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Abstract. This note describes a domain of distributions of wellbeing, in which different
distributions may have different populations. It proves a representation theorem for an

ordering defined on this domain.



We are often interested in an ordering of distributions of wellbeing (or something else, such
as income) across a population of people. Sometimes we want to allow different distributions
to have different populations. But if they do, the standard representation theorems, which
allow us to represent the ordering by a real-valued function, do not apply.

Charles Blackorby, Walter Bossert and David Donaldson [1] have recently published a
proof of a new representation theorem for an ordering like this. That theorem assumed
anonymity, but a subsequent paper by the same authors [2, theorem 4] proves a similar
theorem without assuming anonymity. In this present note, I prove a theorem that is
equivalent to their second, more general theorem. I use a framework that I think is neater than
theirs, and my proof is shorter.

Let there be a number of possible people, each of whom may or may not exist. The number
may be infinite. However,

Assumption 1: the number of possible people is countable.
Index the possible people by p = 1, 2, . . . If p exists, let gp be her wellbeing, which I assume
to be a real number. If p does not exist, let  gp be �, which is some arbitrary non-numerical
object. So  gp � R�{�}, where R is the set of real numbers. In effect, ‘�’ is a symbol whose
only role is to indicate that a particular possible person does not actually exist. The vector g =
(g1, g2, . . .) specifies which people exist and the wellbeings of those who do. I call it a
distribution. The population of a distribution is the set of people who exist in the distribution.
It is the set of people, not the number of people in this set.

Let � be the relation ‘at least as good as’ defined on distributions. Let F be the field of this
relation (that is to say, the union of the domain and the range of the relation).

Assumption 2: � is transitive and complete on F.
Assumption 3: F contains only distributions whose populations are finite.

Take any finite population �. Let n be the number of its members. Consider the set of
distributions in F that have the population �; call it F%. The members of F% are vectors that
have a real number in each of the n places that are assigned to a member of the population,
and �s elsewhere. Each member of F% has �s in the same places.

Take any vector g in F%. Delete all the �s from g. This will leave an n-dimensional vector;
call it s(g). s( ) is a one-one mapping, which maps F% on to a subspace of n-dimensional
Euclidean space. Each open set in the topology of this subspace has an image in F% under the
inverse mapping s–1( ). The set of these images constitutes a topology for F%. In effect, by
ignoring the �s, we give F% the topology of a subspace of n-dimensional Euclidean space.

Let � be the set of all finite populations. Each member of � is a finite subset of the set of
possible people, which is countable. The number of finite subsets of a countable set is
countable. Therefore � is countable.

F is �%�$F%. It is the union of a countable number of spaces. I shall call each F% a ‘part’ of
F. (Some of these parts may be empty.) Each part has the topology of a subspace of Euclidean
space. For each part, take some basis for its topology. F has a topology whose basis is the
union of these bases.

A space with this sort of structure may be unfamiliar. It is a union of unconnected parts,
each of which has the topology of a subspace of Euclidean space, but these parts are not
embedded in a bigger Euclidean space. For an analogy, think of a pair of parallel lines. Each



line has a two-dimensional Euclidean topology, a basis for which is the set of open intervals
in the line. There is a space that consists of the union of these two lines, with a topology
whose basis is the union of their two bases. This basis consists of all the open intervals in one
line or in the other. The topology of F is like that.

As it happens, this pair of parallel lines is embedded in a plane, which has a two-
dimensional Euclidean topology. The union of the lines can be regarded as a subspace of the
plane. Regarded that way, it would have the same topology as the one I defined. But the union
does not have to be regarded that way. I defined its topology independently of the fact that it
is embedded in a plane.

Unlike a pair of lines, the set F cannot necessarily be embedded in a finite-dimension
Euclidean space. Since the set of possible people may be infinite, there may be no upper
bound on the size of the population. So there may be no upper bound on the dimensionality of
the parts of F. Consequently, it may not be possible to fit all these parts into a finite-
dimension space. Still, F has a topology that is defined in the way I defined it.

Assumption 4 (continuity): for all g�F the sets {h�F| h � g} and {h�F| g � h} are
closed.

‘Closed’, of course, means closed relative to the topology of F. An equivalent condition is
this: for any g, whenever either of these sets {h�F| h � g} or {h�F| g � h} intersects with a
particular part F% of F, the intersection is closed in F%, relative to the topology of F%. My
assumption is equivalent to what Blackorby, Bossert and Donaldson [2] call ‘unconditional
continuity’.

Within each part of F, it is a familiar continuity assumption, ruling out such familiar
discontinuities as lexical orderings. When we take more than one part of F together,
continuity has another effect. To see what it is, take a simple example. Suppose there are just
two possible people, and think about an ordering that has these features:

If g1 > g2, then (g1, �) � (�, g2).
If g1 < g2, then (g1, �) � (�, g2).
If g1 = g2, then (g1, �) � (�, g2).

This ordering is inconsistent with the assumption of continuity. The set {h�F| h � (g1, �)} of
distributions that are at least as good as (g1, �) includes (�, g2) for all g2 greater than g1, but
it does not include (�, g1). So this set is not closed.

The ordering I described gives value to people’s wellbeing. It also gives some value to the
matter of which person exists: when quantities of wellbeing are equal, it prefers the first
person to exist rather than the second. But this second value is lexically dominated by the
value of wellbeing. Continuity rules out this type of lexical ordering, as well as more familiar
types.

Theorem. Given the four assumptions, � can be represented by a continuous, real-valued
function on F.

Proof. A space is perfectly separable if its topology has a countable basis. Any subspace of
Euclidean space is perfectly separable – a countable basis for its topology is the set of
intersections of the subspace with open spheres that have rational centres and rational radii.
Therefore, F% is perfectly separable, for each ���. The union of the countable bases of all
the F%s is countable, since � is countable. This union forms a countable basis for the



topology of F. So F is perfectly separable.
The following theorem was proved by Debreu [3, theorem II]. Let F be a perfectly

separable space and � a transitive, complete and continuous relation on F. Then there exists
on F a continuous, real-valued function that represents �. That establishes my theorem.
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