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Abstract

In 1957 D.R. Hughes published the following problem in group theory. Let G
be a group and p a prime. Define Hp(G) to be the subgroup of G generated by
all the elements of G which do not have order p . Is the following conjecture true:
either Hp(G) = 1, Hp(G) = G , or [G : Hp(G)] = p? This conjecture has become
known as the Hughes conjecture. After various classes of groups were shown to
satisfy the conjecture, G.E. Wall and E.I. Khukhro described counterexamples
for p = 5, 7 and 11. Finite groups which do not satisfy the conjecture, anti-
Hughes groups, have interesting properties. We give explicit constructions of a
number of anti-Hughes groups via power-commutator presentations, including
relatively small examples with orders 546 and 766 . It is expected that the
conjecture is false for all primes larger than 3. We show that it is false for
p = 13, 17 and 19.

1 Introduction

Hughes [10] published the following problem in group theory.

Let G be a group and p a prime. Define Hp(G) to be the subgroup
of G generated by all the elements of G which do not have order p .
Is the following conjecture true: either Hp(G) = 1, Hp(G) = G , or
[G : Hp(G)] = p?

For finite groups this conjecture has become known as the Hughes conjecture, and all
groups in this paper are finite unless otherwise stated.

Initial positive results about the conjecture include the following. In 1955, before
publication of the conjecture and perhaps as partial justification for it, Hughes [9,
Lemma 4] proved the conjecture for p = 2 for all (finite or infinite) groups. Next, in
1957 Straus and Szekeres [19] proved it for p = 3 for all (finite or infinite) groups.
Then, in 1959 Hughes and Thompson [11] proved that the Hughes conjecture is true
for any finite group that is not a p-group, and focus shifted to finite p-groups.

Thus, some later work culminated in restricted positive results about finite p-groups
with specific structural properties. The conjecture was proved for metabelian groups
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in 1967 by Hogan and Kappe [8] and for groups with nilpotency class less than
2p − 1 in 1970 by Macdonald [18] (who earlier [17] showed the same for 2-generator
groups with class less than 2p). But these results followed the discovery of the first
counterexamples. Later counterexamples prove that Macdonald’s class bounds are
tight.

In 1965, G.E. Wall [21] found a counterexample for p = 5. Wall’s counterexample relies
on the existence of a Lie relator of weight 9 which holds in the associated Lie rings of
Burnside groups of exponent 5, but is not a consequence of the 4-Engel identity. In
fact Wall found a Lie relator of weight 2p− 1 which holds in the associated Lie rings
of groups of exponent p , and conjectured that if p ≥ 5 then this Lie relator is not a
consequence of the (p−1)-Engel identity in characteristic p . (It has been known since
the 1950’s that the associated Lie rings of groups of exponent p have characteristic
p and satisfy the (p − 1)-Engel identity.) Wall confirmed his conjecture for p = 5
by hand calculation in related associative rings. John Cannon [3] used a computer
to confirm Wall’s conjecture for p = 5 and 7. Cannon’s work on this is described
in more detail [2, Chapter VI] in his doctoral thesis which was supervised by Wall,
and the result was extended to p = 11. Wall amplified his proof in [22]. It follows
from Wall’s and Cannon’s work that there are three generator counterexamples to the
Hughes conjecture for p = 5, 7 and 11.

Later, in 1981 and 1982, E.I. Khukhro [12], [13] found further counterexamples.
Khukhro’s 1981 counterexample is a 3-generator 5-group of order 5917 and class 9
with a Hughes subgroup of index 25, and his 1982 counterexample is a 2-generator 7-
group of order 71075 and class 14 with a Hughes subgroup of index 49. Khukhro’s three
generator 5-group example relies on the existence of Wall’s new Lie relator for p = 5.
His two generator 7-group example is slightly more subtle. An important instance
of Wall’s new relator has multiweight (p − 1, p − 1, 1) in three variables x, y, z . If
we write this relator as fp(x, y, z), then fp(x, y, [x, y]) has multiweight (p, p) in two
variables x and y . So the associated Lie ring of the Burnside group B(2, 7) satisfies
the relation f7(x, y, [x, y]) = 0. Khukhro showed that f7(x, y, [x, y]) = 0 is not a
consequence of the 6-Engel identity, and deduced the existence of his two generator
7-group counterexample to the Hughes conjecture. (When p = 5 the corresponding
relation f5(x, y, [x, y]) = 0 of weight 10 is a consequence of the 4-Engel identity. This
is why there is no two generator 5-group counterexample to the Hughes conjecture.)

Having proved the existence of some anti-Hughes groups, Khukhro proved more. In
[14] he showed that almost all p-groups satisfy the Hughes conjecture, in a well defined
sense. He went on to show that the existence of a d-generator anti-Hughes group for
a prime p implies the existence of a largest such group, so that all d-generator anti-
Hughes groups for that prime are quotients of it. Nice overviews of his and other
results on the Hughes’ problem appear in [15, 16].

As pointed out by Macdonald [17], two generator anti-Hughes groups provide coun-
terexamples to various conjectures about p-groups. Indeed this work was motivated
in part by a request from R.K. Dennis for small counterexamples. This makes it
worthwhile for us to be able to compute effectively with anti-Hughes groups. Such
computations can be done using the p-quotient algorithm as implemented in Magma
[1], and as a share package in GAP [4].
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Although Khukhro gave precise definitions of his groups, it seems that up till now
nobody has actually constructed power-commutator presentations for them. This is not
surprising, since computing PCPs for the groups is a non-trivial exercise. We construct
PCPs for Khukhro’s two counterexamples, and we also construct quotient groups of
order 546 and 766 (among many others), which are quite small counterexamples to
the Hughes conjecture. Supplementary materials, including some Magma programs
which compute anti-Hughes groups, are available at our websites [6], together with
their outputs.

Using the same types of ideas, we have constructed PCPs for a three generator 7-group
of class 13 and order 72631 which is an anti-Hughes group, and for a two generator
counterexample of class 22 and order 112408 .

Our group constructions are independent of the theory of Lie relators in Burnside
groups, but Khukhro has shown that three generator, class 2p−1, counterexamples to
the Hughes conjecture exist if and only if there is a new Lie relator of weight 2p− 1.
Similarly he has shown that two generator, class 2p , counterexamples exist if and only
if the relation fp(x, y, [x, y]) = 0 is not a consequence of the (p − 1)-Engel identity.
So our group constructions give independent verification of the existence of these new
relators for p = 5, 7 and 11.

We have also carried out Lie algebra calculations to show that the relation

fp(x, y, [x, y]) = 0

is not a consequence of the (p − 1)-Engel identity for p = 13, 17 and 19. So two
generator counterexamples to the Hughes conjecture also exist for p = 13, 17 and 19,
though it is not easy to construct them. We have some hope of eventually constructing
a PCP for a two generator 13-group of class 26 which is a counterexample, but the
computations are taking months of computer time and are far from complete. The
theory of Lie relators in Burnside groups is rather tricky, and we do not explore this
subject here. Some details may be found in [20], and [20, Theorem 2.5.1] gives a
sequence of multilinear identities Kn = 0 (n ≥ 2) which hold in the associated Lie
rings of Burnside groups of prime power exponent pk . Wall’s identity is effectively
equal to K2p−1 = 0, which is multilinear in 2p− 1 variables. So we have

fp(x, y, z) = K2p−1(x, x, . . . , x︸ ︷︷ ︸
p−1

, y, y, . . . , y︸ ︷︷ ︸
p−1

, z),

and
fp(x, y, [x, y]) = K2p−1(x, x, . . . , x︸ ︷︷ ︸

p−1

, y, y, . . . , y︸ ︷︷ ︸
p−1

, [x, y]).

It seems extremely likely that the relation fp(x, y, [x, y]) = 0 is not a consequence of
the (p − 1)-Engel identity for any prime p > 5, but we have no idea how one might
prove this general result.

2 Khukhro’s 7-group

Following Khukhro [13] we let F be the free group of rank 2, and we let N be the
normal subgroup of F generated by {g7 | g /∈ F ′} . We consider the nilpotent quotients
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of F/N , looking for a quotient which does not have exponent 7. Khukhro’s theoretical
work guarantees that such a quotient exists. As Khukhro proved, the class 13 quotient
of F/N has exponent 7, but the class 14 quotient does not. In fact the class 14 quotient
of B(2, 7) has order 71074 , but the class 14 quotient of F/N has order 71075 . Let this
class 14 quotient be H , and let H be generated by a and b . Then [b, a] has order 49.
Also γ3(H) has exponent 7 and H ′ has class 6. It follows that ([b, a]g)7 = [b, a]7 for
all g ∈ γ3(H), and this implies that all the elements [b, a]g (g ∈ γ3(H)) have order
49. So the Hughes subgroup 〈g ∈ H | g7 6= 1〉 = H ′ , which has index 49.

The difficulty with computing a PCP for this group is finding a sufficiently small
generating set for the normal subgroup N . The p-quotient algorithm, as implemented
in Magma and as a share package in GAP, incorporates very sophisticated techniques
for finding relatively small test sets of words for enforcing exponent p , but this
is precisely what we do not want to do. However these same techniques are also
appropriate for finding a relatively small set of generators for N .

We construct H as follows (using the Magma program [6, gettestwords.m] followed
by the start of [6, p7g2r1075.m]). First we construct the class 13 quotient of B(2, 7)
(which we denote by B(2, 7 : 13)), and then we construct the p-covering group of this
class 13 quotient. Call this p-covering group Q . It has order 71258 . Suppose that Q is
generated by a and b . Let G = Q/N , where N is the normal subgroup of Q generated
by {g7 | g /∈ Q′} . This is Khukhro’s counterexample to the Hughes conjecture of order
71075 and class 14.

Finding a reasonably small set of 7th powers which generate N requires a certain
amount of thought! Every element outside the derived group of Q is a power of an
element from the set

S = {ag | g ∈ Q′} ∪ {aibg | 0 ≤ i ≤ 6, g ∈ Q′}.

Now N is contained in the centre of Q , since Q is the p-covering group of a group of
exponent 7. In fact N ≤ M , where M is the p-multiplier of B(2, 7 : 13). Also S is a
normal subset of Q , and S is a union of conjugacy classes of Q . So if we let T be a
set of representatives for these conjugacy classes, then N is generated by {t7 | t ∈ T} .
Since M is central in Q and of exponent 7, it is only necessary to compute these
conjugacy classes modulo M . But even so, this set T is huge. But we can reduce the
set of 7th power relations significantly using Higman’s Lemma [7]. It will be helpful
in what follows if we can assume that γ3(Q) has exponent 7. This is easy to check.
Since Q has class 14 it follows that γ3(Q) has class at most 4, so it is only necessary
to check that the elements from a set of generators of γ3(Q) all have order 7. Now
γ3(Q) is the normal closure of [b, a, a] and [b, a, b] , and so it is only necessary to check
that [b, a, a]7 = [b, a, b]7 = 1. This is easily done.

The first major reduction is the following lemma which implies that we only need to
compute a set of representatives for the conjugacy classes of S modulo γ9(Q)M .

Lemma 1 If g ∈ Q and h ∈ γ9(Q) then (gh)7 = g7.

Proof. The Hall collection process implies that (gh)7 = g7h7uv , where u is a product
of 7th powers of elements in the derived group of 〈g, h〉 , and where v lies in the 7th
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term of the lower central series of 〈g, h〉 . Since γ3(Q) has exponent 7, it follows that
h7 = u = 1. And since h ∈ γ9(Q), it follows that v ∈ γ15(Q) = {1}. �

So we need to compute the conjugacy classes of S modulo γ9(Q)M . Since

Q/γ9(Q)M ∼= B(2, 7 : 8),

this is equivalent to computing conjugacy classes in B(2, 7 : 8). In principle, Magma
can compute these conjugacy classes with a single command. But, as we shall see,
S is a union of 8 × 723 conjugacy classes modulo γ9(Q)M . Since the Magma
command would attempt to store representatives for all these classes, Magma would
quickly run out of memory. So we compute a set of representatives “by hand” — we
are able to do this symbolically, without storing representatives for each individual
class. Let G be the class 8 quotient of B(2, 7), and (with some abuse of notation)
let a and b be the generators of G . We let S1 = {ag | g ∈ γ2(G)} and we let
S2 = {aibg | 0 ≤ i ≤ 6, g ∈ γ2(G)} . We want to compute representatives for the
conjugacy classes of S1 and S2 .

First consider the set S1 . Working modulo γ3(G) we see that a is conjugate to a[b, a]k

for all k = 0, 1, . . . , 6. So all the elements of S1 are conjugate to ag for some g ∈ γ3(G).
Working modulo γ4(G), we see that γ3(G) is generated by [b, a, a] and [b, a, b] . (These
are PCP generators G.4 and G.5 of G .) If g ∈ γ3(G) then

(ag)[b,a]k = ag[b, a, a]−k modulo γ4(G),

and so a complete set of representatives for the conjugacy classes of S1 modulo γ4(G)
is a[b, a, b]k (0 ≤ k ≤ 6).

Working modulo γ5(G) we see that γ4(G) is generated by [b, a, a, a] , [b, a, a, b] and
[b, a, b, b] . (These are PCP generators G.6, G.7 and G.8 of G .) If g ∈ γ3(G) then

(ag)[b,a,a]r[b,a,b]s = ag[b, a, a, a]−r[b, a, a, b]−s modulo γ5(G),

and so a complete set of representatives for the conjugacy classes of S1 modulo γ5(G)
is

a[b, a, b]r[b, a, b, b]s (0 ≤ r, s ≤ 6).

Next we notice that γ5(G) is an elementary abelian subgroup of G , and that [a, γ4(G)]
is a subgroup of γ5(G). We let K be a complement for [a, γ4(G)] in γ5(G), so
that [a, γ4(G)] ∩ K = {1} and [a, γ4(G)]K = γ5(G). Fortunately we are able
to choose the complement K so that it is also a complement for all the groups
[a[b, a, b]r[b, a, b, b]s, γ4(G)] for all 0 ≤ r, s ≤ 6. So a complete set of representatives for
the conjugacy classes of S1 is

a[b, a, b]r[b, a, b, b]sk (0 ≤ r, s ≤ 6, k ∈ K).

Similarly we see that a complete set of representatives for the conjugacy classes of S2

modulo γ5(G) is
aib[b, a, a]r[b, a, a, a]s (0 ≤ i, r, s ≤ 6).
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We are similarly able to find a single complement L in γ5(G) for all the subgroups

[aib[b, a, a]r[b, a, a, a]s, γ4(G)].

So a complete set of representatives for the conjugacy classes of S2 is

aib[b, a, a]r[b, a, a, a]sk (0 ≤ i, r, s ≤ 6, k ∈ L).

We compute K and L using [6, gettestwords.m]. The subgroup K is generated
by G.10, G.12, G.14, G.19, G.22, G.23, G.27, G.31, G.32, G.35, G.37, G.39, G.43,
G.45, G.47, G.49, G.51, G.53, G.54, G.56, G.58, and the subgroup L is generated
by G.9, G.11, G.13, G.15, G.17, G.20, G.25, G.28, G.30, G.33, G.36, G.38, G.40,
G.42, G.44, G.46, G.48, G.50, G.52, G.55, G.57. It is not clear from the method of
constructing these sets of representatives that they are irredundant sets, but in fact
they are. Magma shows that the centralizer of a in G has order 725 , which implies
that the conjugacy class of a has size 733 . Since G is relatively free, all the elements ag
(g ∈ G′ ) have conjugacy classes of size 733 , and since there is a total of 756 elements of
the form ag this implies that there are 723 conjugacy classes. The same considerations
apply to the elements aibg (g ∈ G′ ).

We now lift these representatives for the conjugacy classes of S1 and S2 to preimages
in Q . The preimage of K is generated by Q.10, Q.12, . . . , Q.58 modulo γ9(Q), and
the preimage of L is generated by Q.9, Q.11, . . . , Q.57 modulo γ9(Q).

The most significant reduction in the set of generators for N = 〈g7 | g /∈ Q′〉 comes
from an application of Higman’s Lemma [7]. Higman shows that if x1, x2, . . . , xm

are elements of a group G , then (x1x2 . . . xm)n = uv , where u lies in the subgroup
generated by elements of the form (xixj . . . xk)

n where 1 ≤ i < j < . . . < k ≤ m and
where {i, j, . . . , k} is a proper subset of {1, 2, . . . ,m} , and where v is a product of
commutators of weight at least m , each involving all of the generators x1, x2, . . . , xm .
We apply this lemma to the 7th power of one of our representatives. Let

w = a[b, a, b]r[b, a, b, b]s(Q.10)α10(Q.12)α12 . . . (Q.58)α58 .

The PCP generators of Q all have weights reflecting the terms of the lower central
series of Q which they lie in. Thus a has weight 1, [b, a, b] has weight 3, [b, a, b, b] has
weight 4, Q.10 has weight 5, . . . , and Q.58 has weight 8. We define the weight of w to
be

1 + 3r + 4s + 5α10 + . . . + 8α58.

We also define the exponent length of w to be 1 + r + s + α10 + . . . + α58 . We show
that we need only impose relations w7 = 1 for words of weight at most 14 (because
14 is the nilpotency class of Q).

So suppose that w has weight k > 14. By a subword of w we mean a word of the
form

w′ = aβ[b, a, b]r
′
[b, a, b, b]s

′
(Q.10)β10(Q.12)β12 . . . (Q.58)β58

where β ≤ 1, r′ ≤ r , s′ ≤ s , β10 ≤ α10 , . . . , β58 ≤ α58 , and where the exponent
length of w′ is less than the exponent length of w . We apply Higman’s Lemma, with
m equal to the exponent length of w , and n = 7. We then substitute a for x1 ,
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substitute [b, a, b] for x2, x3, . . . , xr+1 , substitute [b, a, b, b] for xr+2, xr+3, . . . , xr+s+1 ,
and so on. Higman’s Lemma implies that w7 = uv , where u lies in the subgroup
generated by elements of the form (w′)7 with w′ a subword of w , and where v is a
product of commutators each of which lie in γk(Q) where k is the weight of w . Note
that if w′ is a subword of w then either w′ is another of our representatives for the
conjugacy classes of S1 with lower weight than w , or w′ ∈ γ3(Q) which implies that
(w′)7 = 1. So if k > 14, then by repeated application of Higman’s Lemma we see that
w7 lies in the subgroup generated by the elements (w′)7 where w′ ∈ S1 is a subword
of w of weight at most 14.

There is a further reduction we can make. Suppose that w has weight at most 14,
and also suppose that w has exponent length greater than 1 but less than 7. As
we mentioned above, the Hall collection process implies that if g, h are elements of a
group, then (gh)7 = g7h7w1w2 , where w1 is a product of 7th powers of commutators
involving g and h , and where w2 is a product of commutators in g and h of weight
at least 7. We combine this result with the proof of Higman’s Lemma. We let m be
the exponent length of w , and we apply this result to the word (x1x2 . . . xm)7 , taking
g = x1x2 . . . xm−1 and h = xm . So

(x1x2 . . . xm)7 = (x1x2 . . . xm−1)
7x7

mw1w2

where w1 is a product of 7th powers of commutators with at least one entry xm , and
w2 is a product of commutators each of which has weight at least 7 and each of which
has at least one entry xm . Expanding these commutators, we may assume that all the
entries in the commutators in the products w1 and w2 lie in the set {x1, x2, . . . , xm} .
So we have

w−1
1 x−7

m (x1x2 . . . xm−1)
−7(x1x2 . . . xm)7 = w2.

Using Higman’s Lemma again we see that this implies that (x1x2 . . . xm)7 = uv where
• u lies in the subgroup generated by elements of the form (xixj . . . xk)

7 where
1 ≤ i < j < . . . < k ≤ m and where {i, j, . . . , k} is a proper subset of {1, 2, . . . ,m}
and by elements of the form c7 where c is a commutator with at least one entry xm ,
and
• v is a product of commutators of weight at least 7 each involving all of the generators
x1, x2, . . . , xm .

We now substitute PCP generators of Q for the elements x1, x2, . . . , xm as above.
There are two key points to note.
1) Elements of the form c7 where c is a commutator with at least one entry xm become
trivial under the substitution since γ3(Q) has exponent 7.
2) Since m < 7, commutators of weight at least 7 involving all of the generators
x1, x2, . . . , xm must have repeated entries. In particular, they become trivial under the
substitution if k + 7−m > 14 where k is the weight of w .

So if k + 7−m > 14 then we see that w7 lies in the subgroup generated by elements
(w′)7 , where w′ is a subword of w .

The combined effect of all this is that the subgroup generated by the elements (ag)7

(g ∈ Q′ ) is generated by the elements w7 where w has the form

w = a[b, a, b]r[b, a, b, b]s(Q.10)α10(Q.12)α12 . . . (Q.58)α58 , (1)
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and where if w has weight k and exponent length m then k ≤ 14 and k+7−m ≤ 14.

We now consider the subgroup generated by the elements (aibg)7 (g ∈ Q′ ). As we
showed above, this subgroup is generated by elements w7 where w has the form

w = aib[b, a, a]r[b, a, a, a]s(Q.9)α9(Q.11)α11 . . . (Q.57)α57 . (2)

Using the same argument as above, we see that if this word has weight k and exponent
length m where k > 14 or k + 7 − m > 14, then w7 lies in the subgroup generated
by elements (w′)7 where w′ is a subword of w . Such a subword w′ has one of three
types. It could be a word of the same form as w (which is fine), or we could have
w′ ∈ γ3(Q) (which is fine, since γ3(Q) has exponent 7), or we could have

w′ = ai′ [b, a, a]r
′
[b, a, a, a]s

′
(Q.9)β9(Q.11)β11 . . . (Q.57)β57

for some i′ , r′ , s′ , β9 , . . . , β57 . In this last case (w′)7 lies in the subgroup generated
by 7th powers of elements of the form (1). So the subgroup 〈g7 | g /∈ Q′〉 is generated
by elements of the form (1) and (2) which have weight k and exponent length m
satisfying k ≤ 14, k + 7−m ≤ 14. There is a total of 272 of these words.

3 Khukhro’s 5-group

The construction of Khukhro’s 3-generator 5-group is very similar to the construction
of his 2-generator 7-group, as shown in [6, p5g3r917.m]. We first construct the 5-
covering group Q of the class 8 quotient of B(3, 5). Denote the generators of Q by
a, b, c . Then we let N be the normal subgroup of Q generated by {g5 | g /∈ 〈c〉Q′} .
We let H = Q/N . Then H is a group of order 5917 , whereas B(3, 5 : 9) has order
5916 . The element cN ∈ H has order 25. If g is any element of Q′ then there is an
automorphism of H mapping aN to aN , bN to bN , and mapping cN to cgN , and
so all the elements cgN have order 25. This implies that the Hughes subgroup of H
has index 25.

Once again, the main difficulty in carrying out this computation is in finding a relatively
small number of 5th powers which generate N . Using similar arguments to those above
we see that N is generated by the 5th powers of conjugacy class representatives of the
following:

a[c, b]rk (0 ≤ r ≤ 4, k ∈ K1), (3)

aib[c, a]rk (0 ≤ i, r ≤ 4, k ∈ K2), (4)

aibjc[b, a]rk (0 ≤ i, j, r ≤ 4, i + j 6= 0, k ∈ K3), (5)

where K1 , K2 and K3 are certain sets of size 529 consisting of products of PCP
generators of Q of weights 3, 4 and 5. It is easy to check that Q′ has exponent 5, so
using the same arguments as above we see that the subgroup generated by 5th powers
of elements of type (3) and (4) is generated by words of type (3) and (4) with weight
k and exponent length m , where k ≤ 9 and k + 5 − m ≤ 9. However there is a
problem with words of type (5). We use Higman’s Lemma to show that if w has
weight k and exponent length m where k > 9 or k + 5−m > 9, then w5 lies in the
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subgroup generated by elements (w′)5 where w′ is a subword of w . The problem is
that aibjc[b, a]rk has subwords of the form c[b, a]rk , and we do not want to include 5th

powers of these words as relations. The “work around” to this problem is as follows.
If j > 0 we write

aibjc[b, a]rk = aibj−1(bc)[b, a]rk

and if j = 0 but i > 0 then we write

aic[b, a]rk = ai−1(ac)[b, a]rk.

Then we redefine the weight and exponent length of the word by letting (bc) (or (ac))
contribute only one to the weight and one to the exponent length. Thus the redefined
weight and exponent length are both one less than the original weight and exponent
length. If w = aibj−1(bc)[b, a]rk , and if the redefined exponent length is m , then
when we apply Higman’s Lemma, we substitute a for x1, x2, . . . , xi , substitute b for
xi+1, xi+2, . . . , xi+j−1 , substitute bc for xi+j , and then carry on as before. This has the
effect that a subword of x1x2 . . . xm either maps to a subword of w of type (5) under
the substitution, or to a conjugate of a power of an element of type (3) or (4), or to
an element of Q′ . We treat words of the form ai−1(ac)[b, a]rk similarly. So modifying
the definitions of weight and exponent length for words of type (5) in this way we see
that N is generated by the 5th powers of words of type (3), (4) and (5) with weight
k and exponent length m with k ≤ 9 and k + 5 − m ≤ 9. There are 1201 of these
words.

4 Constructing smaller counterexamples

It is easy to obtain quotient groups of the two groups constructed above which are
still counterexamples to the Hughes conjecture. If we take our 2-generator 7-group of
order 71075 , then its centre has order 7407 . The element [b, a]7 lies in the centre of H ,
but we can factor out a subgroup of the centre of order 7406 which does not contain
[b, a]7 . This gives us a counterexample to the Hughes conjecture of order 7669 . We
can continue iterating this procedure until we obtain a quotient group with centre of
order 7. In this way we obtain counterexamples with order as small as 7117 , see [6,
p7g2r1075.m].

There is a vast amount of choice in picking subgroups of the centre to factor out in this
way, so there is no reason to suppose that 7117 is the smallest group you could obtain
with such a procedure. A simple method is to look at the PCP generators which have
nonzero exponent in the evaluation of [b, a]7 . For each such PCP generator, (there are
222 of these), we construct complements and factor them out as above, yielding final
anti-Hughes groups with orders ranging from 7117 to 7121 , see [6, p7exp.m].

Applying an analogous procedure to Khukhro’s example of order 5917 we obtain an
anti-Hughes group of order 599 , see [6, p5g3r917.m].

We also tried another approach. The underlying theory implies that there is a 2-
generator anti-Hughes 7-group of class 14 in which the normal closures of the generators
both have class 7. The Magma implementation of the p-quotient algorithm has a
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facility (via the MaxOccurrence parameter) which enables you to force the normal
closures of the generators to have specified classes. Using this we obtain an anti-
Hughes group of order 7597 . Factoring out subgroups of the centre as above, the
smallest anti-Hughes quotient we found this way has order 7119 , see [6, p7g2mo.m].
This computation is much faster (compared with p7exp.m) because it starts with a
smaller group (but does not lead to as small a reduced group).

Next we tried adding defining relators to our group. After some experimentation we
found that if we start with the group generated by a and b , with relators

[b, a, a, a, a, b], [b, a, a, a, a, a, b], [b, a, a, a, a, a, a, b],

[a, b, b, b, b, a], [a, b, b, b, b, b, a], [a, b, b, b, b, b, b, a],

and impose the condition that the normal closures of a and b are nilpotent of class
7, then we can construct a counterexample of order 7159 and class 14. Repeatedly
factoring out complements to [b, a]7 in the centre of this group we obtain an example
of order 771 , see [6, p7g2qmo.m]. In this case, relaxing the conditions on the normal
closures of a and b leads to a larger starting group, order 7165 , but not a smaller final
group, see [6, p7g2q6.m].

We replaced the three relators [a, b, b, b, b, a] , [a, b, b, b, b, b, a] , [a, b, b, b, b, b, b, a] by
[b, a, b, b, b, a] , [b, a, b, b, b, b, a] , [b, a, b, b, b, b, b, a] and then systematically added as
relators PCP generators which did not kill off [b, a]7 . The addition of five such relators
gives us a 2-generator anti-Hughes 7-group of class 14 and order 797 which satisfies
11 commutator defining relators and in which the normal closures of both generators
have class 7. Then repeatedly factoring out complements to [b, a]7 in the centre leads
to 2-generator anti-Hughes 7-group of class 14 and order 766 , see [6, p7g2q11mo.m].
This is the smallest 2-generator anti-Hughes group that we have found.

Similarly, there is a 3-generator 5-group counterexample to the Hughes conjecture
generated by a, b, c where the normal closures of a and b are nilpotent of class 4 and
the normal closure of c is abelian. (In this example we should also have the Hughes
subgroup equal to 〈c〉G′ .) We first construct the largest class 8 group of exponent 5 in
which the normal closures of the three generators have classes 4, 4, 1 respectively. Then
we construct the p-covering group of this group, while maintaining the restriction on
the normal closures of the generators. This gives us a group of order 5171 . Then we
factor out the subgroup generated by the 5th powers of elements outside the subgroup
〈c〉G′ , and this gives us a counterexample of order 5123 . Reducing this example in the
same way as above gives us an example of order 554 , see [6, p5g3mo.m].

We now add defining commutator relators to the 5-group. With relators [c, a, b] and
[c, b, b, b, a] we obtain an example of order 550 , see [6, p5g3q.m]; then, with those
relators and with the normal closures of a and b having class 4 ([6, p5g3qmo.m]) we
obtain an example of order 548 . Further experimenting reveals that we can add 6
more defining relators and retain the anti-Hughes property, leading to an example of
order 546 ([6, p5g3q8mo.m]). This is the smallest 3-generator anti-Hughes group that
we have found.

A similar approach allows us to construct a PCP for Wall’s three generator 5-group
defined in [21]. It has order 5167 and class 11. Its largest class 9 quotient has order
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5151 and is also an anti-Hughes group. Repeated factoring out of complements leads
to an anti-Hughes group with order 556 , see [6, wallcl9.m]; with the normal closures
of a and b having class 4 we obtain an example of order 554 .

5 Further examples

As demonstrated by the outputs on [6], our computations thus far can be done quite
easily. The timings and memory usages shown in the outputs are for runs done on a
Dell XPS M1330 laptop with 2.4GHz Intel Core 2 Duo cpus. When going on to consider
larger examples we used a standalone implementation of the p-quotient algorithm. We
wrote special new code to enforce p-th power relations, which runs considerably faster
than the previous code. We also distributed the power checking over several processors.

We constructed a three generator 7-group with Hughes subgroup of index 49. We
first constructed the largest class 12 group of exponent 7 generated by three elements
a, b, c where the normal closures of a and b have class 6 and the normal closure of c
is abelian. This group has order 72078 . We next constructed the p-covering group of
this group, while maintaining the restriction that the normal closures of a, b, c have
class 6, 6, 1 respectively. This gave us a group G of order 72875 . We then factored out
the normal subgroup generated by 7th powers of elements outside the subgroup 〈c〉G′ .
This gave us a group of order 72631 , with a Hughes subgroup of index 49.

Our success in constructing examples with extra defining relators suggested that it
might be possible to construct a two generator 11-group of class 22 as a counterexample
to the Hughes conjecture. In the end we imposed the relators

[b, a, a, . . . , a︸ ︷︷ ︸
k

, b] for k = 4, 5, 6, 7, 8, 9, 10, 11,

[b, a, b, b, . . . , b︸ ︷︷ ︸
k

, a] for k = 3, 4, 5, 6, 7, 8, 9, 10,

[b, a, a, a, b, b], [b, a, a, a, b, a, a, b, a], [b, a, a, b, a, b, b, b, b, b],

as well as imposing the conditions that the normal closures of a and b have class 11.
This gave us a two generator example of order 112408 and class 22.

6 Lie algebra calculations

In principle, to show that fp(x, y, [x, y]) = 0 is not a consequence of the (p− 1)-Engel
identity, you could compute the class 2p quotient of the free (p− 1)-Engel Lie algebra
over GF(p) on two generators a, b , and then verify that fp(a, b, [a, b]) 6= 0. Such
calculations can readily be done with the program described in [5]. However even for
p = 13 this would be a massive computation. Our idea was to add extra relations to
the Lie algebra, the trick being to add enough extra relations to make the dimension
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of the algebra manageable but without adding in so many extra relations that the
resulting algebra did satisfy fp(a, b, [a, b]) = 0.

After some experimenting we settled on the following extra relations. First, we added
in the relations w = 0 for every Lie product w(a, b) with multiweight (r, s) in a
and b where r > p , or s > p , or |r − s| ≥ 3. We also added in the relation
[b, a, a, a] = 0, as well as the (p−1)-Engel identity. For p = 11, 13, 17 and 19 this gave
Lie algebras of class 2p and dimensions 471, 1809, 22816 and 29131. In each case it
was straightforward to check that fp(a, b, [a, b]) 6= 0. For p = 7 the Lie algebra defined
above has class 12 and dimension 37, but if we omit the relation [b, a, a, a] = 0 (but
keep the other relations), then we obtain a Lie algebra of class 14 and dimension 153
in which f7(a, b, [a, b]) 6= 0.
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