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Abstract The concept of classical indistinguishability is analyzed
and defended against a number of well-known criticisms, with par-
ticular attention to the Gibbs’ paradox. Granted that it is as much
at home in classical as in quantum statistical mechanics, the ques-
tion arises as to why indistinguishability, in quantum mechanics but
not in classical mechanics, forces a change in statistics. The answer,
illustrated with simple examples, is that the equilibrium measure
on classical phase space is continuous, whilst on Hilbert space it is
discrete. The relevance of names, or equivalently, properties stable
in time that can be used as names, is also discussed.
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Einstein’s contributions to quantum theory, early and late, turned on investiga-
tions in statistics - most famously with his introduction of the light quantum,
now in its second century, but equally with his penultimate contribution to the
new mechanics (on Bose-Einstein statistics) in 1924. Shortly after, his statis-
tics was incorporated into to the new (matrix and wave) mechanics. But there
remained puzzles, even setting to one side the question of his last contribution
(on the completeness of quantum mechanics). A number of these centre on the
concept of particle indistinguishability, which will occupy us greatly in what
follows.

To keep the discussion within reasonable bounds, and for the sake of histor-
ical transparency, I shall use only the simplest examples, and the elementary
combinatoric arguments widely used at the time. For similar reasons, I shall
largely focus on Bose-Einstein statistics (and I shall neglect parastatistics en-
tirely). Hence, whilst not a study of the history of quantum statistics, I shall
be speaking to Einstein’s time.

But if not anachronistic, my way of putting things is certainly idiosyncractic,
and calls for some stage-setting.

1 The Puzzle

These are the puzzling features to be explained: distinguishable particles, clas-
sically, obey Maxwell-Boltzmann statistics, but so do indistinguishable (per-
mutable) particles. In quantum mechanics, distinguishable particles also obey
Maxwell-Boltzmann statistics; but not so indistinguishable ones. There is evi-
dently something about the combination of permutation symmetry and quantum
mechanics that leads to a difference in statistics. What, precisely?



Were the concept of indistinguishability unintelligible from a classical per-
spective, the puzzle would hardly arise, or not in this form; indistinguishability
in itself, in that case an inherently quantum concept, would be the obvious cul-
prit. And, indeed, the notion of classical permutability has for the main part
been viewed with suspicion (because already incompatible with classical prin-
ciples, philosophical or physical, almost always unstated). After all, classical
particles can surely be distinguished by their trajectories (an argument I shall
discuss at length). The very concept of particle indistinguishability only came
to prominence through investigations in quantum statistics (Ehrenfest (1911)
and Natansen (1911)). It was natural to view particle indistinguishabililty as
an intrinsically quantum mechanical concept.!

And yet the same concept is important to another puzzle that arises already
in classical mechanics - the Gibbs’ paradox. In particular it explains the subtrac-
tion of a term kln N! from the classical (Boltzmann) entropy for N identical
particles® (to give the entropy as an extensive function of state); so much is
required if there is to be zero entropy of mixing of two samples of the same gas.
Division of the classical phase space volume by N!, as follows if identical classical
particles are permutable (so that phase space points related by a permutation
are identified), supplies the needed correction. It was explained in just this way
(using his own definition of the entropy function) by Gibbs (1902 p.206-07).

But Gibbs’ view of the matter found few supporters, and was rapidly over-
taken by events; so much so, that by mid-century, in reply to a related question
raised by Schrodinger, it was not even judged worthy of mention:

In conclusion, it should be emphasized that in the foregoing re-
marks classical statistics is considered in principle as a part of clas-
sical mechanics which deals with individuals (Boltzmann). The con-
ception of atoms as particles losing their identity cannot be intro-
duced into the classical theory without contradiction. (Stern 1949).

(Stern did not say in what the contradiction consists).
For a text book still in wide use:

It is not possible to understand classically why we must divide by
N! to obtain the correct counting of states (Huang, 1963 p.154).

(although classical permutability implies it directly).
For a statement by Schrédinger on the subject::

L Although Schrédinger had by the close of this period (in his last paper prior to the series
on wave mechanics) shown how one can dispense with it, taking as distinguishable objects
the modes of a system of waves as representing the states of a gas (he was of course drawing
at this point heaviliy on de Broglie’s ideas). It was an advantage of the approach, thought
Schrodinger, that the states of the gas thus conceived obeyed Maxwell-Boltzman statistics
(see Schrodinger (1924) and, for further discussion, Dieks (1990); I shall come back to this
point at the end).

2Meaning that differences between them, if any, are irrelevant to the dynamics.



It was a famous paradox pointed out for the first time by W.
Gibbs, that the same increase of entropy must not be taken into
account, when the two molecules are of the same gas, although (ac-
cording to naive gas-theoretical views) diffusion takes place then too,
but unnoticeably to us, because all the particles are alike. The mod-
ern view [of quantum mechanics] solves this paradox by declaring
that in the second case there is no real diffusion, because exchange
between like particles is not a real event - if it were, we should have
to take account of it statistically.® It has always been believed that
Gibbs’s paradox embodied profound thought. That it was intimately
linked up with something so important and entirely new [as quantum
mechanics| could hardly be foreseen. (Schrédinger 1946 p.61).

(implicitly suggesting that the paradox could not be resolved on purely classical
grounds).

And from a recent monograph devoted to the concept of classical particle
indistinguishability:

Prior to the description of a state by means of probability mea-
sures states were identified with point measures. In this determinis-
tic setting indistinguishable objects are not conceivable. (Bach 1997,
p.131)

I shall come back to Bach’s treatment of classical indistinguishability shortly.

I do not wish to suggest that the concept was universally rejected; Leon
Rosenfeld? spoke with approval of Planck’s appeal to indistinguishability to ex-
plain the needed subtraction (in the 4th edition of Theorie der Warmestrahlung
of 1921), comparing it with the discussion by Gibbs. This, thought Rosenfeld,
was a ‘simple and clear interpretation’ but one (he went on to say) that was
rejected by Ehrenfest and Trkal (as ‘incomprehensible’).

However, Rosenfeldl understood Gibbs’ conception of statistical mechanics
as ‘fundamentally idealistic’ (Rosenfeld 1959 p.244); in contrast:

The argument of Ehrenfest and Trkal is clearly inspired by the mate-
rialist (others prefer to say ‘realist’) attitude characteristic of Boltz-
mann’s thought: the problem of statistical mechanics is to give a
complete and logically coherent deduction of macroscopic laws of
thermodynamics from those of mechanics, applied to the atomic
model of matter. Considered from this point of view, it is evidently
decisive; and it is thus particularly significant that it does not at all
impress Planck. (Rosenfeld 1959, p.243, emphasis mine).

3However, in quantum mechanics as classically, certainly there is real diffusion (of particles
initially confined to a sub-volume, on removal of a partition separating the two samples of
gas, into the total volume).

4 Another exception is Hestines, who has also defended the concept of classical indistin-
guishability (Hestines (1970)); but, with certain reservations, his approach is similar to that
of Rosenfeld and Bach, discussed below, and I shall not address it separately.

5But note the word does not occur in the English-language version of their paper.



(Planck, Rosenfeld went on to explain, did not share Boltzmann’s ‘materialist’
preoccupations.)

I take it to have established a prima facie case that the concept of classical
indistinguishability, at least at a realist, microphysical level of description, has
been greatly neglected, and for the most part dismissed out of hand. In what
follows I shall first dissect with rather more care the arguments of its critics
(Section 2), and then go on to defend the principle directly (Section 3); only if
it is granted as classically intelligible does the puzzle about quantum statistics
arise in the way that I have stated it. An answer to the puzzle follows (Section
4). Indeed, it is not too hard to find, prefigured as it was in the work of Planck
(1912) and Poincaré (1911, 1912), who traced the origin of the new statistics to
the discreteness of the energy. (More generally, I shall trace it to the discreteness
of the measure to be used, in equilibrium conditions, on Hilbert space.)

2 Against classical indistinguishability

The clearest argument in the literature against classical indistinguishability is
that the principle is not needed (what I shall call the ‘dispensability argument’);
a thesis due to Ehrenfest and Trkal (1920), and subsequently defended by van
Kampen (1984). The objection that classical indistinguishability is incoherent
is more murky, and has rarely been defended explicitly; for that I consider only
van Kampen (1984) and Bach (1997).

Ehrenfest and Trkal considered the equilibrium condition for molecules sub-
ject to disassociation into a total N* of atoms, whose number is conserved, with
recombination into different possible numbers N, N’, N” ... of molecules of vari-
ous types. The upshot: a contribution klog(N*!/NIN’L..) to the total entropy
which, when written as a sum of entropies for each type of molecule, supplied
in each case the necessary division by NI N’l... etc. (but with a remaining
overall factor N*! - a number, however, that did not change, so contributing
only a constant to the entropy ). As a result one has extensive molecular en-
tropy functions (albeit a non-extensive entropy function for the atoms), and can
determine the equilibrium concentrations of the molecules accordingly.

Van Kampen’s argument was similar, and in certain respects simpler; let us
go into this in more detail. Consider a gas of N* particles, defined as a canonical
ensemble with the probability distribution:

W(N*,q,p) = f(N*)e PH(@r)

where (g, p) are coordinates on the 6 N* dimensional phase space for a system of
N* particles (with f as yet undetermined). Let the N* particles lie in volume
V*, and consider the probability of finding N with total energy E in the sub-
volume V' (so N’ = N* — N are in volume V' = V* — V). Assuming the
interaction energy between particles in V'’ and V is small, the Hamiltonian H -~
of the total system can be written as the sum Hy + Hpy- of the two subsystems.
It then follows that the probability density W (N, ¢, p) for having N particles at
the point (¢,p) = q1,D1; g2, P2; ----; qn, o should be calculated by the procedure:



first select IV out of the N* particles to be located in V', and then integrate over
all possible locations of the remaining N* — N particles in V', and repeat,
allowing for different selections. The result is:

N* ! /
W(N,q,p) = const.(N)eﬁHN(q’p) /efﬁHN’(q P )dq’dp’. (1)
VI

If one now goes to the limit N* — oo, V' — oo, at constant density N*/V' one
obtains the grand canonical distribution:

N
W(Na Qap) = COnst.%efﬁHN(qyp)

where z is a function of that density and of 3, with the required division by N!.
In this derivation the origin of the 1/N! is clear; it derives from the binomial
in Eq.(1) in the limit N* — oo, i.e.:

N* N*! N*N
= —
N)  (N*=N)IN! NI

where the integral over the volume V' supplies a further factor V'V =N (i.e.
const.V'~N). Thus it is only because permutations of the N* particles yield
physically distinct states of affairs that one must divide through by N! (to
factor out permutations that do not interchange particles inside V', with those
in V’). The same point applies to the model of Ehrenfest and Trkal: it is only
because permutations of atoms are assumed to lead to distinct states of affairs,
that one must factor out permutations that merely swap atoms among the same
species of molecules.

Why so much work for so little reward? Why not simply assume that the
classical description be permutable (i.e. that points of phase space related by a
permutation of all N* particles represent the same physical situation)? That,
essentially, is what Gibbs’ proposed. Van Kampen considered the matter in the
following terms:

One could add, as an aside, that the energy surface can be parti-
tioned in N! equivalent parts, which differ from one another only by
a permutation of the molecules. The trajectory, however, does not
recognize this equivalence because it cannot jump from one point to
an equivalent one. There can be no good reason for identifying the
Z—star [the region of phase space picked out by given macroscopic
conditions] with only one of these equivalent parts. (van Kampen
1984, p.307).

(I shall come back to this argument somewhat later.) Gibbs’ views to the
contrary he found ‘somewhat mystical’ (van Kampen 1984, p.304). Moreover:

Gibbs argued that, since the observer cannot distinguish between
different molecules, "it seems in accordance with the spirit of the



statistical method" to count all microscopic states that differ only
by a permutation as a single one. Actually it is exactly opposite to
the basic idea of statistical mechanics, namely that the probability of
a macrostate is given by the measure of the Z-star, i.e. the number
of corresponding, macroscopically indistinguishable microstates. As
mentioned...it is impossible to justify the N! as long as one restricts
oneself to a single closed system. (van Kampen 1984, p.309).

These are the incoherence arguments, as we have them from van Kampen.

The dispensability argument can be challenged head on. The extensivity of
the entropy, if it can be secured, even for contexts in which it has no direct
experimental meaning, hardly counts against the metaphysics, or philosophical
point of view, or physical interpretation, that underwrites it; for it is in all cases
desirable. Certainly it is possible to define a classical thermodynamic entropy
function that is extensive, and demarcates precisely the thermodynamically al-
lowed transformations of initial into final states (whether or not by a quasi-static
process), even for closed systems; let the statistical mechanical account of it fall
where it will. Using the methods just outlined, one will be hard put to iden-
tify the ‘ur-particles’, whose number strictly does not change, in all physical
cases. The analysis of Ehrenfest and Trkal relied on the immutability of atoms,
but why not, as countenanced by Lieb and Yngvason (1999 p.27), contemplate
nuclear interactions as well? So long as initial and final states are comprised
of non-interacting systems, classically describable, each in a (thermal) equilib-
rium state, classical thermodynamical principles apply, however violent (and
non-classical) the transformations that connect them. These principles ensure
the existence of entropy functions, additive and extensive for each constituent
classical equilibrium subsystem, now matter how various. There is no difficulty
in defining the latter, in classical statistical mechanics, assuming permutability,
but it is far from clear how this may be achieved (or even that it should be
possible at all) when it is rejected, and one restricts oneself to the methods of
Ehrenfest, Trkal, and van Kampen. ©

Van Kampen’s incoherence arguments were more rhetorical. It is true that
unobservability per se is not a good reason, in statistical mechanics, for iden-
tifying microscopic configurations; but Gibbs said only that ’if the particles
are regarded as indistinguishable, it seems in accordance with the statistical
method...” (Gibbs 1902, p.187)), and for a further indication of what he meant
by the latter, his conclusion was that ‘the question is one to be decided in accor-
dance with the requirements of practical convenience...” (p.188). Gibbs spoke
as a pragmatist, not as a positivist, nor as someone muddled on method.

I will approach van Kampen’s remaining incoherence argument indirectly.
Alexander Bach, whose monograph Indistinguishable Classical Particles goes a
long way to rehabilitating the concept of indistinguishability in classical statis-
tical mechanics, voiced a related objection that he himself found compelling.

6Elements of this argument are due to Justin Pniower (see his (2006) for his somewhat
stronger claim that extensivity is indeed an empirically falsifiable principle).



As a result, he thought it important to distance his concept of classical in-
distinguishability from this other, indefensible kind. The latter takes particle
indistinguishability all the way down to the microscopic details of individual par-
ticle motions, whereas, according to Bach, it ought to concern only statistical
descriptions (probability measures). In the sense Bach intended this restriction,
it is simply not the same concept as indistinguishability in quantum mechan-
ics,” which does go all the way down to the microscopic level and the details
(such as they are) of individual particle motions. If Bach were right on this
point, the concepts of classical and quantum indistinguishability would differ
fundamentally.
Bach is led to this view because:

Indistinguishable Classical Particles Have No Trajectories.
The unconventional role of indistinguishable classical particles is best
expressed by the fact that in a deterministic setting no indistinguish-
able particles exist, or - equivalently - that indistinguishable classical
particles have no trajectories. Before I give a formal proof I argue
as follows. Suppose they have trajectories, then the particles can be
identified by them and are, therefore, not indistinguishable. (Bach
1997 p.7).

Bach’s formal proof proceeds by identifying the coordinates of such a pair
(in 1-dimension) as an extremal of the set of probability measures M1 (R?),
from which the ‘diagonal’ D = {< z,z >€ R?* z € R} is deleted (because
the particles are assumed impenetrable); and by characterizing classical indis-
tinguishability as a feature of the state, namely states in M_}_ R?), whose
extremals are of the form

sym(

1
Ho oy = D) (5<w,y> + 6<y7w>)a <z,y>€ RQ\D

(i.e. states concentrated on the points < x,y >, < y,z >, x # y). It concludes
with the observation that no such symmetric state is an extremal of M} (R?),
hence no such state assigns coordinates to the particle pair.

But why not say instead that the coordinates of classical indistinguishable
particles on the contrary attach to points in the reduced state space? l.e.,
for two particles in 1—dimension, they are extremals not of Mi(RQ), but of
M7 (R?/II,), where R?/II, is the space obtained by identifying points in R?
that differ only by a permutation. Passing to this quotient space defeats Bach’s
formal argument. This can also provide a starting point for the definition of the
quantum theory of indistinguishable particles (by quantization on the reduced
configuration space).®

"It is closer to De Finetti’s concept of ‘exchangeability’, called ‘purely classical’ by van
Fraassen (1991, p.414).

8 As shown by Leinaas and Myrheim (1977). Tt is of interest that of the two objections
to Schrodinger’s use of functions on configuration space made by Einstein at the fifth Solvay
conference, one of them was that points related by permutations were not identified (Einstein
(1928); whether he would have welcomed Leinaas and Myrheim’s clarification is not so clear).



We should locate clearly our point of difference with Bach. His argument
that identical particles cannot have trajectories, for otherwise particles would
be identifiable by them, was intended to show not that classical indistinguisha-
bility makes no sense, but that it only makes sense if description- relative (and,
indeed, is restricted to a level of description that does not describe individual
trajectories). Hence his equation:

Indistinguishability = Identity of the Particles + Symmetry of the
State (Bach 1997 p.8).

We can agree with Bach that indistinguishability is a matter of the symmetry
(permutability) of the description, but not with his further point, that a sym-
metric description is impossible if it is so detailed as to specify the trajectories.
For why not allow that an equivalence class of trajectories in configuration space
(under the equivalence relation ‘is a permutation of’) indeed specify a single tra-
jectory? - not, of course, in configuration space, but in reduced configuration
space. We are clearly going round in circles.

The case against classical indistinguishability that it is unnecessary is moot,
that it is incoherent is question-begging. What of van Kampen’s criticism that
it is unmotivated? Granted that macroscopic unobservability is not in general
a condition, in statistical mechanics, for identifying putatively distinct states,
there remains another condition which is - which is in fact much more universal.
Indeed, it can be formulated and applied across the gamut of physical theories.
The condition is this: insofar as permutations are mathematical symmetries of
the equations, adequate to a given set of applications (for a closed system), then
they should be treated just like any other group of symmetries - that is, points
in the state space for such systems related by the symmetry transformation
should be identified (and we should pass to the quotient space). This point is a
familiar one in the context of space-time symmetries, for example translations
in space, where the quotient space is the space of relative distances. Why not
treat permutations just like any other symmetry group, and factor them out
accordingly??

3 Demystifying Classical indistinguishability

The answer, presumably, is that we surely can single out classical particles
uniquely, by reference to their trajectories. But there is a key objection to this
line of thinking: so can quantum particles, at least in certain circumstances, be
distinguished by their states. No matter whether the state is localized or not,
the ‘up’ state of spin, for example, is distinguished from the ‘down’, and may
well be distinguished in this way over time. In such cases, particle properties
can be used as names.'°

9For the general method and its rational, see my (2003a,b).

10This point was earlier made by Shankar (1980 p.283-88, particularly p.284; I am grateful
to Antony Valentini for bringing this to my attention). I will come back to this matter in the
final section.



In the case of fermions it might even be thought that such an identification
is always possible. Thus Pauli recounts his discovery:

On the basis of my earlier results on the classification of spec-
tral terms in a strong magnetic field the general formulation of the
exclusion principle became clear to me. The fundamental idea can
be stated in the following way: The complicated numbers of elec-
trons in closed subgroups are reduced to the simple number one if
the division of the groups by giving the values of the four quantum
numbers of an electron is carried so far that every degeneracy is re-
moved. An entirely non-degenerate energy level is already ‘closed’,
if it is occupied by a single electron: states in contradiction with this
postulate have to be excluded. (Pauli 1946 p.29).

Electrons may be simply identified by their quantum numbers (and as such the
permutations have nothing to act upon). As Stachel (2002) has recently re-
marked, extending Einstein’s famous ‘hole argument’ to a purely set theoretic
setting (whereupon the symmetries analogous to diffeomorphisms are permuta-
tions), one can talk of the pattern positions themselves as the objects (which
are not themselves permutable, no more than sets of quantum numbers); he too
recommends that we identify electrons by their quantum numbers.

This amounts to identifying electrons as 1-particle states. Of course there
are plenty of situations where (because energy degeneracies are not always elim-
inated) this does not suffice to point to any unique electron,!! but these concern
further symmetries, unrelated to permutations per se; symmetries which may
also be present in the classical case and lead to exactly the same difficulty
(in such situations one cannot refer to a unique classical trajectory either).!?
The real distinction in the two cases is this: in quantum mechanics, given an
(anti)symmetrized state constructed from a given set of orthogonal vectors {p}, },
k =1,..,N, one can individuate one particle from the remaining N — 1 by its
state, and one can in principle, when the Hamiltonian factorizes, track the time
evolution of that particle (that state); but nothing comparable is possible if the
state is a superposition of such (anti)symmetrized states.

That marks a profound difference from the classical case, but it does not
affect the comparison we are concerned with: a state of definite occupation
numbers is nevertheless permutation invariant, and the particles it describes
are still indistinguishable. To this the classical analog is clear: just as we may
speak of quantum states, rather than particles having states, so we may speak
of classical trajectories, rather than particles having trajectories. But equally,
if we do talk of the particles (that may be in various states, or have various
trajectories), that are otherwise the same, then we should do so identifying per-
mutations of particles among states, for there is no further fact as to which

1A point recently made by Pooley (2006); here Pooley also argues against the similarity of
permutation symmetry in quantum mechanics with general covariance in space-time theories,
a point I shall come back to at the end.

12But in every case one can still discern between the electrons, or classical particles; see my
(2003a, 2003b, and particularly 2006) for further discussion.



particle is in which state, or which has which trajectory, relevant to the dynam-
ics. Returning to Van Kampen’s ‘incoherence’ argument that ‘the trajectory...
does not recognize this equivalence because it cannot jump from one point to
an equivalent one’ draws its effect, so far as it goes, from mixing the two kinds
of description. Our conclusion, again: indistinguishability (permutability, in-
variance under permutations) makes just as much sense classically as it does in
quantum mechanics.

The matter can even be pushed as a point of logic, for the requirement of
indistinguishability, understood as permutability, would seem to make no dif-
ference to a language that is void of proper names. Help yourself to such a
language, bracketing for the time being any scruples you may have on its ulti-
mate adequacy; then you are in much the same position as if you had restricted
yourself to complex predicates totally symmetric in all of their arguments (at
least if you restrict attention to finite numbers of objects). For it can be proved
(see the Appendix):'3

Theorem: Let £ be a first-order language without any proper
names (0—ary function symbols). Let T be any £—sentence satisfi-
able only in models of cardinality N. Then there is a totally symmet-
ric predicate Gxy...xy € L such that Jzq...3znyGx1...xN is logically
equivalent to T

The intuitive point is indeed very simply made if we consider only purely existen-
tial sentences, like Jxq...3xny Fx1...xn, which is obviously logically equivalent to

dzq... 3z N \/:[71 Fzq...Fxy, whatever the predicate F. And sentences like this
are, one would have thought, perfectly sufficient to describe the configuration
of a system of particles in space.

But that makes the restriction (if it amounts to no more than the renounc-
ing of names) seem purely metaphysical (and note that it applies equally to
descriptions of non-identical particles).'* Indeed, according to Huggett (1999),
the principle of indistinguishability is none other than antihaecceitism, an old
doctrine of scholastic philosophy, and one that is surely devoid of empirical
significance. His conclusion was endorsed by Albert (2000):

There is a certain fairly trivial sense in which it ought to have
been obvious from the outset (if we had stopped to think about it)
that the facts of thermodynamics cannot possibly shed any light on
the truth or falsehood of the doctrine of Haecceisstism. The ques-
tion of the truth or falsehood of the second law of thermodynamics
is (after all) a straightforwardly empirical one; and the question of
Haecceisstism, the question (that is) of whether or not certain ob-
servationally identical situations are identical simpliciter, manifestly

I3For further discussion, see Saunders (2006).

M1f ‘essential’ attributes of particles - charge and mass and so on - were also specified by
the state, one would indeed have a theory in which all particles whatsoever are permutable.
(I shall come back to this point in Section 5.)

10



is not. Nevertheless, it might have turned out that the statistical-
mechanical account of thermodynamics is somehow radically simpler
or more natural or more compelling or more of an explanatory suc-
cess when expressed in a Haecceisstic language than it is when ex-
pressed in a non-Haecceisstic one. And the thing we’ve just learned
(which seems to me substantive and non-trivial and impossible to
have anticipated without doing the work) is that that is not the case.
( p.47-48)

But whilst I have some sympathy with Huggett’s equation, it should be obvious
from the discussion of Section 2 that all is not well with this way of putting it.
To suggest, as Huggett did (citing van Kampen (1984)), that extensivity of the
entropy is only a ‘convention’, is clearly unsatisfactory. But that to one side, it is
obvious that permutability can have empirical question, indeed straightforward
empirical consequences, for if the state-space is Hilbert space, rather than phase
space, it forces a change in particle statistics! How can a change in metaphysics
have that consequence? And with that we are back to our puzzle: What is
responsible for the difference between quantum and classical statistics?

Permutability, we should conclude, is not a metaphysical principle, nor
merely a convention; if not in itself an empirical claim, it makes a contribu-
tion to others that are. But we need not pursue the question of the precise
status of this principle, given only that it makes classical sense; whereupon we
are returned to the puzzle as stated.

4 The explanation for quantum statistics
To begin at the beginning:

The distribution of energy over each type of resonator must now
be considered, first, the distribution of the energy E over the N res-
onators with frequency v. If E is regarded as infinitely divisible, an
infinite number of different distributions is possible. We, however,
consider - and this is the essential point - E to be composed of a de-
terminate number of equal finite parts and employ in their determi-
nation the natural constant h= 6.55x10~27 erg sec. This constant,
multiplied by the frequency, v, of the resonator yields the energy
element Ac in ergs, and dividing E by hv, we obtain the number P,
of energy elements to be distributed over the N resonators. (Planck
1900 p.239).

It is noteworthy that permutability (indistinguishability) seemed perfectly
natural to Planck in this setting: for why distinguish situations in which one en-
tity is allocated to one resonator, rather than another, when the entity is merely
an ‘energy element’? Boltzmann likewise identified permutations of energy el-
ements, both in his 1868 derivation and that of 1877 (using the combinatorics

11



factor below) - but differed in the crucial respect that he took the limit in which
the energy elements went to zero.'®

How many ways can P energy elements be arranged among N resonators?
This question is important, if each such arrangement is equiprobable (as we as-
sume). Call the number W;. For it Planck took from Boltzmann the expression:

(P+N—1)!
Wr=-—c—. 2

I~ 7PN — 1) 2)
For (this derivation is due to Ehrenfest) an arrangement can be given as a
sequence of symbols (where n; € {0,1,2,..., P}, i=1,..,N):

ni n2 nN

of which there are P symbols ‘p’ in all (so Zivzl ns = P), and N — 1 symbols
‘’. Given such a sequence one can say exactly how many energy elements ny,
are in the k-th cell (the ‘occupation number’ of each cell), but not which energy
element is in which cell. If no such further facts are either relevant or available,
W7 is then simply the number of distinct sets of occupation numbers (of distinct
arrangements, in Planck’s sense). There are (P + N — 1)! permutations of
P + N — 1 symbols in all, but of these, those which only shuffle ‘p’ s among
themselves, or ‘|’s among themselves, do not give us a new set of occupation
numbers; so we must divide by P! and by (N — 1)!.

Now adopt a change in notation and physical picture; let the P quanta be
called ‘particles’, and the IV oscillators ‘cells in phase space’, with the new nota-
tion ‘N’ and ‘C” respectively. The question may now seem to arise as to which
particle is in which cell; to which the answer is there are CV possible choices,
one for each set of ‘occupation numbers’ ng, k = 1,..,C, with a multiplicity to
allow for permutations of particles among different cells. In this time-honoured
way obtain:'0

Wp=CV = > N (3)

nil..nge!

occupation numbers
s.t. 20 ne=N

There is one further complication: the numbers C, N are associated with
particular regions of phase space, parameterized by other variables (usually the

151 refer to Bach (1990) for a detailed study of this history.
16The second equality is obvious by inspection. It is a special case of a more general theorem
(the multinomial theorem), which says that for arbitrary quantities z1...z¢
n n
Nz z5¢

(Zl +..+Zc)N = Z

| |
all C—tuples of integers ni...n¢ nyt.-ne:
s.t. 25:1 ng=N
As defined below, Botzmann’s count of complexions is obtained for z; = ... = z¢o = 1, his
volume measure for z; = .. = z¢ = 7. (For this and the combinatoric expressions that follow,

see e.g. Rapp (1972).)
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energy). Thus, in the case of the Planck distribution, by the frequency (so C
cells in the k'" frequency range, etc.). If Ej is the energy of the k' region,
then Cj is the corresponding degeneracy (number of cells all in that energy
range). Let Ny particles lie in region k, and let there be j regions in all; then
the constraint on the total energy Ey,; is that Zizl NpEy = Eyy; if particle
number too is conserved (with Ny, particles in all), then the total number of
arrangements is:

Wp = > Ni! ¥ CNe, (4)
Nyl NG LR

sequences Ni...N;
s.t. 7 1 Ns=Niot, 3.0 NsEs=F;o4

Here the permutation factors arise as distinct regions of phase space correspond
to different choices as to which N7 (of Ny, particles) are assigned to region 1
(with Cy cells), which Ny (of Not — N1) to 2 (with Cy cells), and so on.

Eq(4) was also written down by Boltzmann, in his 1877 memoir. Contrast
it with the analogous expression for Wr:

ey fomen

sequences Ni...Nj k=1
s.t. 121 Ne=Niot, 32i_1 NaEs=FEtor

It is a spurious simplification of (4) to suppose that the degeneracy of each
energy Ej is unity (i.e. Cx = 1 for each k), and to go on to identify the N’s
with the occupation numbers ny of (3). Under that assumption, the limiting
agreement between (4) and (5) is rather hard to see. It is that in the limit in
which Ok > Nk
(N +Cr, — 1)l C* 6
Nl(Cr — 1)U N (6)

whereupon Wi ~ Wp/N;!. But away from this limit, the two are quite differ-
ent; moreover, the quantity Wp/N;.! is not a combinatorial count of anything
(it is not an integer). Rather, we should interpret it as the expression:

WD 1 J CkT
Niot! = TN Z H (7)

sequences Ni...Nj k=1
s.t. 11 No=Niot, 301 NsEs=Eqo;

i.e. the reduced phase space volume (in the units 7Vt*) corresponding to
the stated constraints on N and E. Each term in the product is the reduced
Ny —particle phase space volume corresponding to the Cy cells in the 1-particle
phase space, each of volume 7.

The breakdown of the approximation (6) is responsible for the entire differ-
ence between classical and quantum statistical equilibria. Evidently to under-
stand it we need only investigate it for a single (arbitrary) phase space region &

13



(so from this point on we drop the subscripts on ‘N’ and ‘Cy’.) For low num-
bers the approximation can be illustrated graphically. We take the simplest
case of N = 2 particles in 1—dimension (so with a 4—dimensional phase space).
First the distinguishable case.

Distinguishable particles Divide each 1-particle phase space into C cells, as
did Boltzmann, say C' = 3. Then there are CV = 32 = 9 different ways the two
particles can be distributed in this region of the 2—particle phase space. Thus,
supposing the two particles are named ‘a’, ‘b’, the region in I'? corresponding
to the arrangement in which particle a is in cell 2 and particle b is in cell 3
is the region shaded (Fig.1, suppressing one dimension of I''). If each such
arrangement is equiprobable, one obtains Maxwell-Boltzmann statistics.

Fig.1: Distinguishable particles

On the alternative way of putting it, in terms of phase space volume, if 7 is
the size of each cell in the 1-particle phase space, the volume of the N—particle
phase space is (C7)™V, or 7V times the number of all arrangements of N particles
in I'N. That is, we may equally take Boltzmann’s thermodynamic probability
as phase space volume (Boltzmann himself often spoke of it in this way).

These two quantities, the count of arrangements, and their corresponding
volume, are quite generally proportional to the count of available states in the
Hilbert space of N distinguishable particles, corresponding to the classical phase
space region I'V, each with a 1-particle Hilbert space of C' dimensions. For
N =2 and C = 3, as above, we have a 2-particle Hilbert space H> = H' @ H',
where each 1-particle space is spanned by three orthogonal states ¢, ©q, 3.
There are again CV = 32 = 9 orthogonal two-particle state spanning H?2.

There is therefore one orthogonal 2-particle state in H? (represented by dots
in Fig 1) for each arrangement in I'?, each with the same phase-space volume
by Boltzmann’s assumption, and each with the same Hilbert space measure
(counting each state - each dot - as equiprobable). Under these assumptions,
the measures on the quantum and classical state spaces are the same (the num-
ber of dots is proportional to the total phase space volume); so distinguishable
quantum particles also obey Maxwell-Boltzmann statistics. Of course there are
other important differences, notably, that the entropy no longer has an arbitrary
additive constant (corresponding to the arbitrary choice of the unit 7); its value
at absolute zero, in particular, is NkIn Cy, where Cj is the dimensionality of
the subspace of lowest energy Fy. For another, that for sufficiently small tem-
peratures, only particles in the lowest energy states contribute to the specific
heats of solids (as discovered by Einstein in 1907) - but this bares more on the
discreteness of the spectrum of the energy.

Indistinguishable particles In the case of classical indistinguishable par-
ticles we should use instead the measure on the reduced phase space for this
region, i.e. I'V/IIy. For N = 2, C' = 3 this amounts to going over to Fig.2.

14
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The volume goes down from (C7)Y to (C7)" /N!; the number of arrangements
also goes down, but not by the same factor. And correspondingly, the volume
of each arrangement is no longer the same.

Fig.2: Indistinguishable particles

This point is obvious by inspection of Fig.2: the volume is now (C7)Y /N! =
972/2, but of course there are not CV/N! = 4.5 arrangements - rather, there
are precisely six different ways of distributing two indistinguishable particles
over three l-particle cells, without regard for which is in which cell (one for
each dot in Fig.2); but clearly the reduced phase space volumes of three of the
arrangements are twice those of the others (the ones along the diagonal - this is
why in the classical case the statistics remains Maxwell-Boltzmann. Only the
ratios of volumes, the relative probabilities, matter to the statistics). Suppose
C = 2 (so ignoring the top row and rightmost column); take in illustration two
fair coins, with the two regions of the 1—coin phase space labelled ‘H’ and ‘“T”
respectively; then the outcome {H, T} (an unordered pair) is twice as likely as
either {H, H} or {T, T}, just as for distinguishable coins.

The count of distinct arrangements is given by (2). In quantum mechan-
ics, this count goes over (for any basis) to the count of orthogonal totally sym-
metrized states in Hilbert space (the dimension of the subspace corresponding to
the macroscopic constraints). In our example, this includes the 3—dimensional
subspace spanned by the vectors ¢, @ ¢, k = 1,2, 3, as before, but now directly
summed not with the 6-dimensional subspace spanned by ¢, ® ¢;, j # k, but
with the 3-dimensional subspace spanned by ¢, ® ¢, + ¢; ® ¢, j # k. The
crucial difference with the classical case is: there is no other measure on the
state space but this. And using this measure, the diagonals must have the same
probability as the off-diagonals - therein lies the difference with classical the-
ory (and the reason why, for two quantum coins, the probabilities for {H, T},
{H,H}. and {T,T} are all the same). Arriving at a quantity like (CT)™ /N,
rather than (N 4+ C — 1)!/N!(C — 1)!, is not an option.”

It is worth making this point again in terms of the occupation numbers.
For each arrangement of distinguishable particles, there are N!/n!...n¢! distinct
assignments of the N particles over C cells, so as to place ny in cell k, k =
1,...,C. The total number of such arrangements is C'V, which as we have seen

(Eq.(3)) is:

|
N! _oN
Z nil..ng!
Occupatlon numbcrs

s.t. Ekczl np=N

Why then, if division by N! compensates for unwanted permutations, do we not
obtain in this way the same result as did Planck? In fact, to get the Planck

"My thanks to David Wallace for conversations on this point.
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expression, the factor N!/n;il..n¢! is set equal to one, weighting each Planck
arrangement the same, thus obtaining;:

5 L (N+C-)

o C —1)! -

occupation numbers N(C 1)
st. 9 ng=N

That you should not do, thinking classically, if the volume is what matters, and
you are going to identify phase space points related by permutations. For in
that case the volumes of arrangements along the diagonals of the reduced phase
space (with occupation numbers greater than one) should be weighted less than
all the rest. Since the relative weights are all that matter to the statistics, using
the factor N!/nql..ng!, or 1/nq!..n¢! (dividing by an overall factor of N!, as
one should), makes no difference. In comparison to this, quantum mechanics,
weighting them equally, increases their weights in comparison to their classical
values. This explains the comment, often made, that particles obeying Bose-
Einstein statistics have the tendency ‘to condense into groups’ (Pauli 1973 p.99).

Quantum mechanically there is no volume measure, and no reason to weight
one set of occupation numbers differently from any other. Classically, one might
think both options are on the table: the (integral) count of arrangements, given
by Planck’s expression, of the (non-integral) volume of reduced phase space,
as given by the corrected Boltzmann expression. But the former, unlike the
latter, depends crucially on the size of the elementary volume 7; if there is to
be a departure from classical statistics on this basis, it will require the existence
of a fundamental unit of phase space volume, with the dimensions of action.'®
The very discrepancy between Planck’s expression and the reduced phase space
volume (the quantity C*V/N!) disappears, as it must, as 7 — 0, as inspection of
Fig.2 makes clear (imagine the triangle partitioned into much smaller squares;
then the number of states - the number of dots - is approximately proportional
to the area). Planck’s combinatorial count, multiplied by 7%V, is an increasingly
good approximation to the volume as 7 (or equivalently 1/C™) become small;
that is just the condition C' > N considered previously, under which quantum
and classical statistics agree (where on average no particle has the same 1-
particle energy as any other, and the arrangements along the diagonal are on
average unoccupied).

For the same reason Fermi-Dirac statistics are undefinable in classical terms,
for the condition that no two particles are in the same 1-particle state, or in
the same cell of the 1-particle phase space, is only physically meaningful if these
cells have a definite size.'”

18 A consideration that applies to those, like Costantini (1987), who have claimed to explain
quantun statistics in classical terms.

19Note added in proof: a condition that can, admittedly, be formulated independent of
quantum mechanics (e.g. in terms of a lattice theory); as explained by Gottesman (2005).
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5 Addenda

What explains the difference between classical and quantum statistics? The
structure of their state spaces: in the quantum case the measure is discrete,
the sum over states, but in the classical case it is continuous.?’ This makes
a difference when one passes to the quotient space under permutations, as we
should for particles intrinsically alike.

Our purely logical theorem, that shows all objects (of any finite collective)
to be permutable (in a language without names) is evidently much broader in
scope, for there is no restriction to objects intrinsically the same. There is
also another long-standing tradition (due to Feynman 1965), that explains the
distinction between classical and quantum statistics in terms of the possibility
(or lack of it) of reidentification of particles over time. Both raise questions over
the adequacy of the explanation so far given.

In fact the two are connected. For let us suppose that distinct particles
may be labelled by distinct properties that are constant in time. Take again
the example of two coins (N = C = 2), but suppose now that one coin is
red (r) and the other green (g). Taking ‘red’; ‘green’ as proper names, one
has distinguishable coins that may take on one of two phases (H or T'), and
correspondingly one has the unreduced phase space, similar to Fig.1, but now a
2 by 2 grid (with ‘r’ and ‘¢’ in place of ‘a’ and ‘b’). But assimilating colours to
the phases instead, we pass to the case C = 4 (the four phases {H,r}, {H, g},
{T,r} and {T, g}), and the coins are again indistinguishable (with the reduced
phase space of Fig.3). However, supposing the colours are stable under each toss
of the coins, certain cells of the 2 particle phase space are inaccessible (those
in which the two coins have the same colour, the regions shaded); the effective
phase space for the 2 indistinguishable coins, consisting of the unshaded boxes in
Fig.3, gives back the original unreduced phase space (where the colours function
as names).

Fig.3: Recovering distinguishable particles

This explains why differences in intrinsic particle properties (such as mass,
spin and charge), stable in time, are grounds for treating them as distinguishable
(with no need to (anti)symmetrize in Hilbert space). The point about identi-
fication over time also falls into place; whatever the criterion for each particle,
it is ex hypothesis stable in time and shared with no other. In the classical
case, where there are definite trajectories, one can construct such properties by
reference to a location in phase space at a given time (so that a particle has
that property if and only if its trajectory passes through that location at that
time). Quantum mechanically, for a state of non-interacting particles of definite
occupation numbers at a given time (all of them 0’s and 1’s), the procedure

20T do not suppose quantum interference phenomena more generally, traceable to
(anti)symmetrization of the state, are similarly explained (I am grateful to Lee Smolin and
Rafael Sorkin for pressing this point upon me).
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is the same (the orbits of 1-particle states replace trajectories); or, alterna-
tively, in the solid state, taking particles as lattice-sites, identifying particles by
their position over time. In any of these ways one can pass to a phase space
or Hilbert space description in terms of distinguishable particles, subject to
Maxwell-Boltzmann statistics, and a non-extensive entropy. The utility of any
such description, however, will depend on the ingenuity of the experimenter, to
define operational conditions for the reidentification of such particles over time.
In the solid state such conditions are plain; identification in terms of states
is also possible in the high-temperature limit (occupation numbers all 0’s and
1’s), where talk of 1—particle states amounts to talk of modes of the quantum
field (with excitation numbers all 0’s or 1’s) - this goes some way to explain-
ing Schrodinger’s result, that one can treat Bose-Einstein particles in terms of
waves obeying Maxwell-Botlzmann statistics.?! For the classical example where
one reidentifies particles over time by their trajectories, one needs more fanciful
conditions, say a Maxwell’s demon able to keep track of the individual mole-
cules of a gas over time; that makes clear why one ought to have an entropy of
mixing, and hence a non-extensive entropy function, in such circumstances.

A final comment. It may be objected that the treatment of indistinguishabil-
ity is different in quantum mechanics than classically, and different from other
classical symmetries like general covariance, precisely because one does not, in
quantum mechanics, and parastatistics to one side, take an equivalence class of
states as representing the physical situation; one takes instead the symmetrized
state, itself a vector in the unreduced state space. Nothing comparable is avail-
able classically.

It is true that classical and quantum mechanics differ in this respect: clas-
sically only very special states in the reduced state space are also to be found
in the unreduced space (and none at all if, following Bach, the diagonals are
omitted). But the more general point, that classically one works not with a
single invariant state, but with an equivalence class of states in the unreduced
state space, I take to be a reflection of something still more fundamental: it is
that whilst in both cases one can pass to the quotient space, only in quantum
mechanics is the topology preserved unchanged (the space of symmetrized vec-
tors is topologically closed, so it itself a subspace). The topology of the classical
quotient space, under permutations, is in contrast enormously more complex
than that of the unreduced space (and, omitting the diagonals, is not even
topologically closed). Easier, then, classically, to work in the unreduced state
space, taking the equivalence class of points as representative of the physical
situation.??

21 And suggests a corresponding account of fermions.

22 As observed by Gibbs: ‘For the analytical description of a specific phase is more simple
than that of a generic phase. And it is a more simple matter to make a multiple integral
extend over all possible specific phases than to make one extend without repetition over all
possible generic phases.” (Gibbs 1902 p.188).
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Appendix

Proof. Let LT differ from £ only in the addition of countably many names

a1, as,... The proof proceeds as follows: we construct a sequence of sentences

A, Ty, Ty, Ts, where the last is of the desired form, where 77,75 €£T, and A is
N

N
the £ —sentence B /1\# | a; # a; \NVx \/k:1 x = ag, satisfying:
i,j=1,i#j

(V ) Tg = Ts.

Since any sentence S in any first-order language has the same truth value in
models that differ only in their interpretations of non-logical symbols not con-
tained in S, the truth of T', T's (which contain no names) in a model of L1 with
universe V is independent of the assignment of names in £ to elements of V.
It then follows from (i) through (v) that F T < Ts. For suppose Ts is true in
V; if A is also true, then by (ii),(iii),(iv), T is true in V. Suppose T is true and
A is false in V; choose a model W identical to V' save in the interpretation of
symbols not in Ts, 7', in which A is true (it will be clear from the construction
of Ts that it only has models of cardinality IV, so such a model can always be
found). Then as before, T is true in W; hence also in V. Thus Ts E T. The
proof that T'E Tg uses (i), (iii), (v), but is otherwise the same.

It remains to prove (i) through (v). Define 77 as T'A A (so (i), (iv) follow
immediately). Without loss of generality, let 7" be given in prenex normal form,
i.e. as a formula @,...Q1Fxy...x,, n > 1, where each @); is either Vz; or Jx;.
Define a sequence of sentences T ..., T(") by:

7 k) d:f Q1...Qun_tG® . 2y _pai...ay, for 1 <k < n.

T = GMa,...an.

def

The predicates GV, ..., G™) are defined as follows. Let [k] be /\ if Qy is

Vi, and otherwise \/; for any predicate Pxy...z;..., let Pxy...ak... denote the
J
result of replacing every occurrence of z; in P by aj. Then:

1 N
GV . 2p_1ay...an = n];_ Fay..xp_1a,
def n

G(kJrl)fUl-~-$n—(k+1)a1-~aN d:f [nfk],f\ilG(k)-rl~~~$7L—(k+1) a; ai...an, for k+1 <
e n—k

n
G™ay..an = [1]£V:1G("_1)aia1...a1v.
def 1

Evidently G is totally symmetric in the ay’s, and if G*) is, so is G+
hence, by induction on k, so is G("~1); whereupon so also is G(™. The logical
equivalences A E T «— TW, A E T « T+ are obvious, hence, again by
induction on k, A E T « T". Defining Ty as T A A, (iii) follows.
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Now define Tg as the L-sentence obtained by replacing every occurrence of
ap in Ty (i.e. in T A A) by a3, k = 1,.., N, and preface the expression that
results by N existential quantifiers. Obtain in this way:

N N
Jzq1..3zy | G™ayan A N /\ .xi #x; ANVz \/k:1 T =2 d?f dri..dznyGxy...x N
i,5=1,i#j

Then (v) is immediate. Since G(™) is totally symmetric, so is G, as required.
It only remains to prove (ii). But in any model in which A is true and Tg is
true, Gar(1)---ax(n) is true for some choice of permutation 7. Since G is totally
symmetric, T is true as well m
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