ Vi(zi, wj, Ri(zi, wj))� Vi(zi, w0j, Ri(zi, w0j)) (1)

This is the expected (counterfactual) difference in the probability of voting Democrat
as a result of changing inequality. This difference results from the combination of the
systematic effects of changing preferences and other factors, which are not relevant
to our argument.

To understand how inequality shapes the Democratic vote via preferences it is
not enough to look at disparate sets of regression coefficients (of, say, inequality
on preferences, and preferences on voting). Rather, we need to explicitly test our
hypothesized mechanism (Robins 2003). Thus, we calculate the indirect effect:

I E ⌘ Vi(zi, wj, Ri(zi, wj))� Vi(zi, wj, Ri(zi, w0j)). (2)

This is the effect a change in inequality has on vote choice via redistribution pref-
erences only. By fixing inequality and only changing preferences, we isolate our
preference mechanism and eliminate the impact of competing mechanisms (Imai et al.
2011: 769). In other words, it is a strict statistical expression of our hypothesized
inequality–preference nexus net of alternative explanations (such as, for example,
second dimension concerns). The remaining effect of inequality on vote choice via all
mechanisms other than preferences is captured by the direct effect:

DE ⌘ Vi(zi, wj, Ri(zi, wj))� Vi(zi, w0j, Ri(zi, wj)). (3)

The previous discussion lays out the causal counterfactual logic of our argument
and is independent of the specific statistical model used to estimate it.10 We describe

10General nonparametric identification results for this structure are discussed in Imai, Keele, and
Yamamoto (2010). In our empirical application (as in any analysis having to rely on observational
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our statistical model in Section V. Let us emphasize again that this setup provides a
strict test of our hypotheses. We test if inequality and income systematically shape
Democratic vote via redistribution preferences while allowing for (possibly infinitely
many) other channels by which inequality and income could be linked to vote choice.

Out of the multitude of channels linking inequality and voting, however, we must
specifically contend with two additional factors when explaining the determinants of
Democratic voting in the US: values and the South. Regarding values, an important
literature posits that, in some states, the poor are diverted from the pursuit of their
material self-interest. Perhaps the most well-known example of these arguments is
the contention that second-dimension issues (particularly cultural and social ones)
outweigh economic ones for the American working class. Frank 2004, and the
critique in Bartels 2006, are good illustrations of this debate, but so is the emphasis
on cosmopolitanism as a determinant of vote in Gelman et al. (2008).While not
denying that moral and cultural issues are important to voting Democrat in the US,
we emphasize the importance of redistribution preferences. McCarty et al. find that
income is an extraordinarily good predictor of partisanship and voting even among
conservative Christians (2008: 100-101). In the same vein, we will show below that
the interaction between income, macro inequality and redistribution preferences are a
powerful predictor of voting even when controlling for the influence of other channels
of influence (such as values).

Regarding regional differences, the historically dramatic shift of voters in the South
from the Democratic Party to the Republican Party has been well documented. The
general contours of partisanship in the South have been analyzed before. Starting in
the 1960s, non-African Americans in the South switched from being Democratic to
being Republican (see McCarty, Poole, and Rosenthal 2008 and Green, Palmquist, and
Schickler 2004). The connection between race and Southern politics has been the
subject of analysis for a long time (see, for example, Key 1949). While we introduce
race as an individual covariate below, the existence of racial institutional orders (King
and Smith 2011) necessitates the exploration of regional patterns in the South that

data) a number of conditions have to be met in order for inferences to be credible. We study these
using sensitivity analyses in appendix F.
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may not be similar to those in the rest of the states in our analysis. We do this in the
sections below.11

III. DATA

We use data from the General Social Survey (GSS) covering nine presidential
elections between 1976 and 2008. We limit our population to those who are of
working age (18-65), not currently in full-time education and who casted a vote in
a presidential election. This yields 10,218 observations. After removing individuals
with missing values on covariates we are left with 9,073 individuals.12

Our vote choice variable is based on a retrospective statement from each GSS
respondent for which party he or she voted in the last presidential election. We create
a simple indicator variable equal to 1 if a vote was cast for the Democrats and 0 if the
Republican party was chosen. Respondents who abstained or chose a third candidate
(such as Anderson in 1980 or Perot in 1992/96) are not included in the sample, to
allow us to make meaningful “two-party choice” comparisons.13

To capture redistribution preferences we use a commonly used measure (e.g.,
Alesina and Angeletos 2005), available over time in the GSS. It presents respondents
with the following statement: “the government should reduce income differences
between the rich and the poor, perhaps by raising the taxes of wealthy families or by
giving income assistance to the poor.” Answers are recorded on a seven-point scale,
with labeled endpoints “1=should” and “7=should not”, which we reverse for ease of
interpretation. Table 1 shows the distribution of responses in our sample. Immediately
apparent is the breadth of preferences held by the American public. Opposition and
support for redistribution are almost evenly distributed in the population.

11For a recent contribution to this debate, see Hersh and Nall 2015 who, using geocoded registration
records and precinct returns find the correlation between income and partisanship to be strong
in heavily black areas of the Old South and other areas with a history of racialized poverty, but
weaker elsewhere, including in urbanized areas of the South.

12We also removed individuals for which we observe neither vote choice nor preferences. Due to the
complexity of the model used, we opted not to use multiple imputation for missing covariates.
Missing values on dependent variables will be imputed within the model (assuming an ignorable or
MAR missingness process).

13In further work we will incorporate a full model for abstention. Note, however, that a proper unified
model of turnout and party choice is a lot more complex than simply including abstention as another
“party” (see, e.g., Adams, Dow, and Merrill 2006).
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Table 1: Redistribution preferences

Should government reduce income difference between rich and poor?

No Yes
1 2 3 4 5 6 7

14.8 10.3 14.2 17.7 16.5 10.8 15.7

Note: Entries are percentages per category.

We measure state-level inequality via the Gini index (Cowell 2000). We use data
from Frank (2009) who calculates Gini measures following Cowell and Mehta (1982)
based on data on the number of returns and adjusted gross income by the IRS. A
central problem in assessing inequality is that the very rich are underrepresented in
standard surveys. Furthermore, in order to protect respondents’ anonymity, incomes
are usually top-coded. Thus, the extent of inequality tends to be underestimated when
calculated from sample surveys. Matters are improved when inequality is calculated
from administrative records. Atkinson, Piketty, and Saez (2011) provide an extended
discussion on the validity and advantages of tax-return based calculations.

We measure income distance as the distance between a respondent’s household
income and the national mean income in each year. The GSS captures income by
asking respondents to place their total net household income into a number of income
bands. These are transformed into midpoints (see Hout 2004 for details). We impute
the top-coded income category value by assuming that the upper tail of the income
distribution follows a Pareto distribution (e.g., Kopczuk, Saez, and Song 2010). Finally,
to allow meaningful comparison over time, incomes are converted to constant dollars
(with base year 2000). The distribution of income distances used in our analysis is
summarized in Figure A.1 in the appendix.

To control for state-specific changes in economic conditions, we use yearly state-
level unemployment rates. We calculate them by averaging the Bureau of Labor
Statistics’ LA series of state monthly unemployment rates (Bureau of Labor Statistics
1992).14 As further individual-level characteristics we include a respondent’s age,
gender, education (years of schooling), an African-American indicator variable, and

14In our robustness tests, we also control for state wealth measured as state gross domestic product
and average state income
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a “non-white” summary indicator. Respondents’ labor market status is captured by
indicator variables for currently being self-employed, unemployed, or in part-time
employment. Finally we include an indicator of respondents living in urban areas,
defined as cities with at least 50,000 inhabitants. Table B.1 in the appendix shows
descriptive statistics for our central variables.

IV. STATE VARIATION IN INEQUALITY, PREFERENCES AND VOTING

We have argued above that rich individuals who live in unequal areas will be more
likely to support redistribution and, therefore, to vote Democrat. The first stage of our
argument involves the relationship between relative income and voting. As Gelman
et al. (2008) have noted, affluent people in some states are much more likely to vote
for the Democratic Party than in other states (while for the poor, this difference is much
less pronounced). Figure 2 presents data on the average percentage of Democratic
vote among the poor and the rich in presidential elections from 1976 to 2008. The
poor are defined as those $32,590 below the national income mean, the rich are those
$26,953 above the mean (these correspond to the 90th and 10th percentiles in the
national income distribution). The figure confirms the general findings in Gelman
et al. (2008), the poor are generally highly likely to vote Democrat. The states in
the upper panel are uniformly dark. There are a couple of exceptions (Montana and
Maine) where the percentage of Democratic voters among the poor is unusually low
(around 20%). But the rest of states have uniformly high levels of Democratic vote
(in 36 states, it is higher than 50%; in 30 states, it is higher than 60%).

Voting Democrat among the rich, however, exhibits a much higher state variance.
There are states with very low percentages (below 20): Kentucky, Oklahoma and
Mississippi. There are states with low percentages (between 20 and 30): Idaho,
Montana, Georgia, New Hampshire, Ohio, Delaware and Texas. There are a number
of states with percentages of Democratic votes between 30 and 40: Arizona, Kansas,
Indiana, North Carolina, Tennessee, Vermont, Maine, South Carolina, Florida, Missouri
and Virginia. There are then 20 states with percentages of Democratic vote between
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Figure 2: Democratic vote, presidential elections 1976-2008

40 and 50 and 5 states where these percentages are higher than 50: Massachusetts,
Minnesota, Iowa and DC.15

The more systematic analysis to be developed below will help explain the voting
patterns shown in Figure 2. An initial illustration of the explanatory variable em-
phasized in the first stage of our argument is offered in Figure 3, which displays
state inequality (our Gini index calculated with data from Frank (2009)). It shows
inequality to be highest in New York, Massachusetts, Connecticut, Florida, Texas
and California. The most equal states are Nevada, Idaho, Indiana, West Virginia,
and Washington. More importantly, the figure shows a general correlation between
inequality and the likelihood of voting Democrat among the rich shown in Figure 2.
States with high levels of inequality (the darker color in Figure 3) tend to contain

15It is important to mention that these are averages over time, not reflecting the temporal variation
that will be captured by the analysis in the following sections.
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Figure 3: Average inequality (Gini) by state, 1974-2008

the highest levels of Democratic support among the rich in Figure 2. This is the case
in New York, California and Massachusetts. States with low levels of inequality (the
lighter color in Figure 3) tend to contain low levels of support for the Democratic
Party among the rich. Utah and Idaho are good examples.

Figure 4 addresses the second element of our argument: the existence of state
variation in support for redistribution among the rich and the poor. Once again the
poor are defined as those $32,590 below the national income mean, and the rich are
those $26,953 above the mean. The figure captures the average level of support (i.e.,
the mean of the 7-point scale) for redistribution in each of the states in the sample.

Figure 4 suggests the existence of a general relative-income effect. While the poor’s
average state support for redistribution is 4.6, the average for the rich is 3.4. The figure
shows a remarkable amount of state variation. The lowest support for redistribution
among the rich (2.5 on the 7-point scale) can be found in South Dakota, while the
highest support among the rich (4.6) is in Hawaii. For the poor, the highest support
for redistribution (5.4) is again in Hawaii while the lowest support (2.5) is to be
found in Utah. By looking at the two panels side by side, we can see that the support
for redistribution of the poor is almost always higher than that of the rich. This point
is brought home in Figure 5. It presents the differences in redistribution preferences
between poor and rich. There are only three states where this difference is negative
(i.e., where the rich are more pro-redistribution than the poor): Utah, Montana and
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Figure 4: Redistribution preferences among poor and rich

Rhode Island.16 The rest of the sample is characterized by levels of redistribution
support that are higher among the poor than among the rich. The states where these
differences are the greatest are Tennessee, West Virginia and Arkansas.

Using again Figure 3, we can see a general correlation between inequality and the
difference in redistribution preferences shown in Figure 5. States with high levels
of inequality (the darker color in Figure 3) tend to exhibit greater differences in the
redistributive preferences of rich and poor (the darker color in Figure 5). This is the
case in Texas, California and Florida. States with low levels of inequality (the lighter
color in Figure 3) tend to exhibit smaller differences in the redistributive preferences
of rich and poor (the lighter color in Figure 5). This is the case in Utah, Kansas,

16These cases are exceptional, but in different ways. In Utah, as noted above, the poor are unusually
against redistribution (the lowest average in the sample). In Montana and Rhode Island, the rich
are unusually supportive of redistribution.
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Figure 5: Difference in redistribution preferences between poor and rich

Vermont and New Hampshire. In this preliminary illustration, there are of course
also exceptions (Washington is a very equal state with high preference differences
between rich and poor, for example). In the following pages, we will analyze more
systematically the determinants of the patterns shown in Figure 5.

V. MODEL

Our statistical analysis uses repeated cross-sections, i.e., we have surveys repeated
at several points in time. Our lowest unit of analysis is the individual, while the unit
for inequality is the state. Given obvious and persistent state differences, and the
difficulty in measuring all state characteristics, our statistical strategy is to control for
state-specific effects and exploit temporal variation by using a within-states design.
Thus, we model individuals’ preferences and voting choices when faced with changing
levels of state inequality, holding other state-level characteristics constant.

Vote choice and preference variables Our first dependent variable is an individual’s
decision to vote for a Democratic candidate. More precisely, let y1i j t represent observed
vote choice of individual i (i = 1, . . . , njt) in state j ( j = 1, . . . , J) at time point (year)
t (t = 1, . . . , T). In a decision theoretic formulation, an individual will vote for one
candidate if the utility derived from that choice exceeds that of the alternative. In
our two-party setting, we simply observe y1i j t = 1(y⇤1i j t > 0).17 Our measure of

171 is an indicator function, which evaluates to 1 if its argument is true.
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preferences is the 7-category survey item, y2i j t . For simplicity, we treat this variable
as continuous.18

Model In this paper we want to make two points. The first one is simply that
inequality matters more to the voting behavior of the rich than that of the poor.
In other words, we expect to observe a positive interaction effect between income
distance and income state-level inequality. Our second point is that these voting
patterns can be (partly) explained by the fact that the preferences of rich voters in
high inequality states are systematically different. We argue that the rich are more
likely to support redistribution (or be less opposed to it) as income inequality rises.

To test our first point we model vote choice as a function of income distance, zi j t ,
state-level inequality in year t, wjt , and their interaction, wjtzi j t . Their effect is
captured by the three-vector � :

y⇤1i j t = x 0i j t↵1 +�(wjt + zi j t + wjtzi j t) + ⇠ j + ✏1i j t (4)

We include a vector of both individual and state controls, xi j t , with associated
coefficients ↵1, as well as unobserved state effects, ⇠ j (we describe their specification
in more detail below).

To explicitly test our second point, we need to model the role of income distance
and inequality in shaping preferences and how preferences themselves influence vote
choice. Thus we jointly estimate the following two equations:

y⇤1i j t = x 0i j t↵1 +�y2i j t +�(wjt + zi j t + wjtzi j t) + ⇠ j + ✏1i j t (5)

y2i j t = x 0i j t↵2 + �(wjt + zi j t + wjtzi j t) + ⇣ j + ✏2i j t (6)

The effect of endogenous preferences, y2i j t , on vote choice is captured by �. Our
main covariates of interest are (again) an individual’s income distance, zi j t , state-level
inequality at a specific time-point, wjt , and their interaction, wjtzi j t . Their effect is
captured by the two three-element vectors of parameters � and �. The latter shows
how preferences are shaped by income and inequality, while the former now shows
the remaining effect of income and inequality on vote choice not due to preferences.

18Using a more complex latent variable model does not make a substantive difference to our results.
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Figure 6: Illustration of joint model of preferences and vote choice

The basic structure of our model is illustrated in Figure 6 (see also Imai et al. 2011
Figure 1a.). It shows how preferences are introduced as an intermediary variable
between income and inequality (we omit covariates for clarity). This setup will
allow us to distinguish the effects of income and inequality that are channeled via
preferences (i.e. via the � and � paths) from those due to other channels (general
ideology, second-dimension concerns, etc: the � paths). With estimates from our
joint preference and vote model in hand, we can calculate the direct and indirect
(counterfactual) effects specified in equations (2) and (3). Appendix C shows how
these are derived from our model estimates.

Our statistical model includes a vector of both individual and state controls, xi j t ,
with associated coefficients ↵1 and ↵2. To capture unobserved state confounders, our
model contains state-specific effects in both vote (⇠ j) and preference (⇣ j) equations.
In other words, we allow unobserved state factors to affect preferences and vote choice
differently. Both ⇠ j and ⇣ j, are specified as arising from a normal distribution with
zero mean and estimated variances �2

⇠ and �2
⇣, respectively.19 Finally, the last element

in the model are residuals, ✏1,✏2, which are both zero-mean normally distributed.
While the variance of ✏2 is freely estimated, the variance of ✏1 is fixed to one to identify
the probit equation.20

Estimation We implement our model in a Bayesian framework. Besides enabling us
to jointly estimate our voting and preference equations, this is also preferable from

19In classical parlance, those are “random effects”. However, in a Bayesian framework all parameters
are random, i.e. have to be assigned a prior distribution. The difference between “fixed” and
“random” effects is then simply that the latter have an added hierarchical element, their common
variance distribution (described below). See Rendon (2012) for an extended discussion.

20We specify ✏1,✏2 as uncorrelated (conditional on all covariates, preferences, and state random effects).
A model with correlated residuals (using a parameter expanded inverse Wishart covariance prior,
with scale matrix I2 and 3 df.) yields a residual covariance of �0.006.
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a more philosophical standpoint. US states are not a random sample, but comprise
the whole population. In that context classical maximum likelihood standard errors
are not particularly meaningful (Jackman 2009: xxxii). In contrast, the Bayesian
inferential framework considers ‘standard errors’ (or posterior standard deviations to
be exact) to be a measure of uncertainty and is thus applicable in our case. Jackman
(2009) and Gill (2008) provide further discussion of the advantage of Bayesian
methods. To complete the Bayesian specification we assign vague or uninformative
prior distributions to all model parameters.21

VI. RESULTS

Income, inequality and vote choice Table 2 shows a set of estimated � coefficients
for income distance, inequality, and their interaction from equation (4). As our
analysis is Bayesian we do not just obtain point estimates, we also recover for each
parameter its full posterior distribution (reflecting its estimation uncertainty). This
distribution is summarized in Table 2 by providing posterior means and standard
deviations, as well as Bayesian 95% highest posterior density regions, which can be
understood as the Bayesian analogue to the classical confidence interval. While we
provide more intuitive quantities of interest below, Table 2 provides a first test of our
first argument. After controlling for a number of individual and state characteristics,
we find clear main effects of individual income distance and state inequality on the
propensity to vote Democratic. More importantly, we also find our hypothesized
interaction: the general effect of income on Democratic vote choice is negative, but
richer individuals in states that are more unequal are systematically more likely to
support the Democratic party.

In order to assess the interaction between income and inequality, Figure 7 shows
the predicted probabilities of casting a Democratic vote by income distance in high
and low inequality states. We define high and low inequality states as the 10th and
90th percentiles of the distribution of Gini coefficients in our sample. Two conclusions

21More explicitly, we set them to be a priori distributed mean zero with a large variance of 10 to
reflect our prior ignorance over their true value, i.e. � ,� ⇠ N(0,10). The same vague prior
distribution is used for the effect of preferences on vote choice: � ⇠ N(0,10). We have two free
state variances in our model for which we use vague inverse Gamma priors (Spiegelhalter et al.
1997), �2

⇣,�
2
⇠ ⇠ IG(0.001, 0.001).
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Table 2: Income, inequality and Democratic vote choice.
Posterior means, standard deviations, and 95% highest
posterior density regions

Mean SD 95% HPDR

Income distance �0.292 0.023 �0.336 �0.247
Inequality 0.147 0.028 0.092 0.202
Income⇥inequality 0.151 0.044 0.066 0.238

State random effect
Var(⇠) 0.070 0.015 0.042 0.099
Note: Based on 10,000 MCMC samples from equation (4). Included controls are:

age, education, female, black, other non-white, self-employed, part-time em-
ployed, unemployed, living in large city, union membership, and state percent-
age of non-white, state unemployment rate.

Low inequality

High inequality
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Figure 7: Predicted probability of Democratic vote as function of income and inequality.
Posterior means and 95% intervals.
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are evident. First, the “Meltzer-Richard” prediction is confirmed – the further above
from the mean of the income distribution and individual is, the less likely he or she is
to vote Democrat. However, this relationship is strongly moderated by inequality. In
states with high levels of inequality the negative effect of income distance is markedly
less pronounced. An affluent individual $50,000 above the national mean in a low
inequality state (like Maine in 1988, which is close to the 10th percentile) will have
a 40% probability of voting Democrat. In a high inequality state (like California in
2005, which is close to the 90th percentile), an individual in exactly the same position
in the income distribution would have more than a 50% probability or, in other words,
would be at least as likely to vote Democrat as Republican.

The role of preferences The second part of our argument stresses that the strong
interrelationship between income and inequality affecting vote choice can be explained
by individual redistribution preferences. To test this proposition we estimated our
joint model of preferences and vote choice, eqs. (5) and (6). Table 3 shows summaries
of the posterior parameter distributions for this model. We only display our main
parameters, a full table is available in appendix table D.2.

To start at the top, we find unequivocal support of the argument that redistribution
preferences determine vote choice. Individuals who hold more pro-redistribution
preferences are more likely to support the Democratic party. This relationship is highly
statistically significant as evidenced by the small posterior uncertainty interval. In
order to gain a more intuitive understanding of the role of preferences, we calculate
the change in the predicted probabilities of Democratic vote choice when preferences
change (holding everything else constant). Moving one category up from the popula-
tion average of redistribution preferences increases the probability of voting Democrat
by 4.7± 0.1 percentage points.

Returning to the upper panel of Table 3 we find that including preferences explains
a sizable portion of the effect of income on preferences. By comparing the estimates
in Table 3 to those we presented in Table 2, we can see that the remaining effect of
income on voting (i.e., the income effect not explained by preferences) is reduced by
more than 40%. The same is true for the interaction between inequality and income
distance.

We argued that redistribution preferences are shaped systematically by income and
inequality. While rich individuals generally oppose redistribution, we proposed that
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Table 3: Joint model of vote choice and redistribution prefer-
ences. Posterior means, standard deviations, and 95% intervals.

Mean SD 95% HPDR

(A) Index equation for Democratic vote choice
Redistribution preferences 0.178 0.007 0.164 0.193
Income distance �0.170 0.024 �0.218 �0.124
Inequality 0.174 0.029 0.118 0.232
Income⇥inequality 0.112 0.046 0.020 0.199

(B) Equation for redistribution preferences
Income distance �0.737 0.040 �0.819 �0.661
Inequality �0.099 0.045 �0.189 �0.014
Income⇥inequality 0.262 0.075 0.116 0.408

Random state effects
Var(⇠) 0.071 0.015 0.041 0.100
Var(⇣) 0.033 0.013 0.011 0.058
Note: Based on 10,000 MCMC samples from jointly estimated equations (5) and (6). In-

cluded controls (full estimates in appendix) are: age, education, female, black, other
non-white, self-employed, part-time employed, unemployed, living in large city, union
membership, state percentage of non-whites, and state unemployment rate.

the rich in high inequality states would be far less opposed to redistributive policies.
This expectation is tested in the lower panel of Table 3, which shows the posterior
summary of equation (3). We find that – as expected – higher-income individuals
prefer less redistribution. However, in high inequality states their opposition becomes
significantly less pronounced (in both the statistical and substantive sense). To
visualize how inequality moderates the role of income distance, we calculate expected
values of redistribution preferences for rich and poor individuals. As in previous
sections, we define poor and rich as those who are at the 10th and 90th percentiles
of the national income distribution. We then calculate the difference in expected
preferences between rich and poor. Repeating this calculation over a range of Gini
values allows us to visualize how state inequality changes the effect of income on
preferences.

The results shown in Figure 8 illustrate the importance of including inequality in
explanations of income and voting. At low levels of inequality, say at a Gini coefficient
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Figure 8: Difference between Poor and Rich in redistribution preferences at different
levels of inequality. Differences in expected values and 95% intervals.

of 0.51 (e.g., Maine in 1988), one sees a marked difference in preference between
Rich and Poor of more than 1.1 points (on a seven point scale). At high levels of
inequality, for example in states with a Gini coefficient of 0.62 (California in 2005),
the Rich-Poor difference decreased markedly to less than 0.8 points. The width of our
95% interval once more makes clear that this difference is statistically reliable.

Indirect effects of income and inequality via preferences So far we have described
the role of inequality and income in shaping preferences and how preferences shape
Democratic vote choice. However, to unequivocally demonstrate the relevance of
preferences in linking income and inequality to voting we need to perform a stricter
test.

There are numerous channels through which income and inequality might shape
vote choices. Clearly, the aim of this paper is not to specify them all, but to concentrate
on a specific one: an individual’s redistribution preferences. To test whether prefer-
ences are a significant channel we calculate the indirect effect of income, inequality,
and our income inequality interaction on vote choice. By indirect we mean an estimate
of the path of income, inequality (etc.) on preferences and subsequently on vote
choice, as defined in equation (2). In other words, we test the relevance of the full
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hypothesized path (income! preferences! vote choice) net of all other possible
channels.

Results of these tests are displayed in Table 4, which displays indirect and direct
effects (cf. equations (3) and (2)).22 We find that income distance significantly
shapes vote choice via redistribution preferences: the confidence bounds around
our estimates of the full path (from income to preferences to vote choice) do not
include zero. The same result holds for state level inequality.23 Most importantly,
we find that our hypothesized moderating effect of inequality significantly shapes
vote choice through preferences. While the effects of rising income and inequality on
voting (through preferences) are negative, a combined unit increase in inequality and
income increases the probability of voting for Democrats by more than one percentage
point (holding all else equal). Note that this is the effect only due to preferences. A
lot of other (unspecified) mechanisms additionally operate to shape vote choice.

To gain an understanding of the quantitative role preferences play in the income–
inequality–vote nexus, we calculate the percentage of the total effect that is due to
preferences (indirect effects) and due to all other channels. Table 4 shows results
of these calculation in columns labeled “%”. Our results once more underscore the
importance of preferences for redistribution. Preferences alone make up one third of
the total effect of the interaction between inequality and income distance. We also
confirm the, by now clear, result that income distance matters for vote choices mainly
through its effect on preferences. Preferences alone explain half of the total effect of
income on vote choice.

VII. ROBUSTNESS TESTS

Before moving to our conclusion we describe a number of robustness and specifi-
cation tests (we currently display only a subset). Our first (and strictest) robustness
check is a change in estimation strategy from “random effects” to “fixed effects”. In a
Bayesian framework this means that instead of specifying state-specific constants as
arising from common normal distributions, we include state-specific constants with di-
rect priors. Results from this model are shown under specification (1) in Table 5. Note

22A full table is available in appendix table D.3.
23The significance of the direct effects is, on the other hand, much more limited.
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Table 4: Indirect (via preferences) and direct effects of inequality and
income on vote choice. Posterior means and standard deviations of
effect estimates, percentages of total effect

Indirect effect Direct effect

Est. SD % Est SD %

Income distance �4.177 0.262 46 �4.938 �6.467 54
Inequality �0.417 0.190 9 4.403 3.049 91
Income⇥inequalitya 1.137 0.331 31 2.895 0.707 69
Note: Other variables not shown. Calculated via 10,000 simulated values from posterior parameter

distribution. Indirect effect following equation (2); direct effect following equation (3); taking into
account that the outcome variable is binary. Calculated values are probability differences.

a Calculated with main effect (moderator) at mean

that our use of state-specific effects (both fixed and random) implies that state-level
confounders that are time-constant are ruled out as alternative explanations. Thus,
in the following paragraphs we mostly focus on either alternative individual-level
factors or explanations that involve time-varying state-level variables.

Specification (2) shows that our main results are also obtained in a minimal model
without additional covariates. To check if differences in state wealth influence our
estimated relationships, as emphasized by (McCarty, Poole, and Rosenthal 2008) and
(Gelman et al. 2008), we include state gross domestic product (from the Bureau of
Economic Analysis) and average state income (calculated from March CPS files) in
specifications (3) and (4).

Moving on to individual level checks, an important literature on the political econ-
omy of redistribution preferences has shown the importance of risk. Possessing specific
skills increases demand for social protection (Iversen and Soskice 2001). Specification
(5) includes a measure of general and specific skills following Fleckenstein, Saunders,
and Seeleib-Kaiser (2011). A related argument stresses the role of occupational un-
employment risk (Cusack, Iversen, and Rehm 2006; Rehm 2011). In specification (6)
we include the occupational unemployment rate (on the level of DOT occupations).24

Regarding more “social” rival explanations, Iversen and Soskice (2015) argue that
political information is differently available to individuals, and that this influences their
voting. We suspect that this important factor is orthogonal to our income-inequality

24We are indebted to Philipp Rehm for providing us with his data.
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nexus. Specification (7) provides a test, where we include estimated levels of political
discussion derived from the ANES (the GSS does not provide a political discussion or
political information measure over time). We estimate average discussion levels for 24
age⇥education⇥gender groups in each ANES year and match this information back to
GSS respondents25 We also include indicators for a respondent’s social class (e.g., Evans
and de Graaf 2013) in specification (8). Religion (e.g., De La O and Rodden 2008;
Stegmueller 2013) is covered by both church attendance and denomination indicators
in specification (9). We also include a respondent’s ideology and party identification.
While we argue that more clearly defined measures of preferences (such as ours)
should be preferred over catch-all concepts, we nonetheless estimate specifications
(10) which includes ideology as a straightforward left-right self placement (on a 7-pt
scale) available in the GSS and (11) which includes indicator variables for respondents
identifying as Democrat or Republican (with independents as reference group).26

Another concern we need to address is the influence of segregation. Racial seg-
regation, or the sorting of similar individuals into distinct neighborhoods, might be
an important confounder. While our models capture the time-constant effects of
state-level variables, changes in patters of racial segregation could be responsive for
our observed changes in voting patters. To address this issue we calculate two sets of
segregation indices from Census data on ca. 65,000 neighborhoods (census tracts).
In robustness test (12a) we use the level of neighborhood segregation in each state
over time. For robustness test (12b) we first calculate neighborhood segregation
for each city with more than 10,000 inhabitants and then aggregate these obtained
segregation measures to the state level. We use what is arguably the most popular
segregation measure: the index of dissimilarity, which expresses the share of a racial
group which would have to move in order to produce an even racial distribution in a
neighborhood. In order to save space, we provide a much more detailed discussion in
appendix E.

Our robustness results (we present indirect effect estimates for income⇥inequality)
show that our core findings are unaffected by these specification changes. Most

25Some missing year-cells in the ANES are imputed using a tobit equation.
26We create these indicators from the standard political party affiliation question by combining

“strong” and “not very strong” Democrats and Republicans in their respective indicator variables.
Independents (including those leaning towards a party) are the reference group.
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Table 5: Robustness checks. Indirect effect esti-
mates of inequality⇥income. Posterior means, and
standard deviations.

Specification Mean SD

(1) Fixed state effects 1.769 0.521
(2) No Controls 1.295 0.393
(3) State GDP 1.103 0.325
(4) State avg. income 1.138 0.330
(5) Specific skills 1.012 0.319
(6) Occupational unemployment 1.142 0.328
(7) Political discussion 1.151 0.333
(8) Social class 1.207 0.336
(9) Religion 1.012 0.319
(10) Ideology 0.866 0.282
(11) Party identification 0.742 0.332
(12a) Segregation (state) 1.132 0.470
(12b) Segregation (local) 1.260 0.507
Note: Based on 10,000 MCMC samples from jointly estimated model equa-

tions (5) and (6). Displayed are indirect effects calculated following
equation (2).

noteworthy is probably the fact that a fixed-effects estimation strategy (i.e., without
shrinkage estimation) produces a larger total indirect effect estimate. Many alternative
explanations seem to operate in addition to our income-inequality nexus, not replace
it. The only exception is the inclusion of ideology, which (as expected) reduces the
impact of preferences on Democratic vote choice. However, even there we find a clear
effect of preferences and of the income-inequality interaction.

A. The South

Finally we turn to a different kind of robustness test: how the exceptionalism of the
South affects our results. While our models include idiosyncratic state effects and thus
allow for systematic (level) differences between states, we did not explicitly explore
whether income and inequality have different effects in parts of the country. The
exceptionalism of the political South has been stressed repeatedly, from Key (1949)
to arguments about late democratization in the South by González and King (2004).
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This raises two questions: Do we still find our proposed effects when excluding the
South from our analysis? And how does the relationship look like in the South?

To address them, we estimate a series of models exploring the different roles
that income and inequality play in Southern states. We split our sample into Non-
Southern states and the ‘political South’ (Alabama, Arkansas, Florida, Georgia, Ken-
tucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee,
Texas, Virginia and West Virginia). Not only does this allow us to study the question
of effect heterogeneity in the South, it also provides a test of whether the results
presented above still hold in a smaller sample (without the South). Figure 9 plots
predicted probabilities derived from these models. Panel (A) shows the effect of
income on the probability of voting Democrat, holding all else (including inequality)
constant, while panel (B) plots the effect of income conditional on levels of inequality.

The results of this analysis are quite unequivocal. With respect to the role of income,
we find no systematic difference between Southern and non-Southern states. In both,
the further removed an individual is from the mean income earner, the less likely she
is to vote Democrat.27 Figure 9 also reveals that the exceptionalism of the South lies in
the effect of inequality. While the point estimates reveal a similar (but weaker) pattern
in the South, the smaller sample makes the difference in support for redistribution by
the rich statistically insignificant. The rich in states with higher levels of inequality
in the South (again keeping in mind the smaller sample) are not significantly more
likely to support redistribution than the rich in states with lower levels of inequality
in the South. Finally, it should be noted that the left figure of panel (B) clearly shows
that in our smaller sample of Non-Southern states we still replicate the hypothesized
income-inequality interaction found for the full sample in Figure 7.

VIII. CONCLUSION

We will conclude by noting that, in some ways, this paper presents a somewhat
unintuitive result: the rich are more supportive of redistribution in those states where
inequality is highest. One might ask why we do find more inequality in precisely
the places where the rich are more supportive of redistribution. We think this is an

27Our estimate for this effect in the South is less precise, since we now have a much smaller sample at
our disposal.
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Figure 9: Democratic Vote as function of income and inequality in (Non-)Southern
states. Panel (A) shows the effect of income, panel (B) shows effects of income
conditional on levels of inequality.

important question in need of a significant amount of further research. As McCarty
and Pontusson (2009) note, models of the political economy of redistribution involve
two separate propositions: there is a “demand” side, concerning the redistribution
preferences of voters, and a “supply” side, concerning the aggregation of these prefer-
ences and the provision of policy. In this paper we have focused on the first proposition
and ignored the second.

In the introduction to our theoretical claims about the relationship between income
and political behavior, we declared that, as in the traditional economic voting literature
(Downs 1957), we conceive of voters as instrumental rational actors. The starting
point for our argument, common to most political economy approaches to voting, is
that individuals will vote after comparing the expected utilities they would derive
from the policies promoted by competing political parties. As we have shown above,
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Table 6: Illustration of inequality–income effects in the 2008 presidential election.
Change in democratic vote margins resulting from a one-point increase or decrease in
state-level inequality.

Full sample Without South

Gini change: increase decrease increase decrease

Change in Democratic 4.65 �4.58 4.89 �4.80
vote margin (1.19) (1.19) (1.23) (1.23)

Note: Entries are percentage points with standard errors in parentheses. We calculate these per-
centages by keeping all respondents’ observables at their observed values and only change Gini
coefficients. Changes are relative to the existing level of inequality in each state.

the affluent in high-inequality states want more redistribution and, consequently, are
more likely to vote Democrat. The persistence of inequality implies no irrationality on
the part of the affluent. It simply reflects the fact that other (exogenous) factors affect
inequality outcomes. Given the policy proposals of the two parties during the period
we analyzed, it is reasonable for affluent individuals concerned about inequality to
expect Democratic candidates to promote more redistribution.

It is perhaps also appropriate to return to the main thrust of the paper in these final
remarks, and to re-emphasize the substantive effects we have identified in our analysis.
We have argued that redistribution preferences matter to voting in significant ways
and that they are responsible for an important portion of the effects of the interaction
between income and inequality. In Figure 7, we provided the predicted probabilities of
voting Democrat in high and low inequality states and showed that affluent individuals
in states with low levels of inequality had a much lower probability of supporting the
Democratic Party than individuals with the same income in high-inequality states. It
is germane to question how electorally relevant the differences depicted in Figure 7
are. To address this question, we turn to Table 6. The table explores the effects
of the relative income–macro inequality relationship on voting, and uses the 2008
presidential election as an illustration.

The table shows the predicted electoral effects of a one-point change in the levels
of state inequality observed in 2008. What would have been the consequences in the
2008 presidential election, we ask, of this kind of change in macro inequality given the
observed characteristics of the individuals in the survey? We simulate both a one-point
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increase in the existing state-specific Ginis and a one-point decrease. The table shows
that a general one-point increase in state inequality would significantly increase the
Democratic vote margin28 by more than 4 and half percentage points. By making
the affluent less likely to vote Democrat, a one-point decrease in macro inequality
(again keeping constant the characteristics of our respondents) would decrease the
Democratic margin by more than 4 and half percentage points. To illustrate the
substantive importance of these electoral outcomes, let us remind the reader that in
the 2008 presidential election electoral margins under 7.6% were produced in 50%
of states. In 10% of states, the elections produced margins under 2.3%. It is clear
then that the effects identified in our paper are potentially momentous.

28We define the Democratic vote margin here as the absolute value of the difference between the
Democratic vote share and 50.
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APPENDIX TO “PREFERENCES THAT MATTER:
INEQUALITY, REDISTRIBUTION AND VOTING”



A. Income distance by state
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Figure A.1: Distribution of income distance by state. Kernel density estimates (Gaus-
sian kernel, evaluated on 100 point grid).
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B. Descriptive statistics

Table B.1: Descriptive statistics. Means and
standard deviations for continuous variables,
percentages for dichotomous variables

Mean SD

Income distance [10,000$] 0.047 3.945
Inequality (gini) 0.564 0.055
Age [10 years] 4.315 1.189
Education [years] 13.966 2.791
State unemployment rate 5.995 1.739
Female 55.6%
Self-employed 11.8%
Part-time employed 10.7%
Unemployed 5.7%
Black 15.1%
Other non-white 4.0%
Urban area 30.9%
Union member 10.4%
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C. Calculation of direct and indirect effects

This section describes how we calculate direct and total indirect effects (Robins
2003) of equations (3) and (2) from our model estimates obtained from equations
(5) and (6).1 Write our model in simplified form with one covariate of interest
(treatment), xi, a mediating variable (preferences), mi, and confounders, ci. We
estimate the following system of equations:

probit(yi) = �0 + �1 xi +�mi + �2ci (C.1)

mi = �0 + �1 xi + �2ci + ✏2i. (C.2)

with
✏2i ⇠ N(0,�2

✏2
) (C.3)

Since our dependent variable is binary, probit(yi) is the probability of obtaining a
positive response (voting Democrat), defined as

P(Yi = 1|m, x , c) =
Z probit(yi)

�1
f (z; 0, 1)@ z = �(probit(yi)) (C.4)

where f (z; 0, 1) is the standard normal density, and � is the CDF of the standard
normal distribution.

Take the general expression used in the formulas for direct and indirect effects (eq.
(3) and (2)), E(Y (x , M(x 0))|C = c). As these quantities are not expressed conditional

1Imai, Keele, and Tingley (2010); Imai, Keele, and Yamamoto (2010); Imai et al. (2011) call these
average causal mediated effects for the treated and average direct effects for the control, while
Pearl (2001) calls them total natural indirect effects and pure natural direct effects. See Imai,
Keele, and Tingley 2010 and Muthen and Asparouhov 2014 for an extended discussion on their
computation.
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on M , we need to integrate over M :2

E(Y (x , M(x 0))|C = c) =
Z 1

�1
E(Y |C = c, X = x , M = m)⇥ f (M |C = c, X = x 0)@M

(C.5)

=
Z 1

�1

Z probit(yi)

�1
f (z; 0, 1)@ z ⇥ f (M ;�0 + �1 x 0 + �2c,�2

✏2
)@M

(C.6)

=
Z probit(x ,x 0)

�1
f (z; 0, 1)@ z. (C.7)

Here, probit(x , x 0) is given by:

probit(x , x 0) = [�0 + �1 x + �2c +�(�0 + �1 x 0 + �2c)]/
∆

var(x) (C.8)

where the variance var(x) is given by

var(x) = �2�2
✏2
+ 1. (C.9)

Indirect effect Denote two values of a treatment by x and x 0 (e.g., low vs. high
inequality). The indirect effect (eq. 2) is :

E[(Y (x 0, M(x 0))� Y (x 0, M(x))|C] = (C.10)
Z 1

�1
E[Y |C = c, X = x 0, M = m]⇥ f (M |C = c, X = x 0)@M (C.11)

�
Z 1

�1
E[Y |C = c, X = x 0, M = m]⇥ f (M |C = c, X = x)@M . (C.12)

Expressed in terms of equation C.4 the indirect effect is calculated as (see also Imai,
Keele, and Tingley 2010, appendix F):

�(probit(x 0, x 0))��(probit(x 0, x)) (C.13)

2The last equality is obtained by variable transformation and a change of order of integration (see
the appendix of Muthen (1979: 810) for a proof.)
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Direct effect The direct effect (eq. 3) is

E[Y (x 0, M(x))� Y (x , M(x))|C] = (C.14)
Z 1

�1
(E[Y |C = c, X = x 0, M = m]� E[Y |C = c, X = x , M = m])⇥ f (M |C = c, X = x)@M .

(C.15)

Expressed in terms of equation C.4 it is calculated as:

�(probit(x 0, x))��(probit(x , x)). (C.16)

Substantive interpretation of these quantities rests on a number of assumptions.
We discuss these and conduct sensitivity analyses (Imai, Keele, and Tingley 2010;
Imai, Keele, and Yamamoto 2010) in Section F below.
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D. Full table of estimates

Table D.1: Democratic vote choice as function of income
and inequality. Full table. Posterior means, standard
deviations and HPD intervals.

Mean SD 95% HPDR

Income distance �0.292 0.023 �0.336 �0.247
Inequality 0.147 0.028 0.092 0.202
Income⇥inequality 0.151 0.044 0.066 0.238
Age 0.001 0.021 �0.041 0.041
Education 0.085 0.022 0.043 0.129
Female 0.179 0.021 0.139 0.220
Black 1.460 0.038 1.383 1.534
Other non-white 0.507 0.052 0.407 0.608
Self-employed �0.051 0.031 �0.115 0.009
Part-time empl. 0.011 0.033 �0.053 0.075
Unemployed 0.160 0.045 0.076 0.253
Urban 0.259 0.023 0.213 0.303
Union member 0.275 0.034 0.207 0.341
State non-white 0.013 0.041 �0.069 0.094
State unemployment 0.142 0.026 0.088 0.191

State random effect
Var(⇠) 0.070 0.015 0.042 0.099

Note: Based on 10,000 MCMC samples
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Table D.2: Democratic vote choice as function of income, in-
equality, and redistribution preferences. Full table. Posterior
means, standard deviations and HPD intervals.

Mean SD 95% HPDR

(A) Index equation for Democratic vote choice

Redistribution preferences 0.178 0.007 0.164 0.193
Income distance �0.170 0.024 �0.218 �0.124
Inequality 0.174 0.029 0.118 0.232
Income⇥inequality 0.112 0.046 0.020 0.199
Age 0.000 0.022 �0.043 0.042
Education 0.132 0.023 0.085 0.175
Female 0.115 0.022 0.073 0.157
Black 1.382 0.040 1.304 1.460
Other non-white 0.433 0.055 0.325 0.539
Self-employed �0.007 0.033 �0.072 0.060
Part-time empl. 0.030 0.034 �0.037 0.096
Unemployed 0.153 0.047 0.063 0.247
Urban 0.259 0.024 0.211 0.306
Union member 0.239 0.035 0.170 0.308
State non-white 0.005 0.043 �0.079 0.088
State unemployment 0.148 0.027 0.093 0.200

(B) Equation for redistribution preferences

Income distance �0.737 0.040 �0.819 �0.661
Inequality �0.099 0.045 �0.189 �0.014
Income⇥inequality 0.262 0.075 0.116 0.408
Age �0.001 0.038 �0.073 0.075
Education �0.239 0.040 �0.318 �0.163
Female 0.384 0.037 0.309 0.453
Black 0.778 0.057 0.663 0.888
Other non-white 0.589 0.095 0.399 0.766
Self-employed �0.284 0.057 �0.395 �0.172
Part-time empl. �0.084 0.059 �0.202 0.030
Unemployed 0.045 0.082 �0.112 0.209
Urban 0.072 0.041 �0.012 0.150
Union member 0.277 0.052 0.173 0.377
State non-white �0.029 0.052 �0.131 0.072
State unemployment 0.018 0.043 �0.066 0.103

Random state effects
Var(⇠) 0.071 0.015 0.041 0.100
Var(⇣) 0.033 0.013 0.011 0.058

Note: Based on 10,000 MCMC samples.
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Table D.3: Indirect (via preferences) and direct effects of inequality
and income on vote choice. Full table. Posterior means and standard
deviations of effect estimates, percentages of total effect.

Indirect (TIE) Direct (DE)
Est SD % Est SD %

Income distance �4.177 0.262 46 �4.938 �6.467 54
Inequality �0.417 0.190 9 4.403 3.049 91
Income*inequality 1.137 0.331 31 2.895 0.707 69
Age �0.003 0.183 1 �0.017 0.591 2
Education �1.059 0.181 24 3.406 0.576 76
Female 1.643 0.169 36 2.988 0.562 64
Black 0.479 0.063 2 19.169 0.989 98
Other non-white 1.767 0.315 15 9.747 1.077 85
Self-employed �1.411 0.289 69 �0.198 0.915 7
Part-time employed �0.400 0.283 32 0.807 0.909 45
Unemployed 0.190 0.351 5 3.896 1.138 92
Urban 0.276 0.158 4 6.343 0.575 96
Union member 1.062 0.203 15 5.880 0.820 85
State non-white share �0.141 0.252 15 0.110 1.161 6
State unempl. rate 0.077 0.184 2 3.788 0.661 96
Note: Based on 10,000 MCMC samples. Calculated following equations (2) and (3); cf. appendix C.
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E. Segregation

We measure segregation using the widely used index of dissimilarity (White 1986;
Massey, Rothwell, and Domina 2009).3 We focus on segregation between African
Americans and Whites. While this simplifies our measure, ignoring growing Asian and
Hispanic populations means that our measure overestimates the degree of segregation.
Thus we checked that using a broader dissimilarity measure including Whites, African
Americans, Asians, and Hispanics did not produce substantively different results.

The index of dissimilarity expresses the extent to which African Americans and
Whites are spread evenly among census tracts in a geographic unit, where “evenly”
is defined relative to the racial composition of the geographic unit. It expresses
the percent of one group who would have to move in order to achieve an evenly
distributed residential pattern (that is where every census tract is representative of
the racial composition of the geographic unit). Thus its possible values range from 0
to 1. Let bi be the population of African Americans in census tract i, while wi is the
population of whites. Let B be the total African American population and W the total
population of whites. Then the index of dissimilarity is given by

D = 1/2
X

i

(bi/B � wi/W ) (E.1)

We produce two sets of segregation indices. The state is our primary contextual
unit (which we can match directly to GSS data). Therefore, our first measure simply
calculates segregation indices at the state level. However, which “spatial lens” one
uses influences the resulting picture of segregation. For example, Massey and Hajnal
(1995) show that over time the locus of racial segregation shifted from the macro level
(states and counties) down to the micro level (municipalities and neighborhoods).
Thus, we also use dissimilarity calculated at the city level, which we then aggregate
into a state measure. We detail both measures below.

3The dissimilarity index belongs to the group of evenness measures, which describe how far the
distribution of (racial) groups deviates from an equal equidistributed setting. Massey, Rothwell,
and Domina (2009) list five dimensions of segregation (see also Massey and Denton 1988), noting
that the group of evenness and isolation indices are the ones that are the most relevant at higher
geographic levels (Massey, Rothwell, and Domina 2009: 76). Thus we focus on the index of
dissimilarity. We have repeated our robustness check with a measure of exposure, which belongs to
the group of isolation indices, and find similar results.
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State- and city-level segregation All calculations are based on the ca. 65,000 census
tracts. Our first, state-level, measure of segregation is produced by calculating equa-
tion (E.1) for each state.4 Using census tracts as areal unit of measurement means
employing data from the decennial census conducted in 1980, 1990, 2000 and 2010.
Thus we have state-level segregation measures at four evenly spaced time points. We
fill in intermediate years using linear interpolation.5

Our second, city-level, measure of segregation is calculated in two steps. We use
dissimilarity indices calculated for 4,411 American cities with populations over 10,000
provided by the American Communities Project.6 We then aggregate these 4,411
indices to the state level. The number of cities included in this calculation varies
starkly between states. The average number of cities per state is 71, ranging from
less than 10 in Vermont, Alaska, and North Dakota to over 250 in Texas, Florida, and
California. As before, we linearly interpolate inter-census years, in order to have a
continuous time series of segregation.

Figure E.1 shows the resulting two sets of state-level estimates of segregation from
1976 to 2010. Panel (A) shows state-level dissimilarity, while panel (B) shows city-
level dissimilarity aggregated to the state level. We group states by census regions
and add region-specific linear trend lines. Figure E.1 shows a secular decline in the
majority of states, with the exception of Maine, New Hampshire, and Vermont, which
show a more erratic pattern. Note that measures based on aggregated city-level data
show lower levels of segregation (see the different scaling of the y-axis) but display
similar or even stronger trends.

F. Sensitivity analysis

In addition to the usual assumptions of basic regression models, decomposing
direct and indirect effects requires additional assumptions. These are clearly laid out
in Imai et al. (2010; see also Sobel 2008). Intuitively, the following assumptions

4In 2010 the average number of census tracts per state was 1,423. We note the valid criticism that
census tracts are essentially arbitrary administrative units. However, opting for more detailed
spatial resolution (while at the same time maintaining comparability over time) is beyond the scope
of this paper.

5Note that “filling in” intermediate years will underestimate the standard errors of the segregation
effect, making it a stricter test of our argument.

6See http://www.s4.brown.edu/us2010.
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Figure E.1: Dissimilarity index in US states by census region, 1976-2010. Panel (A)
shows state-level segregation, panel (B) shows city-level segregation aggregated to
the state level. Bold lines show linear fit.

are needed: (i) no omitted confounding of the treatment-outcome relationship,
(ii) no omitted confounding of the mediator-outcome relationship, (iii) no omitted
treatment-mediator confounding, and (iv) no mediator-outcome confounder affected
by the treatment. These assumptions are often violated, even in randomized studies
(Green, Ha, and Bullock 2010). With observational data these are highly likely to
be violated. The most problematic issue is omitted variables that affect both the
intermediate variable and the outcome. Assume that an omitted variable U influences
both preferences and vote choice. While we include a number of controls to reduce
the likelihood of substantial omitted confounders, their existence can of course not be
ruled out with the data available to us. By not including U in our model a correlation,
⇢, between residuals in the preference and vote equation is generated. The direction
and size of that correlation cannot be estimated (as including it renders the model
unidentified). Thus Imai, Keele, and Tingley (2010); Imai, Keele, and Yamamoto
(2010) and VanderWeele (2010) propose sensitivity analyses to study the impact
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omitted mediator-outcome confounders have on the resulting estimates. Following
their approach, we conduct two sets of sensitivity analyses. In the first one we calculate
mediated effect estimates at different levels of ⇢. Results are shown in Figure F.1.
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Figure F.1: Sensitivity analysis. Indirect effects at different levels of ⇢

In our second sensitivity analysis, we average over a large number of possible me-
diator outcome correlation levels to calculate resulting estimates and bounds. More
explicitly, we evaluate our indirect effect estimates over a 100 point grid spanning
⇢ = (�r, . . . , r), where the limit r is chosen to represent sensible levels of possible
correlations. We use 5,000 Monte Carlo samples (obtained from the posterior distri-
bution of each parameter) to account for estimation uncertainty. We create a point
estimate taking into account all possible levels of ⇢ by simply calculating the mean of
all simulations. Furthermore, we create “bounds” by calculating the 10th and 90th
empirical quantile of the distribution of estimates. Table F.1 shows the result of this
sensitivity analysis.

We find that (as expected) high levels of simulated correlation between preferences
and vote choice can have detrimental effects, to the extent that signs flip at high
correlation values. More precisely, our conclusions about the sign of effects hold up
to ⇢ values of about 0.45. This is under the assumption that the mediator outcome
correlation caused by the unobserved confounder(s) is positive. If it is negative we
obtain results confirming the sign of our results and find effects of greater size. This
suggests our second sensitivity analysis, which produces effect bounds by averaging
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over a range of ⇢ values. The overall picture (cf. table F.1) suggest that when
unobservables produce correlations in the range of �0.5 to 0.5 our core results are
clearly confirmed. If we allow for the full range of possible correlations we find much
smaller effect sizes (which then simply results from the fact that our model would
miss much that matters for voting). However, we still do find the systematic pattern
that income effects are smaller in more unequal states.

Table F.1: Sensitivity analysis. Average indirect effect estimates and bounds. Simula-
tions over a range of possible preference vote choice correlations.

⇢ = (�0.5, . . . , 0.5) ⇢ = (�0.9, . . . , 0.9)

Income �2.565 �1.390
[�2.890 : �2.247 ] [�1.624 : �1.160 ]

Inequality �0.237 �0.058
[�0.441 : �0.038 ] [�0.119 : �0.006 ]

Income⇥Inequality 0.674 0.175
[0.310 : 1.046 ] [0.054 : 0.311]

Note: Calculated from 5000 draws from posterior parameter distribution at ⇢-range evalu-
ated over 100 point grid.

14



REFERENCES

Green, D. P., S. E. Ha, and J. G. Bullock. 2010. “Enough Already about “Black Box” Experiments:

Studying Mediation is More Difficult tham Most Scholars Suppose.” Annals of the American

Academy of Political and Social Sciences 628: 200–208.

Imai, K., L. Keele, and D. Tingley. 2010. “A general approach to causal mediation analysis.”

Psychological Methods 15 (4): 309–334.

Imai, K., L. Keele, D. Tingley, and T. Yamamoto. 2011. “Unpacking the Black Box of Causal-

ity: Learning about Causal Mechanisms from Experimental and Observational Studies.”

American Political Science Review 105 (4): 765–789.

Imai, K., L. Keele, and T. Yamamoto. 2010. “Identification, Inference and Sensitivity Analysis

for Causal Mediation Effects.” Statistical Science 25 (1): 51–71.

Massey, D. S., J. Rothwell, and T. Domina. 2009. “The changing bases of segregation in the

United States.” The Annals of the American Academy of Political and Social Science 626 (1):

74–90.

Massey, D. S., and N. A. Denton. 1988. “The dimensions of residential segregation.” Social

Forces 67 (2): 281–315.

Massey, D. S., and Z. L. Hajnal. 1995. “The changing geographic structure of Black-White

segregation in the United States.” Social Science Quarterly 76: 527–542.

Muthen, B. O. 1979. “A structural probit model with latent variables.” Journal of the American

Statistical Association 74 (368): 807–811.

Muthen, B. O., and T. Asparouhov. 2014. “Causal Effects in Mediation Modeling: An Introduc-

tion with Applications to Latent Variables.” Manuscript.

Pearl, J. 2001. “Direct and indirect effects.” Proceedings of the Seventeenth Conference on

Uncertainty in Artificial Intelligence.

Robins, J. M. 2003. “Semantics of causal DAG models and the identification of direct and

indirect effects.” In Highly structured stochastic systems, ed. P. Green, N. Hjort, and S.

Richardson. New York: Oxford University Press.

Sobel, M. E. 2008. “Identification of causal parameters in randomized studies with mediating

variables.” Journal of Educational and Behavioral Statistics 33 (2): 230–251.

VanderWeele, T. J. 2010. “Bias formulas for sensitivity analysis for direct and indirect effects.”

Epidemiology 21 (4): 540.

White, M. J. 1986. “Segregation and diversity measures in population distribution.” Population

Index 52: 198–221.

15


