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1. INTRODUCTION 

This paper investigates how far the techniques and theorems of the 
study of competitive equilibrium may be extended to a model with indi- 
visible commodities. Specifically, I prove the existence of what comes near 
to being an equilibrium in an economy with indivisible commodities, 
providing that at least one commodity is divisible (Theorem 4.11). The 
allocation described by the theorem is only “nearly” an equilibrium 
because it has two weaknesses. Firstly, it is only approximately feasible; 
and secondly, it is not quite certain that each individual prefers his 
allocated consumption to every other that he can afford. 

The first defect seems to be an inevitable accompaniment of nonconvex- 
ity. Nonconvex sets are handled in equilibrium theory by a technique 
which depends essentially on “averaging.” Because economics deals in 
price planes, and only convex sets have supporting hyperplanes, a non- 
convexity appears as an inconvenient gap which has to be bridged. If one 
selects some points from round the edge of the gap, and then takes their 
average, the resulting point will be somewhere in the middle; it forms, in 
fact, an element of the bridge. Exactly that process is performed in models 
which depend on the replication principle. A similar method has become 
available for a more general case through a theorem by Shapley and 
Folkman (reported by Starr [lo, Appendix 21). Roughly, the Shapley- 
Folkman theorem says that the nonconvexities in an aggregate of non- 
convex sets do not grow in size with the number of sets making up the 
aggregate. Thus, relative to the size of the aggregate economy, the non- 
convexities become less important in a larger economy. This is the “aver- 
aging”; it depends on large numbers. The significant fact is that the 

* This article presents material from my doctoral dissertation. I have received help 
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theorem of near equilibrium determines an allocation which fails to be 
feasible only by an amount that is independent of the number of individuals 
in the economy. 

There is no need to go in detail into these general problems of non- 
convexity. Starr [lo] has provided a study of them, and my method follows 
his closely. Further, Dierker [3, Section 21 gives a rigorous description of 
the way the necessary approximation becomes less important in a larger 
economy. These matters, therefore, will be passed over without much 
comment. It should be noted, though, in the comparison with Starr’s 
work, that the breach in equilibrium is always in feasibility; it is what 
Arrow and Hahn [I, p. 1771 call a “social-approximate” equilibrium. An 
“individual-approximate” equilibrium, where feasibility is maintained but 
preferences are not quite maximal, is in many ways more interesting; I 
have not, however, been able to construct one in the indivisible case. 

Indivisibility entails nonconvexity, but it has also some special problems 
of its own; on these I shall place the emphasis of this paper. One of them 
causes the second flaw in the theorem of near equilibrium. There may be 
anomalous points within an individual’s budget set which he strictly 
prefers to the consumption the theorem requires him to adopt. The 
existence of such points is unlikely but definitely possible. Their importance 
is discussed in Section 5, but we shall have to go more deeply into the 
model to see how they may appear. 

Notation 

Following are the meanings of some of the symbols to be used (I do 
not include those universally understood, nor those defined later). cl Z 
is the closure of Z. fr 2 is the frontier of Z. int Z is the interior of Z. 
conv Z is the convex hull of Z. “$” means “is not a member of.” “&” 
means “and.” N(z, C) is the open neighborhood of z with radius E. + indi- 
cates set-theoretic subtraction: Y + Z is {y E Y j y $ Z}. Subscripts on 
vectors always refer to components: z, is the r-th component of z. Lower 
case Greek letters stand for scalars. For vectors: “y > z” means 
“Vr E {l,... n}: yT > zl”; “y 3 z” means “y i 2 & [Vr c {l,... n}: yr 2 z,]“; 
“y 2 z” means “Vr E {l,... n}: yT 2 z, .” 

As a guide for readers, I repeat here the meanings of some of the 
particular terms which are defined later. Ai(see Definition 4.4. 
Bi(p) = (x 1 p . x s p . w;}. P(p)-see Definition 4.4. e = (1 , 0, O... 0). 
edge Z = {z E Z 1 VA > 0: z - he 4 Z}. F = {x E E” j pr E {l,... nd}: x, is 
real] & pr E{rzd + l,... n}: x, is integral]}. Gi-“bounding cube” defined 
after Lemma 4.3. gi-lower bound on Xi. I= (l,... m}. m-number of 
consumers. n-number of commodities. n,-number of divisible commo- 
dities. Pi(z) = (x E Xi j x &i 2). @(x) = (x E Xi 12 >i x). rest Z = 
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(Z + edge Z).S = {p 1 c:=rp7 = 1 & p’r E {l,... n}:p, 2 01). d-endow- 
ment of i. wt = xiel wi. Xi--consumption set. KS--see Assumption 2.8. 

2. THE! MODEL AND ITS AWMPTIONS 

The action takes place in a commodity space En, representing the 
n commodities of the economy. Some of these commodities can exist 
only in integral quantities, so there is a subset F of En which contains only 
those points which can actually exist; these will be called “proper points.” 
F={x~E”~~r~(1,...~~}:x~isreal]&~r~{~~+1,...~):x,isintegral]}. 
Itd is the number of divisible commodities. Production is not included in 
the model because I believe that the extra complication involved in 
distributing profits would throw no light on the topic of indivisibilities 
(for a discussion of efficiency in production in a model with indivisible 
commodities, see Frank [5]). There are m consumers, indexed for con- 
venience by i E { l,... m}. Write the index set { 1 ,... m} as I. For each i E Z 
there is a consumption set X”, and Xi is always a subset of F. On each 
consumption set there is a relation $i, which is assumed to be a preorder 
(that is, it is transitive and reflexive). Define the “not-worse-than 
set” P”(Z) = {x E Xi / x >i 3} and the “not-better-than set” Qi(Z) = 
{x E Xi 1 X Zi x}. As a matter of notation “x >(X” means “x >i X 
& [not X +i xl” and “x mi 3’ means “x >:i X & % >i x”. The most basic 
properties assumed on the pairs (Xi, >“) are given in the following jumbo 
assumption. 

2.1. ASSUMPTION. “Basic properties.” Vi E I: 

(a) [PCF& 
(b) (“closedness”) Xi is closed & 
(c) (“boundedness below”) [3g* Vx E Xi: x 2 g”] & 
(d) (“unlimited consumption”) px E X6 VZ E F: [K 1 x Z- X E Xi]] & 
(e) >-” is a preorder & 
(f) (“completeness”) [Vx E Xi VR E Xi: [x >i X or X >i x]] & 
(g) (“monotonicity”) vx E Xi VB e X”: [X 2 x =z- E >i x]] & 
(h) (“continuity”) VZ E Xi: [P”(Z) is cZosed & p(z) is closed]]]. 

All of these are very traditional assumptions, whose meaning (apart from 
(a)) is not significantly altered in the indivisible context. There are, 
further, initial endowments wi. Write wt = Cisl wf. 

The most important special assumption of the model is that there is at 
least one divisible commodity. 
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2.2. ASSUMPTION. “One divisible commodity.” nd 2 1. 

This is absolutely crucial to the entire method. Moreover, it is my claim 
that the way the proof fails in the absence of the assumption reflects the 
way a real economy would also fail (or work very badly) without a divisible 
commodity. One of the essential characteristics of money is that it is 
divisible within anyone’s perception, and thus permits easy trade. An 
economy with nothing smaller than a ten-dollar bill would not turn over 
smoothly. I shall take an opportunity later of discussing in greater depth 
this fundamental assumption. It will become obvious very quickly how 
important technically is its function, especially in smoothing the demand 
correspondence. Only the divisible commodity makes any sort of con- 
tinuity remotely possible (but see Henry [7]). 

Before proceeding with the description of the structure, we need to set 
up some more notation and to go through a little mathematics. The 
“convex hull” of a set 2 in En is defined as conv 2 = 0 (CC En I C is 
convex & Z C C}. The unit vector “in the divisible direction” will be 
called e = (1, 0, O,... 0); the first commodity at least is guaranteed to be 
divisible. A set Z in En may be divided into two parts: “the edge of Z” 
defined as edge Z = {z E Z / Vh > 0: x - he 4 Z}, and “the rest of Z”, 
rest Z = (Z + edge Z). If x E rest Xi there is a X > 0 such that 
x - he E Xi. Hence if Xi satisfies the assumption of unlimited consump- 
tion, x - he E rest Xi for all sufficiently small h > 0. Monotonicity implies 
the corresponding property for x E rest Pi(%). It also follows very eas- 
ily (using Caratheodory’s theorem below) that if x E restconv Xi, 
x - he E restconv Xi for h sufficiently small, and similarly for 
x E restconv Pi(?). Heavy use is made of the idea of a “spanning set” 
which derives from the following well-known theorem on convex hulls. 

2.3. “Caratheodory’s Theorem.” Let Z be a set in En. Vz~convZ 
3U(z) C Z: [U(z) has at most (n + 1) members & z is a convex combination 
of the members of U(z)]. 

For a proof see, for instance, Eggleston [4, pp. 35-361. A “spanning set” 
of z will be the name given to any finite set U(z) such that z E conv U(z) 
(it is a trivial fact that z E conv U(z) for a finite set U(z) if and only if z 
is a convex combination of the members of U(z)). 

We can now press on to state the remaining special assumptions of the 
model. One of the important features of the divisible commodity is that 
it can only perform its smoothing function if it has value in some sense. 
In fact, I have to make two separate assumptions that it is desirable, 
which seems an unfortunate superfluity. The first of them is the least 
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interesting and is needed only near the end of the proof (Lemma 4.9); at 
some slight cost in convenience I have spurned its use elsewhere. 

2.4. ASSUMPTION. “Strict monotonicity in the divisible commodity.” 
ViEZVxEXiVh>O:x+Xe>ix. 

The other is this strong assumption: 

2.5. ASSUMPTION. “Overriding desirability of the divisible commod- 
ity.“ViEZVxEXiV?EXi3h:%+he>ix. 

It says that a sufficient gain in the divisible commodity will make up for 
any other loss. Its primary appearance is in the proof of Lemma 4.7, 
where the upper semicontinuity of the demand correspondence is demon- 
strated. It can be seen from that proof that without Assumption 2.5, 
continuity would fail when the price of the divisible commodity is zero. 
Fortunately, it is possible to illustrate in a rough sort of way the discon- 
tinuity in demand even at this early stage, without waiting for the exact 
definition of the correspondence. Figure 1 represents part of an individual’s 

frontier of 
bcwndlng cube 

xi < 

FIG. 1. Discontinuity whenp, = 0. 

consumption set; the divisible commodity is measured in the horizontal 
direction, so the parallel lines are the proper points which constitute the 
set. Let W” be the endowment and suppose, in defiance of Assumption 2.5, 
that w1 is preferred to every point on the line {x I 3: x = i + he}, which 
is the “next” component of the grid which forms Xi. Then, with prices 
like thep or theg’ drawn, we may take it that wi is the individual’s demand, 
the best point, he has available within his budget set. As the price of the 
divisible commodity gets smaller the budget plane rotates about wi from 
p top’ and further top”, where pi = 0. Suddenly it contains all of the line 
{x I 3: x = wi + he}, and therefore includes a lot of points strictly pre- 
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ferred to rvi. As usual in proofs of the existence of equilibrium, the demand 
correspondence is restricted by some bounding cube, so the demand will 
jump from w( to, say, X. Since wi is definitely excluded from the demand 
when p1 = 0, this is a breach of upper semicontinuity. 

That is only a sketch, of course, but in fact the correspondence defined 
in Definition 4.4 would behave in exactly that way without Assumption 2.5. 
The assumption guarantees that the indifference surfaces (strictly their 
convex hulls) are never parallel to the divisible axis, which in turn guaran- 
tees that a tangent price plane can never have p1 = 0. It is at first sight 
odd that it takes such a strong assumption to do such a little thing. 
Certainly the example has only shown why there has to be a point at least 
as good as wi somewhere on “nextdoor” lines of the grid that makes up 
Xi. Stretching the picture to three dimensions would make it clear that we 
cannot restrict attention to the region round rvi. Further, it is not difficult 
to see that, because of the indivisible structure, if the indifference surfaces 
are never to be horizontal, then they must “cross” the whole of Xi, just 
as Assumption 2.5 asks them to do. Exceptions might be made for divisible 
commodities besides the first, but I have not troubled with that refinement. 

The next assumption on the (Xi, >i) is one that is not only complicated 
to state, but also appears to have little contact with intuition. 

2.6. ASSUMPTION. Vi E Z VX E Xi Vx E conv P”(z) n restconv Xi 

3{d, uz,..., un’} c ZyX) 3(al, cc2 )...) a”‘) 3s’ E {l)...) n’}: 

[ 

n’ 
x = c a-w & g (Y8 = 1 & PJs.E{l,..., n’} : 0 5 CP 2 l] 

s=l s=l 

& us’ E rest X” & 09’ > 0 1 . 

Most of this assumption is obviously a specification that {ur, u2,... u”‘} 
spans x. The interpretation is as follows. Any x in conv Pi(z) is spanned 
by a finite subset of Pi(?); that is Caratheodory’s theorem. But it is quite 
possible that all the significant members of any spanning set are on the 
edge of Xi, even if x itself is in restconv X”; an example is illustrated in 
Fig. 2 when u1 +i u2 >i 2. (A “significant” member of a spanning set is 
one with a strictly positive coefficient as; otherwise it may be omitted from 
the set without making any difference.) Assumption 2.6 is simply the 
assumption that the possibility is never realized; there is always some span- 
ning set with a significant member in rest Xi. Its use in Lemma 4.6 is 
fairly transparent, but I am unable to give an explanation of it in more 
concrete terms. 

Debreu [2], in his proof of the existence of equilibrium, assumed, more 
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FE. 2. Counterexample to Assumption 2.6. 

or less, that the initial endowment of each consumer is in the interior of 
his consumption set. McKenzie [8] offered a much weaker assumption to 
do the same job which, however, complicates the proof a little. My proof 
is already sufficiently complicated, so I revert to what is undoubtedly a 
strong assumption after the style of Debreu’s. The excuse is that the added 
difficulty of a weaker one would probably shed no light on indivisibilities. 

2.7. ASSUMPTION. “Endowments inside consumption set.” Vi E I: 
wi E Xi n intconv Xi. 

Finally, it is necessary to bound the size of the nonconvexities in the 
P”(z). This is to be done exactly in the manner of Starr’s article [lo]. 
Each point in conv P”(X) has spanning sets contained in P”(X), and each 
of the spanning sets has a “radius,” defined for a set Z as: rad Z = 
inLEn wzEz 1 a - z I. We assume that there is a bound Ki such that each 
point has a spanning set with a radius not greater than &. 

2.8. ASSUMPTION. “Bounded nonconvexities.” Vi E Z 3~~ VX E Xi 
Vx E conv P”(z) 3ZP(x, X) C P”(X): [V(x, 2) spans x & rad Ui(x, ?) 5 ~~1. 

I shall write Kb = IIIaX{Ki 1 i E I). For an explanation of the meaning and 
application of Assumption 2.8, see Starr’s paper. It is also explained 
there that a weaker assumption would suffice, which takes account of the 
“value” of the nonconvexities rather than of their crude size. To use the 
weaker assumption presents no further difficulties in depth, but it does 
further complicate both the notation and the proofs; to save space, there- 
fore, I stick with Assumption 2.8. 

3. THE METHOD OF PROOF 

At the deepest level the proof contained in Section 4 follows the method 
of Debreu [2]. The procedure at the heart of Debreu’s proof may be 
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sketched as follows. For each individual a “demand correspondence” is 
set up, from the price simplex 

into the consumption set X”. It must have these four properties: (a) the 
range must be a compact subset of Xi, (b) the image must be convex, 
(c) the correspondence must be upper semicontinuous, and (d) the set 
corresponding to a particular price must be the set of the best points 
available to the individual within his budget set. An aggregate correspond- 
ence is next created by vector summation of the individual ones, and, 
through a particular manipulation involving Walras’ law and Kakutani’s 
fixed-point theorem [2, pp. 82-831, an allocation is found which has these 
two properties: firstly, it is “feasible” in the sense that each individual is 
allocated a consumption within his consumption set, and the total con- 
sumption is not greater than the total endowment; and secondly, there are 
“supporting” prices such that each individual’s allocated consumption is 
in the set corresponding to those prices. Properties (a)-(c) are the ones 
which permit the application of the fixed-point theorem. Property (d) is 
what makes the tied-point allocation into an equilibrium. For, each indi- 
vidual’s allocation is in the set corresponding to the supporting prices; 
if this set contains only the consumptions he might choose at those prices, 
then the allocation is a proper demand at the prices. This and feasibility 
are the characteristics of equilibrium. 

To see how the method is altered in being transferred to the indivisible 
case, we can take in turn the four properties of the demand correspondence. 
A highly artificial correspondence is to be constructed, on the principles 
to be described, that will satisfy all the requirements except (d), which will 
be only approximately satisfied. Property (a) gives the least difficulty. We 
have to choose a bounded set within which to work, instead of the whole 
unbounded consumption set. The usual method is to use the feasibility 
constraint, because it is easy to establish that the set of feasible allocations 
is bounded. Lemma 4.3 is doing the same thing in the present case. Notice 
that the bounding cube is chosen sufficiently large to include all feasible 
allocations in its interior. 

Convexity, property (b), is created entirely artificially, since the model 
contains no natural convexity at all. Instead of working with the given sets, 
we take their convex hulls. For instance, the image in the demand corre- 
spondence is a subset of conv Xi rather than of Xi, and we use an arti- 
ficial preference relation created out of the sets conv P”(E). In fact, as I 
shall explain, the technique amounts to constructing an entire convex 



232 BROOME 

economy and working in that. The sets conv Pi(%) are the “synthetic” not- 
worse-than sets. The result is that the allocation which emerges from the 
fixed-point theorem is an allocation in the convex construct, so that a 
further step is needed to get back to the original system. The step is man- 
aged by the Shapley-Folkman theorem, and produces an allocation which 
is only approximately feasible. Divisible nonconvex systems have been 
tackled in the same way, so for an exposition I refer to Starr [lo], and 
here quote only the useful theorem: 

3.1. “Shapley-Folkman Theorem.” For all j E (I,... k}, let Zj be a 
compact set in E’“. Write ~~ = max{rad Zj 1 j E { l,... k}}. 

The proof is in Starr [lo, Appendix 21. 
It is the assumption that there is one divisible commodity which makes 

possible property (c), upper semicontinuity. In the constructed convex 
system, the frontier of the sets conv P(Z) form the “synthetic” indifference 
surfaces. It is clear enough that in the totally indivisible case, the derived 
synthetic preorder could not exhibit much continuity. Even with the 
smoothing influence of the divisible commodity, an important vestige of 
the problem remains. It occurs at the edge of the consumption set and is 
illustrated in Fig. 3. X is in edge Xi; suppose it is indifferent to f and f. 

FIG. 3. “The problem of the edge.” 

The dotted lines represent the frontiers of some sets conv P(X); they are 
thus the synthetic indifference curves in the synthetic consumption set 
conv Xi. They meet at X, which is bound to cause trouble because indif- 
ference curves cannot possibly meet if the preference relation is continuous. 
A view of the problem can be found by considering demand at various 
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prices represented by a budget plane. Take +vi as the endowment. Think 
first of the “genuine” demand, as determined in the given consumption 
set Xi by the given preorder >i. With a p like the one drawn, wi is the best 
point within the budget set, and thus the proper demand. As the price 
changes, the budget plane rotates about wi, and will at a certain moment 
suddenly come to include 1. X is then within the budget set, and since it 
is strictly preferred to wi, demand will jump from wi to X. This is a breach 
of upper semicontinuity. Now, in most cases, the correspondence of 
Definition 4.4 is simply the convex hull of the “genuine” demand corre- 
spondence. It would thus be discontinuous in exactly the same way, but 
for a special trick. At the crucial moment, the constructed correspondence 
is made artificially to include the whole of the line joining X and wi in Fig. 3. 

It thereby preserves continuity, but in doing so puts the correspondence 
a little further from property (d). It would have been desirable to preserve 
the artificial demand correspondence as the convex hull of the genuine 
demand, for then the application of the Shapley-Folkman theorem would 
have brought us to an allocation contained in each person’s genuine 
demand set. Thus all the requirements of equilibrium would have been 
satisfied, apart from exact feasibility. But this extra manipulation which 
has to be performed for the sake of continuity separates us from that 
achievement. It is what causes the second weakness in the final near 
equilibrium theorem, and it appears to be ineradicable. The defect will be 
made as small as possible; Section 5 is a discussion of it. I will call it “the 
problem of the edge.” 

The above is a general outline of the way the correspondence is to be 
set up. It remains to give a more precise explanation of the rather obscure 
form in which it is actually written (Definition 4.4). The best understanding 
is to be gained by using Starr’s method for constructing a synthetic econ- 
omy [lo]. It happens that the process of synthesis is suppressed in the 
mathematics of the proof because it turns out to be quicker to cut straight 
through that stage without bothering with all its details. The correspond- 
ence is, nonetheless, almost exactly the one that would arise naturally 
from Starr’s technique, and it is most easily approached from that direc- 
tion. 

Starr defines the synthetic preorder as follows: 

3.2. DEFINITION. ‘Synthetic preorder S >i.” x S >i i o [V.? E Xi: 
[it? E conv P(X) > x E conv P(Z)]]. 

Define the budget set as P(p) = {x / p . x 5 p . wi}. Then the natural 
synthetic demand correspondence is 

p + SP(p) = (9 E P(p) n conv Xi 1 Vx E P(p) n conv Xi: 2 S >i x}. 
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In words, this is the set of points in the budget set (and the synthetic 
consumption set) which are synthetically preferred or indifferent to any 
other points in the budget set. We may substitute for S >” its definition 
and, with some manipulation, achieve this form for the correspondence: 
P - SWP) = nPEmi(P) (B”(p) n conv P(Z)), where 

S&(p) = {X E Xi ] B”(p) n conv P”(Z) is nonempty}. 

In words, the intersection of the budget set with the convex hulls 
of all those not-worse-than sets whose convex hulls happen to meet the 
budget set. A very similar formula, employing the intersection of not- 
worse-than sets, could be used to define the straightforward correspond- 
ence in an ordinary convex model. 

The correspondence P(p) of Definition 4.4 is very like the SDi(p) just 
described. There are two differences. The first is that the limitation by the 
bounding cube Gi has inevitably to be imposed. In doing so I have adopted 
a minor trick, that int Gi rather than G” appears in the dehnition of Ai( 
This shortens the proof, but has otherwise no great significance; the 
correspondence itself is actually unaltered. The second distinction is the 
response to the problem of the edge: each conv Pi(%) of the family defined 
by X E Ai is required to meet P(p) at a point of restconv X”, not just 
anywhere in conv Xi. It is to be noted that although the dehnition requires 
each set of the intersecting family to meet int Gi and restconv X”, the 
intersection of the whole family may include only points in fr Gi and 
edgeconv Xi. 

4. THE THEOREM OF NEAR EQUILIBRIUM 

First we note: 

4.1. LEMMA. Let Assumption 2.1 be satisfied. Vi E IVX E Xi: conv Pi(E) 
is closed. 

The proof is not trivial, but it has been provided by Starr [IO, Appen- 
dix 31. In bringing his proof into conformity with the structure of this 
model, it must be remembered that Starr uses the term “convex hull” for 
what is here called the closure of the convex hull. An exactly similar proof 
establishes: 

4.2. LEMMA. Let Assumption 2.1 be satisfied. Vi E I: conv Xi is closed. 

The next lemma establishes, in a very conventional way from the fea- 
sibility constraint, the existence of a suitable “bounding cube” for each 
consumer. 
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4.3. LEMMA. Let Assumption 2.1 be satisfied. Q’, ES,... g”“) 

V(xl, x2,..., x”) : 
FL 

& xi $ wt & [Vi E Z : xi E conv Xi] 
I 

=> [ViEI: xi 5 g”]]. 

Proof. We already have (Assumption 2. I(c)) a lower bound gi on each 
Xi. gi is also a lower bound on conv Xi because (x 1 x 2 g”} is a convex 
set containing Xi (then apply the definition of a convex hull). Take 
(xl, x2,... x”) with CfeI xi 5 I# and xi E conv Xi for all i E I. Then for any 
i’ E I, xi’ 5 wt - zigi, xi 5 wt - Cizil gi. So gi’ = wt - Cigifl gi is an 
upper bound on xi’ as required. 1 

Define the set G’ as {x 1 gi - (1, I,... 1) i x 5 gi + (1, l,... 1)); then 
it is assured that every feasible allocation has each xi in the interior of 
Gi. The correspondence to be used is 

4:4. DEFINITION. “Correspondence p --+ IF(p).” Let 
Ai = {X E Xi ( int Gi n Bi(p) n conv Pi(z) n restconv Xi is nonempty}. 
Di: S -+ Gi is p -+ D(p) = nPEAi(pJ (Gi n Bi(p) n conv Pi(?)). 

The object of the next series of lemmas (Lemmas 4.5, 4.6, and 4.7) is 
to establish the properties of p -+ D”(p) necessary to make applicable the 
standard procedure which produces a feasible fixed point (Lemma 4.8). 
Thereafter (Lemma 4.9) the relationship between IF(p) and a genuine 
demand correspondence is laid bare in order to make the fixed point into 
a near equilibrium. 

4.5. LEMMA. Let Assumptions 2.1, 2.2, and 2.5 be satisfied. 
ViEZ VX EXi VLQ E conv Xi: [a $ conv P”(x) * [3P EXi: [% >i x’ 82 
2 $ conv Pi@)]]]. 

Proof. The index i will be omitted from the notation in this proof. 
Take an I E X and an k E conv X with 3 $ conv P(x), By Lemma 4.1, 
conv P(x) is closed, so G may be strictly separated from conv P(z) by a 
hyperplane. That is, there is a p’ # 0 and a Z.L’ such that p’ .4 -=c CL‘ 
and for all x E conv P(E) p’ * x > CL’. Further, p‘ > 0, for suppose 
for some r E {I,... n}, p7 < 0. Then 

p’ * (z + X(0,0 )... 0, I,0 )... 0)) < /.L’ 

for h large enough (where the “1” is in the r-th place). Therefore 
X + h(0, 0 ,... 0, 1,0 ,... 0) cannot belong to conv P(z), which contradicts 
monotonicity. 
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Suppose for some r E {l,... n>, pr’ = 0. Define p” = Z&L’ + p’ . i) and 
consider a p: > 0. Write p” = (pl’, p2’ ,... pieI , p: , pi+1 ,... p,‘). It will be 
shown that for p”, sufficiently small p” and CL” define a hyperplane which 
retains the strict separation properties. g, the lower bound on X, is also 
a lower bound on conv P(Z) because {x j x 2 g} is a convex set containing 
P(Z). First: if g, 2 0 then p” . x 2 p’ . x > p” for all x E conv P(X); and 
if g, < 0 then, provided p’; < (p’ - p”)/(-g,), p” . x = p’ . x + p:xT 2 
p’ . x + p;gl. > t.~’ - (p’ - CL”) = p” for all x E conv P(Z). Second: if 
$50 then p”..Q~p’*i<t~~; and if 4, > 0 then, provided p: < 
(p” - p’ . $))/a, , p” . 3 = p;s$ + pt ’ 9 < /.L”. 

Repeat the process for any component of p” which is zero, until even- 
tually we achieve a p > 0 and a TV such that p * f < TV and p * x > ~1 for 
all x E conv P(Z). 

Define T as {x E X ) p . x 5 cl}. T is closed because X is closed. T is 
bounded below by g. T is also bounded above because ~~cf=,p,x, 2 ~1 for 
x E T, so for any r’ E {l,... n}, 

(because pr > 0 for all r E {I,... n}). So T is compact. T is also nonempty 
for otherwise {x 1 p * x > ,u} is a convex set containing X, which contra- 
dicts that 3 E conv X. 

Write TP(x) = T n P(x) and consider the family {TP(x) ( x E T}. The 
family is nonempty because T is nonempty. Each V(x) in the family is 
nonempty because x belongs to it. Each TP(x) is closed, being the inter- 
section of two closed sets. The family is totally ordered by inclusion 
(because it follows directly from the transitivity and completeness of > 
that for 9 and f in X either P(g) C P(Z) or P(Z) C P(Z)). Therefore any 
intersection of a finite subfamily of the family is equal to the smallest 
member of the subfamily and is hence nonempty. Therefore, by the 
finite intersection property of the compact set T, n{TP(x) I x E T} is non- 
empty. Take f E r)(TP(x) I x E T}, so 2 E P(x) for all x E T. Also X > 3i: 
because T and P(X) are disjoint. 

By Assumption 2.5 there is a X such that 3i: + he > 2. Take 
j = inf{h 1 f + he > X}, then #by the continuity of >, f + Ae NX. For 
any h < A, X > R + Xe. Also, since Q(Z) is closed and 4 + Xe $ Q(Z), 
if h is sufficiently close to x then 3i: + he $ Q(Z). Write such a point 
f + he (with h < x and h close to A) as i, so X > 2 > 2;. 

P(Z) and Tare disjoint because for all x E T K > R > x. Therefore the 
half-space (x 1 p . x 2 p} is a convex set which contains P(Z) and hence 
conv P(Z). But LG is outside this half-space, so 9 $ conv P(Z). B 
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4.6. LEMMA. Let Assumptions 2.1, 2.2, and 2.6 be satisfied. 

Vi E Z Vz E Xi Vx’ E Xi Vx E restconv Xi: 
[[Z >i x” & x E conv P(Z)] 3 x E restconv P”(i)]. 

ProoJ The index i is omitted from the notation in this proof. Take 
an x E restconv X with x E conv P(z), and an x” E X with X > Z. Take a 
spanning set U(x) = {ul, u2,... ZP’} C P(.Y) spanning x, with the property 
of Assumption 2.6. In the notation of that assumption consider us’. 
us’ E P(z) so us’ > 2 > Z Since Q(Z) is closed, for a sufficiently small 
A’ > 0, us’ - X’e $ Q(Z). Since, by Assumption 2.6, us’ E rest X, 
us’ - h’e E X if h’ is sufficiently small. Therefore us’ - h’e E P(z). Also, for 
all s # s’, us E P(E) so us E P(K). x - c/h’e = Cszs, 0rW + ols’(us’ - h’e); 
that is, x - &‘h’e is spanned by members of P(f) and is hence 
in conv P(E). as’ > 0 by Assumption 2.6; thus illS’h’ > 0, so 
x E restconv P(z). 1 

4.7. LEMMA. Let Assumptions 2.1, 2.2, 2.5, 2.6, and 2.7 be satisfied. 
Vi E I: 

(a) [[VP E S: D(p) is convex] & 

(b) [Vp E S: D(p) is nonempty] & 

(c) p -+ D(p) is upper semicontinuous]. 

Proof. The index i is omitted from the notation in this proof. 

(a) D(p) is the intersection of convex sets. 
(b) Take any p ES. w E int G by the definition of G and 

Assumption 2.7. w E B(p) by the definition of B(p). w E restconv X by 
Assumption 2.7 because intconv X C restconv X. So w E int G n B(p) n 
conv P(w) n restconv X. Hence w E A(p), which is therefore nonempty. 
The sets G n B(p) n conv P(z) for X E A(p) are totally ordered by inclu- 
sion (as in the proof of Lemma 4.5), so any finite intersection of them is 
equal to the smallest member, and by the definition of A(p) that smallest 
member is nonempty. Each G n B(p) n conv P(x) is closed because G and 
B(p) are closed by definition and conv P(z) is closed by Lemma 4.1. And 
each G n B(p) n conv P(z) is a subset of G. Therefore, by the finite 
intersection property of the compact set G, the intersection D(p) of the 
whole family is nonempty. 

(c) Take sequences {p*} -+ $ and {x”} -+ 4 with pQ E S and Xp E D(p*) 
for all q E (1,2,...}. Because S is closed j ES and because G is closed 
f E G. Suppose f $ B(j), so $ .4 > $ * w, then for sufficiently large q, 
p’J * x* > pi . w, which contradicts that x* E D(pq) C Zl(p~). Hence i E B(j). 

6421512-5 
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Suppose f $D($), then for some X EA($) $ # G n B(j) n conv P(Z). 
That is, 9 $ conv P(x), since 3 E G n B(b). By the definition of A($), 
int G n B($) n conv P(Z) n restconv X is nonempty; let 

2 E int G n B(j) n conv P(js) n restconv X. 

(i) Consider first $ with $I > 0. By Lemma 4.5 there is an Xp with 
X > E and 4 4 conv P(Z). Since conv P(E) is closed by Lemma 4.1, there 
is a neighborhood N(9, E) which is disjoint from conv P(Z). Further, by 
Lemma 4.6, f E restconv P(Z), so for h sufficiently small 4 - he E conv P(Z). 
Also, 32: - Xe E int G, and f - he E restconv X, for X sufficiently small. 
Write such a point 2 - he as 2’. $ * f’ < 4 . 2 d $ * w because $I > 0. 
So for q sufficiently large pQ * f’ 2 PQ . w; that is, E’ E B(pg). Thus 
2 E int G n B(pq) n conv P(E) n restconv X, so X E A(pQ). But x* E N(9, E) 
for q sufficiently large, and this means that x* 4 conv P(Z) which contra- 
dicts the definition of D(p’J). 

(ii) Consider $ with $I = 0. There exists a point u E X with] * u < $ * w. 
For suppose not, then {x / 3 * x 2 $ * w} is a convex set containing X and 
hence conv X which does not have w in its interior, and this contradicts 
Assumption 2.7. By Assumption 2.5, for some h, v + Xe > X. Write this 
point v + Xe as fi. Since pl=O, fi*fi=j?-v<I;-w. fiEP(Z) so 
Zs E conv P(Z). Now write t(a) = aE + (1 - a)X. Since both X and 6 belong 
to conv P(Z) which is convex, so does t(a) provided 0 5 cy 5 1. And for 
01 > 0 $ * t(or) < # + w. For 01 sufficiently small t(ol) E int G and 
t(a) E restconv X. Choose such an 01, then for q sufficiently large 
t(a) E int G n B(p*) n conv P(Z) n restconv X, so X E A(pO). But because 
conv P(Z) is closed (Lemma 4.1) there is a neighborhood N(f, E) which is 
disjoint from conv P(Z), and for q sufficiently large, x@ E N($ E) which 
contradicts the definition of D(p*). 1 

The following lemma has been proved from the results of Lemma 4.7 
by Debreu [2, pp. 82-831. 

4.8. LEMMA. “Fixed point.” Let Assumptions 2.1, 2.2, 2.5, 2.6, and 
2.7 be satisjied. 

3p* ES 3(x*‘, x*2,..., x*na) : 
[ 

g x*~ 5 wt & [Vi E I : x*i E D”(p*)] 1 . 

Now we come to examine the properties of p -+ Di(p) which allow it 
to serve in the place of a demand correspondence. 

4.9. LEMMA. Let Assumptions 2.1, 2.2, 2.4, and 2.5 be satisfied. 
Vi E I Vp* ES VX*~ E int Gi n Di(p*) 33 E Xi: 
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(a) [x*~ E conv P”(3) & 
(b) px E B’(p*) n Xi: [x 6 edge X” n fr @(p*) + li >i x]] & 
(c) fr B”(p*) supports conv P’(3) at x*~]. 

Proof. The index i is omitted from the notation in this proof. Take an 
x* E int G n D(p*). By the definition of D(p*), x* E conv P(w). Consider 
points on the line w + Ae and take A = sup{h ] x* E conv P(w + he)}. 
Write x = w + Xe; then E has the required properties. 

(a) Suppose x* 4 conv P(Z). By Lemma 4.5 there is an Z E X with 
Z > E and x* $ conv P(Z). Since Q(Z) is closed, X - )te > E for suffi- 
ciently small h > 0 (X E rest X because w E rest X and x _2 0). Hence 
x* 6 conv P(X - he). But monotonicity implies from the definition 
of X that x* E conv P(X - he) for all h > 0. So there is a contradic- 
tion. 

(b) It follows from (a) that pl* > 0 (in order for int G n D(p*) to 
be nonempty). For suppose pl* = 0. Take a finite spanning set 
U(x*) C P(E). Take a h > 0 sufficiently small so that x* + he E int G. 
By Assumption 2.4, for all u E U(x*) u + he > u > 2. And x* + he 
is spanned by these points u + he. Of the points u + he for u E 17(x*), 
choose the worst, say U’ + Xe, so for all u E U(x*) u + Xe > u’ + Xe. 
Then x* + he E conv P(u’ + he). Because pl* = 0, p* . (x* + he) = 
P* * x* 5 p* * w; also, obviously, x* + he E restconv X. Hence 
int G n B(p*) n conv P(u’ + he) n restconv X contains x* + he; there- 
fore U’ + Ae E A(p*). But u’ + he > X so there is a p > 0 such that 
U’ + he > Z + pe; hence if x* E conv P(u’ + he), then x* E conv P(57 + pe), 
which contradicts the definition of E Therefore x* # conv P(u’ + Ae). 
Thus we have achieved a contradiction of the definition of D(p*). 

Now suppose that there is a point k’ E B(p*) which has ff’ > X and is 
either not in edge X or not in fr B(p*) (contradicting property (b) of the 
theorem). If i’ is not in fr B(p*), p* . R’ < p* * w, and write 9 = k’. If 
R’ is not in edge X, for sufficiently small h > 0, i’ - he > I since Q(E) 
is closed. Write this if - )te as 2; then p* * 2 < p* * w because pl* > 0. 
Write 6 = (p* . w -p* * 2)/pl*, sop* * (5 + 6e) =p* * w. 

As in the proof just above that pl* > 0, take a finite spanning set 
U(x*) C P(Z) spanning x*. For any X > 0, x* + he is spanned by the 
points u + he for u E U(x*). Out of the set (9 u {U 1 3~ E U(x*): u = 
u + he} select the worst point 6(h). Then x* + Xe E conv P@(A)). As 
above, if x* E conv P(@)), then x* E conv P(E + pe) for some p > 0, 
which is a contradiction, so x* # conv P@(h)). Further, any point ~(cY, h), 
defined as (Y(x* + he) + (1 - a)9 belongs to conv P@(h)) for 0 5 01 s 1 
because conv P@(A)) is convex. 
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Take 01 = 6/(6 + A). Then 

p* . t(a, A) = p* - (a(~* + he) f (1 - LY) 2) 

= & (sp* . x* + sxp,* + hp* . a> 

PI* P * . x* 

P * . w - p* . .G + xpl* ( 
--(p*. 

pl* w -p* . a) 

+~(p*.w-p*‘B+p*~f) 
i 

gp= 
* . w(p* . w - p* . a) f pl*p* . IV 

P * * w. 
P *‘1”-p*‘2+pp1* 

Thus t(i~, h) E B(p*). 
Now take any E > 0 such that N(x*, c) C int G. Then if 

h < ES/(1 x* - (2 + WI - E), 

I x” - t(a, h)l = 1 x* - (X(X* + Xe) + (1 - a) i>l 

= (l/Q + X))] 6x* + hx-* - 8x* - SXe - hff j 

= (h/(6 + A))1 x* - (2 $ Se)1 

ES / x* 
<(Ix*- 

- (2 + Se)i(i x* - (a + Se)1 - 6) 
(a + 64 - E)(ES + S(l x* - (2 f Se)1 - E)) = ‘. 

Thus ~(cY, h) E int G. Further, taking any smaller h’ (with 0 5 A’ < X) 
gives t(a, h’) E conv X so t(cy, h) E restconv X. Hence 

int G n B(p*) n conv P(ij(h)) n restconv X 

is nonempty because t(a, h) belongs to it. Thus c(h) E A(p*), and yet 
x* $ conv P@(A)) which contradicts the definition of D(p*). 

(c) Suppose for some x E P(X), p* * x < p* * w. For h sufficiently 
small p* + (x + he) <p* . w. By th e strict monotonicity assumption, 
x + he > x > X. Clearly x + he E rest X, which contradicts (b) above. 
Thus {x jp* . x 2 p* . w} is a convex set containing P(Z) and hence 
conv P(Z). But <* E conv P(X) and p* . x* sp**w, so the plane 
{xIp**x=p* . w} supports conv P(Z) at x*. B 

The center of the proof of (b) is illustrated in Fig. 4, which is meant 
to be self-explanatory in the notation of the proof. The algebraic com- 
plexities appear geometrically as operations on similar triangles. The 
point of property (c) of Lemma 4.9 is to be seen from the following 
lemma, which provides an extension to Assumption 2.8. 
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FIG. 4. Proof of Lemma 4.9(b). 

4.10. LEMMA. Let Assumptions 2.1 and 2.8 be satisfied. Vi E I VP* # 0 
VXi E Xi VX*~ E conv P*(?j: [(x 1 p* - x = p* * x*i} supports conv Pi(?) => 
[XJ”(X*“, xi) C pi(zji): [eUi(X*i, Xi) spans x*~ & radeUi(x*i, ?) 5 K~ & 

wyx*i, 2) c {x / p* - x = p* * x*i}J]J. 

ProoJ The index i is omitted from the notation in this proof. Take 
an x* E conv P(X) and a p* # 0 such that {x / p* . x = p* * x*} supports 
conv P(Z) at x* (clearly x* E frconv P(E)). Take the U(x*, 2) of Assump- 
tion 2.8, so U(x*, 2) C P(Z), U(x*, Z) spans x*, and rad U(x*, E) I K. 

Write U(x*, 2) = {ul, u2,... ZP’} and suppose that for some s’ E {l,... n’}, 
P *-us* fP* . x*. Suppose, in fact, that p* . us’ > p* . x* (the proof is 
symmetrical for the other case). Then the half-space {x / p* * x I p* * x*> 
contains conv P(X), so for all s ~{l,... n’] p* * us 2 p* . x*. There are 
coefficients (al, CL~,... cP’) such that x* = &, LX%* and CyL, 01~ = 1 and 
for all s ~{l,... n’} 0 i 01~ I 1. Suppose CP’ > 0; then p* . x* = 
c::, a”p* . us > g:, olsp* . x* zp* + x* which is absurd. Thus 01~’ = 0. 
Hence &ss &P = x* and Csfs, 01~ = 1, so the set U’(x*, js) = 
U(x*, Z) + {us’} spans x*. (U’(x*, 2) is U(x*, 2) with us’ left out). Clearly 
rad U’(x*, Z) 5 rad U(x*, Z) I K. If there is any other sn ~{l,... n’> with 
P * . #8” >p* . x*, usI may be removed similarly from the spanning set: 
and the process may be repeated. Finally, we achieve a set eU(~*, 5) C 
{xIp**x=p**x*}. 1 

We can now prove the main theorem. 

4.11. THEOREM. “Near equilibrium.” Let Assumptions 2.1, 2.2, 2.4, 
2.5, 2.6, 2.7, and 2.8 be satisfied. Write ~~ = IWiX{Ki 1 iEZ}. 3p* 3 0 
3(x**‘, x**a,... x**y: 

(a) [PiEI: x**“EX*] & 

(b) piEI:p* -x**~ sp* *wi] & 
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(c) ~~EZV’XEF: [[p*-xSp*-~~&x#edgeX”r\{xIp*-x= 
P * - w’}] a X* *i +f x]] & 

(d) [3x*’ 2 w$: 1 x*$ - Ciol x**~ 1 S K* z/n]]. 

Proof. Take the p* of Lemma 4.8. p* 2 0 because p* E S. Take the 
x*~ of Lemma 4.8, and take x*~ to be &x*~, so x*~ < wt. Each 
x*( E conv Xi and CiEI x*~ I wt, so by the definition of G” and Lemma 4.3, 
x*~ E int Gi. Thus the prerequisites of Lemma 4.9 are satisfied; take the 
Xi if that lemma. By (c) of Lemma 4.9, fr Bi(p*) supports conv P”(3) 
at x*i, and frBi(p*)={xIp*-x=p*-wi}=(xIp*~x=p*-x*i} 
(because it contains x*0. Thus the prerequisites of Lemma 4.10 are 
satisfied, and there is, for each i E Z, an eUi(x*i, 2) C Pi(?) spanning x*~, 
with radius not greater than &, and contained in the budget plane 
ix IP* . x = p* - wi}. x** E conv eUi(x*i, Xi) so x*~ E &conv eUi(x**, 2). 
By the Shapley-Folkman theorem, therefore, there are x**j in the appro- 
priate eUi(x*i, 2) with 1 x*~ - &elx**i I d @ +z. That is property (d) 
of the theorem. x**~ E eUi(x*i, Xi) C Xi, so property (a) is satisfied. 
x**~ E eUi(x*i, Xi) C {x 1 p* * x = p* * wi}, so property (b) is satisfied. 
x**i E t~Ui(~*i, Xi) C Pi(Z), so x**~ >i Xi, so property (c) is satisfied by 
property (b) of Lemma 4.9. 1 

5. “THE PROBLEM OF THE EDGE" 

Theorem 4.11 suffers from having only approximate feasibility, but its 
unique ailment is in property (c). It is possible, according to the theorem, 
that some of the consumers may find they have available within their 
budget sets some points which are strictly preferred to the consumption 
that the theorem allocates to them. The theorem also says, however, that 
if such points exist they will have to be both in the budget plane and on 
the edge of the consumption set. 

I claim that such anomalous points could exist only by an unlikely 
coincidence. First of all, in the case with only one divisible commodity, 
it is even unlikely that the budget plane will meet the edge of the consump- 
tion set at all, as can be seen by considering different possible budget 
planes in Fig. 5. Figure 5, though, shows that there is a further improbable 
condition necessary to make the anomaly possible. It is true that with 
several divisible commodities, the budget plane may meet edge Xi more 
easily, but to cause trouble it must also be tangent at that meeting point 
to a significant face of the convex hull of a not-worse-than set. For, in the 
diagram, x, to be preferred to x***, cannot be below the budget plane. 
x**~ is also in the budget plane. There must, therefore, be a tangency of 
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Fro. 5. The anomalous case. 

the type illustrated to allow x and x * *< to be distinct. And that is an unlikely 
chance. 

6. THE LITERATURE 

The importance of Debreu’s work [2] to this study is so obvious that it 
scarcely needs mention; his approach has determined mine throughout. 
It is also very clear how closely my method has followed Starr’s [IO] in 
dealing with nonconvexities. 

Because the synthetic preference relation has not been made explicit in 
the proof of Theorem 4.1 I, part of the relationship with Starr’s work has 
been obscured. The chief difficulty has obviously been in the upper semi- 
continuity of the demand correspondence. In conventional proofs in 
convex models, that continuity follows naturally from the continuity of 
the preference preorder; using the technique of synthesis, it could be 
derived from the continuity of the synthetic preorder. In the indivisible 
case, that preorder (Definition 3.2) is indeed continuous, under the assump- 
tions of Section 2, except on the edge of the synthetic consumption set 
conv Xi; most of the elements of the proof may be found in the proofs of 
Lemmas 4.5, 4.6, and 4.7. Of course, continuity in the divisible but non- 
convex case requires fewer assumptions to establish. Nevertheless, it is an 
intriguing fact that there may possibly be discontinuities in the synthetic 
preorder at the frontier even of convex consumption sets. Starr devotes 
little space to the question of continuity, so I have included an appendix 
which discusses it for a divisible model. The difficulties in that case may 
help to explain why the indivisible case is even more complicated. 

Henry’s article [6] is aimed chiefly at demonstrating the intractability 
of the indivisible model outside two dimensions. He shows convincingly 
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that one should not expect to find an exact equilibrium in a general case, 
and recommends instead that one look for an approximation, as this 
paper has done. A more recent paper by Henry [7] has a closer relation- 
ship with mine. There, Henry demonstrates the existence of an allocation 
which is nearly a core. His proof appears to be almost the exact counter- 
part in core theory to mine in equilibrium theory. The methods are very 
similar; Henry also uses a convex construction very like Starr’s. The core 
is bigger than the equilibrium, so it should be easier to find, but it is 
remarkable how much more straightforward is Henry’s proof than the 
one in Section 4. It contains none of the irritating complexities and, more 
important, requires fewer assumptions. Especially, it does not need a 
divisible commodity. The method employs a theorem of Scarf’s [9] that 
depends on an upper semicontinuous utility function. I suspect that the 
explanation of the greater simplicity of Henry’s proof is that the existence 
of an upper semicontinuous synthetic utility function is equivalent to only 
one half of the continuity of the synthetic preorder: that the synthetic 
not-worse-than sets are closed. All the difficulty of the equilibrium proof 
is in the other half. Anyhow, it is interesting how great is the cost of 
shrinking a near core to a near equilibrium. 

Dierker [3] uses an entirely original technique in his proof of the exis- 
tence of an approximate equilibrium in an indivisible model. It is impos- 
sible to describe the method here, though it is indeed fascinating. It 
involves setting up a constructed economy in which people are a little 
insensitive to price changes. After finding a near equilibrium in that, the 
system is made to tend to the original economy by decreasing the degree 
of price insensitivity. The use of a limiting process, however, creates a 
weakness in Dierker’s theorem. It is this: the consumption allocated to 
each individual is not worse than any other consumption which is strictly 
below his budget plane. That is, there may be actually preferred points in 
the budget plane itself. It is interesting that, with such a radically different 
approach, Dierker should find a qualiftcation in the result that corresponds 
quite closely with the weak point in my own Theorem 4.11. But my weak- 
ness is not as weak as that. He points out that in his model, which has no 
divisible commodities, there will probably not be any, or many, proper 
points in the budget plane at all, so the anomaly is unlikely. That is true, 
but the theorem is thereby irretrievably confined to the totally indivisible 
case, for if there were one divisible commodity, then the budget plane 
would contain very many proper points and the theorem would lose its 
meaning. 

Dierker’s theorem and the theorem of this paper, therefore, seem to be 
permanently alienated; they deal with separate and irreconciliable situa- 
tions. This is a pity, because Dierker’s proof has an appeal which is quite 
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absent from the mere complexities of mine. I shall take the opportunity, 
however, of defending the assumption that at least one commodity is 
divisible. In introducing it, I claimed that a real economy would not work 
without a divisible commodity, and that that was one of the functions of 
money. Therefore, I suggested, it was only to be expected that such a 
commodity would play an important part in the mathematical study of 
equilibrium. Yet Dierker has managed without. Does this mean that 
divisible money might indeed be dispensable ? 

In Dierker’s approximate equilibrium, an individual’s allocation is 
almost always below his budget plane. We can create a picture as follows. 
The traditional auctioneer of market theory has a warehouse. Everyone 
brings to it what they want to sell, and takes away goods up to the same 
value (trade between individuals would turn into a game situation which 
cannot be allowed). Suppose a farmer wants to buy a cow with sheep 
when the price is one cow to six and a half sheep. If he wants the cow a 
lot, he will have to pay seven sheep. This may represent the best point 
available within his budget set, and correspond to the Dierker equilibrium. 
Nevertheless, the farmer suffers a definite and conspicuous loss of half a 
sheep, which he will not be happy about. Anyone whose consumption is 
left below his budget plane is in the same situation. 

The essence of the divisible commodity of the present paper, though, 
is that it is desirable. If the farmer received change in corn or in valuable 
money, there will be no loss to him. If it is in money, its value for him 
must be independent of its use as a medium of exchange; the value has to 
come from outside the system, for otherwise it could be divided out as 
irrelevant. It might, for example, carry value to a different time period. 
The farmer might receive a token for half a sheep valid also next market 
day. He might even press the auctioneer to give him such a token. That 
is a myth about the origin of money which points to its smoothing function 
over indivisibilities, and which also describes the difference between 
Dierker’s model and mine. 

APPENDIX 

The difficulty over continuity in the indivisible case will seem less sur- 
prising when one realizes that the divisible model is not straightforward. 
Even if consumption sets (though not the preference preorders) are conuex 
one may encounter discontinuities in the constructed preorder around the 
frontier of the consumption set. This appendix takes the synthetic pre- 
order as defined by Starr (Definition 3.2) and studies its continuity under 
the conditions of Assumption 2.1 and 



246 BROOME 

A. 1. ASSUMPTION. “All commodities divisible.” nd = n. 

The interest of the matter is that the continuity of the preorder may be 
used to prove the upper semicontinuity of the synthetic demand corre- 
spondence (see Starr [IO]). We deal only with the affairs of one individual, 
so the index i is omitted throughout. 

The synthetic preorder S > is said to be “continuous” if the sets 
SP(@={(x~convXIxS>4} and ,!JQ(i)={x~convXI9S>x} are 
both always closed. There is no difficulty in proving SP(g) to be always 
closed; it follows quickly from Lemma 4.1, and does not even require a 
single divisible commodity. The closedness of SQ(@ is harder. It will be 
shown that it follows from this particular property of the consumption set: 

A.2. DEFINITION. “Continuous spannibility.” X is continuously 
spunnible 0 [Vx E conv X VU(x) C X V6 > 0 3~ > 0: [U(x) spans x 3 
conv X n N(x, E) C conv &eU(s) (X n A+, a))]]. 

Briefly, to say that a set is continuously spannible means that, given a 
point and a subset of the given set which spans it, points near the given 
point are spanned by points near the members of the spanning set. The 
property lies at the heart of the question of continuity, as Theorem A.5 
shows. 

A.3. LEMMA. Let Assumptions 2.1 and A.1 be satisjied. VT E X 
Vi E conv X: [a # conv P(E) => [3P E X: [g > Z 6% 3 4 conv P(Z)]]]. 

Proof. The proof is identical with the proof of Lemma 4.5, except for 
the second paragraph from last, which is replaced by: 

Write the unit vector (1, l,... 1) as ed. For h large enough 3i; + bed 2 X, 
so by monotonicity 2 + bed > 1. Take x = inf{h 1 3i: + Xed > X}, then by 
the continuity of +, f + Aed -.Y. For any h < ;i, X > f + bed. Also, 
since Q(Z) is closed and f + Xed $ Q(Z), if h is sufficiently close to A, 
3i; + Xea $ Q(Z). Write such a point x” + bed as x’, so 2 > x’ > 2. i 

A.4. LEMMA. Let Assumption 2.1 be satisfied, and let X be continuously 
spannible. VX E X VEE X Vx ~conv P(Z): [Z > R * x belongs to the 
interior of conv P(E) relative to conv X]. 

Proof: Take a spanning set U(x) C P(Z) C X, spanning x. By the 
continuity of >, each u E U(x) has a S(u) such that X n N(u, S(u)) C P(F). 
Take S = min{b(u) 1 u E U(x)} and take the E of Definition A.2. Then 
conv X n N(x, 6) C conv UUEUtZ. (X n N(u, 6)) C conv P(Z). 1 

A.5 THEOREM. Let Assumptions 2.1 and A.1 be satisfied, and let X 
be continuously spannible. V% E conv X: SQ(@ is closed. 
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Prooj Suppose SQ@) is not closed for some 8 E conv X, and let 
x E cl SQ@) with x 4 SQ@?). x E conv X because conv X is closed (Lem- 
ma 42.). x S > 3 so there is an jE E X with x E conv P(5) and k 4 conv P(Z) 
(by Definition 3.2). Take the 2 of Lemma A.3, so by Lemma A.4, x 
belongs to the interior of conv P(Z) relative to conv X. That is, there is 
an E such that conv X n N(q E) C conv P(Z). Because x E cl SQ@), there 
is an f E SQ@) which is in conv X n N(x, E) and hence in conv P(Z). And 
this contradicts that 9 $ conv P(Z), since k S > f. m 

Having estabhshed the importance of the concept, I give a more intuitive 
condition which entails continuous spannibility. 

A.6. DEFINITION. “Local conicalness.” X is locally conical 0 
pjlcx 3y>o vxEXnN(x,y) V~>O:[~+h(x--)~N(I,y)~ 
x + h(x - 3) E xl]. 

The definition means that around any point in a locally conical set 
there is always a neighborhood such that the part of the set inside the 
neighborhood is a cone with vertex the given point. It can be seen that 
sets consisting of the intersection of a finite number of closed haIf-spaces 
are locally conical. In particular, and this is the significance of the concept, 
the nonnegative orthant is locally conical. Thus the following lemma, 
with Theorem AS, confirms the reliabihty of the method of synthesis, 
provided the consumption set is the nonnegative orthant (cf. Starr [lo]). 

A.7. LEMMA. X is convex and locally conical 3 X is continuously 
spannible. 

Proof. Take any Z E X and any spanning set U(Z) = @I,... un’} C X 
spanning 5. Take any S > 0. Take a y > 0 with the property of the defini- 
tion of local conicahress. Define E = min{y, $$/(r + max, I X - us I)>. 
It will be shown that E has the property demanded by continuous spannibil- 
ity. Take any E E X n N(F, E). It will be shown that 

f E conv us (X n N(us, 8)). 

Consider first the case when E = y, so 6 2 2(r + max, ) X - us I). Then 

I~-uu”~dJS-~I+J~-uu”IIy+~6-y 
=gs for all s E (I,... n’). 

Thus, 9 E X n N(zP, 6) C conv Us (X n N(us, 8)). 
Consider next the other case, when E = +y 6/(y + max, J 5~ - UJ 1). 

Write 5’ = (y/c)2 + (1 - (y/c))??, so 4’ E N(X, r) and hence by local 
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conicalness R’ E X. Because X is convex @’ + (1 - 8) us E X for all 
s E (l,... n’}, provided 0 I /? d 1. So if 0 < /3 < S/(1 4’ - u8 I), then 
,&’ + (1 - /3) us E X n N(us, 8). In fact, take 

for all s E {l,... n’}. Since U(Z) spans Z, we have .? = cfI 01%’ with 
J& 01~ = 1 and 0 5 01~ 5 1 for all soil,... n’}. Because for all 
s E (I,... n’) #w + (1 - /!I) us E x f-l N(z.P, S), 

Crl, a8@3i.’ + (1 - /3) us) E conv U8 (X n N(uS, a)). 

But this point is /?a’ + (1 - p)Z = (E/Y)? + (1 - (c/y))% = P. 1 
Finally, as promised, I give an example of a convex set in which the 

synthetic preorder is not certainly continuous. This will be a set which is 
not continuously spannible. Continuous spannibility is not a necessary 
condition for the desired continuity, but what is true is that in any set 
which is not continuously spannible it would be possible to construct a 
preference relation such that the synthetic preorder is not continuous. 

The set {(x, y, z) 1 x 2 z2(1 + y”)} is not continuously spannible. More- 
over, the segment of its frontier given by - 1 2 y S 0 and - 1 5 z 2 0 
could be part of the frontier of a consumption set without violating any 
of the requirements of Assumption 2.1, and that consumption set would 
not be continuously spannible. Very briefly, the reason is this: the surface 
x = z2(1 + y”) contains the line x = z = 0; points on this line may there- 
fore be spanned by various sets of other points on the line. But everywhere 
else the surface is curved (technically, every other point on the frontier 
is an extreme point), so that all other frontier points are significantly 
spanned only by themselves. But they may be very near a point on the 
line x = z = 0, which can be spanned by quite distant points. Hence 
nearby points are not always spanned by points near members of the 
spanning set, as continuous spannibility requires. 
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