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Backwards induction in the centipede game

John Broome & Wlodek Rabinowicz

The game

Imagine the following game, which is commonly called a ‘centipede game’.
There is a pile of pound coins on the table. X and Y take it in turns to take
either one or two coins from the pile, and they keep the coins they take.
However, as soon as either of them takes two coins, the game stops, and
the rest of the coins are cleared away. So long as they each take only one
coin when their turn comes, the game continues till the pile is exhausted.
Suppose the number of coins is even, and X has the first turn.

Assume both X and Y aim to maximise their own gain only, and they are
rational throughout the game. We mean ‘rational’ to imply only that they
believe the logical consequences of their beliefs, and that they do not
choose an option if there is some other available option that they believe
would give them more money. For the moment, assume they have a
common belief in rationality throughout the game. That is to say, through-
out the game, they each believe that each of them will be rational
throughout the game, that each of them will believe throughout the game
that each of them will be rational throughout the game, and so on.

Traditional argument

Given these assumptions, a standard backwards-induction argument
concludes that X will take two coins at her first move, thereby ending the
game. The argument is as follows.

Suppose the game gets to the point where there are only two coins on
the table. It is X’s turn, and she will take both coins. That way she gets both
of them, whereas she believes that if she only takes one, Y will take the
second. Taking both is the only rational thing for X to do, so she does it
because she is rational.

Next suppose the game gets to the point where there are only three coins
on the table. It is Y’s turn. Y believes that, if he takes only one of the coins,
at the next round X will take the remaining two. We have established that
taking two will be the only rational thing for X to do, and by assumption
Y believes X will only do what is rational. So Y will take two himself and
thereby end the game. That way, he gets two of the three coins on the table,
whereas otherwise he gets only one. Taking two is the only rational thing
for him to do, so he does it because he is rational.
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Now suppose the game gets to the point where there are only four coins
on the table. It is X’s turn. X believes that, if she takes only one of the coins,
at the next round Y will take two and thereby end the game. We have
established that taking two will be the only rational thing for Y to do, and
by assumption X believes Y will only do what is rational. So X will take
two herself and thereby end the game. That way, she gets two of the four
coins on the table, whereas otherwise she gets only one. Taking two is the
only rational thing for her to do, so she does it because she is rational.

And so on. We can conclude that X takes two coins at the first round.
This reasoning has been impugned (by, amongst others, Binmore (1987),

Reny (1987), Pettit and Sugden (1989); for a contrary view, see Sobel
1993). It depends on assuming the players maintain a common belief in
rationality throughout the game. But that is a dubious assumption.
Suppose X was to take only one coin in the first round; what would Y think
then? Since the backwards-induction argument says X should take two
coins, and it is supposed to be a sound argument, rationality apparently
requires her to take two. So when she takes only one, Y might be entitled
to doubt her rationality. Alternatively, Y might doubt that X believes Y is
rational, or that X believes Y believes X is rational, or Y might have some
higher-order doubt. X’s deviant first move might cause a breakdown in
common belief in rationality, therefore. Once that goes, the entire argu-
ment fails.

The argument also assumes that the players act rationally at each stage
of the game, even if this stage could not be reached by rational play. But it
is also dubious to assume that past irrationality never exert a corrupting
influence on present play.

Assumptions

However, the backwards-induction argument can be reconstructed for the
centipede game on a more secure basis.1 It may be implausible to assume
a common belief in rationality throughout the game, however the game
might go, but the argument requires less than this. The standard idealisa-
tions in game theory certainly allow us to assume a common belief in
rationality at the beginning of the game. It also allows us to assume this
common belief persists so long as no one makes an irrational move. That
is enough.

1 This article contains a simplified version of one of the arguments that are set out in
more detailed and precise form, using rather weaker assumptions, in Rabinowicz
1998. Versions of the reconstructed argument appear in Hern 1998 and in Binmore
1996. Aumann1998, which also contains a version of the argument, is mentioned at
the end of this article. An early sketch of the argument appears in Sugden 1991..
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More precisely, we assume:

(0) At each round in the game that has been reached without any
irrational move, the player at that round acts rationally.

(1) At each round in the game that has been reached without any
irrational move, the player at that round believes (0).

(2) At each round in the game that has been reached without any
irrational move, the player at that round believes (1).

And so on.

Rysiek Sliwinski has shown us an objection to assumptions (1), (2) and so
on. Suppose one player makes a move that is actually rational, but that the
other player believes is irrational. Then the game will arrive at the next
round without any irrational move’s having been made, but even so, the
second player may no longer believe in the rationality of the first. To coun-
ter this objection, we can derive (1), (2) and so on from assumptions that
seem definitely consistent with the traditional idealisations in game theory.
They are: 

(A) At the beginning of the game, both players have no false beliefs. 
(B) During the game, both players acquire only beliefs that are true.
(C) Both players retain all their beliefs so long as they are consistent

with their acquired beliefs.
(D) At the beginning of the game, there is a common belief in (0), (A),

(B) and (C).

From (A), (B) and (C), it follows that both players retain throughout the
game all the beliefs they have at the beginning, because true beliefs are
consistent with true beliefs. Since by (D) they believe (0) at the beginning
of the game, they believe it throughout the game. In particular, (1) follows.
(1) follows from (A), (B), (C) and (D), all of which both players believe at
the beginning of the game, by (D). (A common belief implies a belief in
itself.) Since both players believe the consequences of their beliefs, they
believe (1) at the beginning of the game. Since they retain all their beliefs,
they believe (1) throughout the game. In particular, (2) follows. And so on.

So we think (1), (2) and so on are acceptable assumptions. We also
assume that the player at any round has correct beliefs about what moves
have previously been made, and furthermore about what move he or she
makes at that round itself. This second clause implies that the rationality
of a move is determined by the beliefs the player has at the moment of
choosing, rather than beforehand.2

2 Rabinowicz’ second proof in his (1998) offers an alternative to this ‘at-choice’
perspective on rationality.
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Proof

Now the argument. Notice first that, if any particular round in the game is
reached, (0) implies it is reached without any irrational move. By (0), X
acts rationally at the first round, so if a second round is reached, it is
reached without any irrational move. Therefore, if a second round is
reached, Y acts rationally there, by (0), so if a third round is reached, it is
reached without any irrational move. And so on.

Notice second that, if any particular round in the game is reached, the
player at that round believes it has been reached without any irrational
move. If any round is reached, we have shown it is reached without any
irrational move. Therefore the player at that round has a ‘level (1) belief’,
as we shall call it: he or she believes (0). It follows that he or she believes
the consequence of (0) demonstrated in the previous paragraph, including
the consequence that this particular round has been reached without any
irrational move.

Now suppose the game gets to the point where there are only two coins
on the table. This can only have happened without any irrational move’s
having been made. So by (0), X acts rationally. Given that, for the same
reason as before, she takes both coins.

Next suppose the game gets to the point where there are three coins on
the table (the ‘three-coin round’). This can only have happened without
any irrational move’s having been made. So Y acts rationally at this round,
and also has a level (1) belief. On this basis we shall prove Y takes two
coins.

As a hypothesis for reductio, suppose Y takes only one coin at the three-
coin round. By assumption, Y believes he makes this move at this round.
Since he has a level (1) belief, he believes both that all the previous moves
have been rational, and that he acts rationally at this round. So he believes
the game will arrive at the next round (the ‘two-coin round’) without any
irrational move’s having be made. Y therefore believes X will act rationally
at the two-coin round; this is implied by Y’s level (1) belief. We have just
seen that, if X acts rationally at the two-coin round, it follows that she will
take both remaining coins. Y’s level (1) belief implies X will do this. So,
given the hypothesis that he takes only one coin at the three-coin round, Y
believes at that round that this one coin is all he will get. On the other
hand, he also believes that, if he were to take two coins instead, he would
get two. His taking one coin is therefore not rational, contrary to (0). So
the hypothesis must be false: if the game gets this far, Y takes two coins.

Next suppose the game gets to the four-coin round. This can only have
happened without any irrational move’s having been made. So X acts
rationally at this round, and also has both a level (1) and a level (2) belief:
she believes that, at any move that is reached without an irrational move,
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each player acts rationally and has a level (1) belief. On this basis we shall
prove X takes two coins.

As a hypothesis for reductio, suppose X takes only one coin at the four-
coin round. By assumption, X believes she makes this move at this round.
Since she has a level (1) belief, she believes both that all the previous moves
have been rational, and that she acts rationally at this round. So she
believes the game will arrive at the three-coin round without any irrational
move’s having been made. X therefore believes Y will act rationally at the
three-coin round and have a level (1) belief at this round; this is implied by
X’s level (1) and level (2) beliefs, respectively. We have just seen that, if Y
acts rationally at the three-coin round and has a level (1) belief at this
round, it follows that he will take two coins then. X’s level (1) and level (2)
beliefs imply Y will do this. So, given the hypothesis that she takes only one
coin at the four-coin round, X believes at that round that this one coin is
all she will get. On the other hand, she also believes that, if she were to take
two coins instead, she would get two. Her taking one coin is therefore not
rational, contrary to (0). So the hypothesis must be false: if the game gets
this far, X takes two coins.

And so on. We conclude that X will take two coins in the first round,
and finish the game.

Comments

Having reached this conclusion, it is tempting to ask: what would happen
if X took only one coin in the first round? This line of questioning has led
to some interesting discussion (for example in Binmore 1996 and in
Sugden 1991). However it cannot falsify our conclusion that the back-
wards induction solution follows from our assumptions, provided our
argument is valid. If you want to object, you must either object to the
assumptions or to the logic of the argument.

A warning: We have argued for backwards induction in the centipede
game, and the argument can be immediately extended to all games where
the move that is recommended by backwards induction at any round
terminates the game at that round (cf. Rabinowicz 1998). But we have not
been able to extend it further than that.

Robert Aumann has proved a similar conclusion for the centipede game.
His assumptions differ from ours in several respects; for one thing he
assumes common knowledge of rationality rather than common belief. But
he similarly avoids the dubious assumptions that apparently underlie the
standard version of the argument for backwards induction. Expressed
roughly and converted to our own terms, Aumann’s remarkable proof is
this. As a hypothesis for reductio, suppose there is a solution to the centi-
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pede game that does not terminate at the first round. Consider this
solution, or if there is more than one such solution, consider the one that
continues the longest. This solution will end with one of the players – let it
be Y, but it does not matter which – taking two coins. Now consider the
previous round, where X takes just one coin. From the perspective of this
round, the game will end at the next round. This fact follows from the
players’ common belief in rationality. Since X shares the common belief,
and believes the consequences of her beliefs, she believes the game will end
at the next round. But then it is irrational for her to take only one coin.
This contradicts that the game will continue to the next round. Therefore
the hypothesis is false. So the game will end at the first round.

This proof is in effect an elegant abridgement of ours. We believe ours is
more transparent because it spells out how X acquires the belief that the
game will end at the next round.3
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