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On the  Emergence of  Individuals 
in  Physics
Simon Saunders

I take “individual” to mean an object that (i)  persists, somehow, in 
time, and (ii) can be uniquely identified throughout the time that it per-
sists. I  take “object” (and interchangeably, “thing”) to mean anything that 
can stand in predicate position, typically the value of a bound variable; in 
this I  follow  Quine.

The main task of this chapter is to show how individuals arise from 
classical and quantum indistinguishable particles—from objects that are 
permutable, meaning, whose descriptions are invariant under permutations. 
There is a prima facie difficulty with (ii):  how can something be uniquely 
identified—at any time—if when interchanged with other things the over-
all description is unchanged? The problem arises, I  shall argue, as much 
in classical physics as in quantum physics, although it takes a slightly 
different form in the two cases. In both cases (in the quantum case only 
in certain circumstances) we can identify something else as not being sub-
ject to interchange; for example, we can pass from talk of particles that 
have states to talk of the states themselves—to points of phase space or 
one-particle states in Hilbert space (one-dimensional subspaces). But as we 
shall see, this option has no real connection to the way we ordinarily refer 
to individuals in the laboratory, or the use of names in defining the state 
spaces of individuals as distinguishable things.

In this chapter I  am interested in the question:  what is the metaphysics 
appropriate to the way individuating reference actually goes, in the labora-
tory, consistent with the requirement of indistinguishability? This amounts 
to the question (or I  shall take it as the question) of how permutation 
symmetry can be broken, at one level of description, whilst remaining 
intact at a more fundamental level of description.

CHAPTER  9
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9.1  Logic and Ontology

My starting point is the notion of object in first-order logic in simple 
declarative sentences. This would seem the most secure ground for relating 
representations in physics (phase space, Hilbert space) to things, via refer-
ring expressions in ordinary language. I  see the detour through language 
as reflecting the fact that physical theories are primarily about quantities, 
rather than things, so we cannot simply consult our best physical theories 
to discover what there is. It may even be that the world is at bottom a 
mathematical structure, or “has” a mathematical structure; but in trying to 
be more precise as to what that involves, I  see no safer way than to put 
questions of ontology into words, using simple declarative sentences and 
the standard apparatus of first-order quantifiers. So given the mathemati-
cal structure of a physical theory, if there are puzzles about what aspects 
of it are real, or correspond to reality, or what has purely mathemati-
cal as opposed to physical significance, we should first see what can be 
said about things in simple declarative terms—in terms of objects, iden-
tity, properties, and relations. Objectual structure in this sense I  see as a 
coarse-graining of the mathematical structure of the world:  the pegs and 
poles that gather its materials and most reliably tie them together.1

Evidently what is needed for this to work is a close association of 
predicates with physical quantities, on the one hand, and with the domain 
of quantification, on the other. My suggestion is that the “allowed” predi-
cates be those that can be constructed from values (and changes in values) 
of physical quantities, and specifically quantities that are invariant under 
the exact symmetries of a theory. This plausibly includes all quantities that 
are actually measurable. And further, that allowed predicates be tied to the 
domain of quantification by the requirement that no more is admitted than 
are required by Leibniz’s  law.2

This needs some explanation. Let ,  be a first-order language with 
a finite lexicon, including identity (what I  shall call primitive identity). 
Suppose further that only certain (perhaps complex) predicates in a sub-
set ( ⊂ ,  are allowed (those corresponding to physically real properties, 
defined by invariant quantities). The principle is then:  physical objects 
are values of variables (in the logical sense) that can be discerned by the 
allowed predicates. By this I mean, if s and t are terms for physical objects:

 s t F s F t
F P

= ↔ ↔
∈

Λ … … … …. (9.1)

The implication from left to right follows from Leibniz’s law (so the 
language is extensional). It is the implication from right to left that is con-
troversial, enforcing, for physical objects, a version of the Principle of the 
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Identity of Indiscernibles (PII).3 Of course, if primitive identity is itself an 
allowed predicate, (9.1) is a tautology.

Generalizing on free variables, one obtains from among the conjuncts 
of (9.1) not only sentences  like

 ∀ ↔ ∀y Fsy y Fty( ) ( )  (9.2)

but also  like

 ∀ ↔y Fsy Fty( ).  (9.3)

It is sentences of the form (9.3) that are false of the familiar supposed 
counterexamples to the PII (so by (9.1), s t=  is false as well, whereupon 
they cease to be counterexamples); those of the form (9.2) are all true. 
Thus consider Black’s two iron spheres, exactly alike, one mile apart, in 
an otherwise empty Euclidean space. Suppose allowed predicates are those 
invariant under the symmetries of this space (translations and rotations). 
Every monadic predicate true of one sphere is true of the other, including 
complex monadic predicates with embedded quantifiers, as in (9.2). But 
taking F as the symmetric, irreflexive, and invariant (so clearly allowed) 
relation “is one mile apart from,” (9.3) is false,  so  s t≠ .

As Quine (1976) showed (but using the terminology “discriminables”), 
identity construed in this way yields the following exhaustive classifica-
tion:  objects s and t are absolutely discernible if for some monadic predi-
cate, Ps but not Pt; relatively discernible if for some binary predicate, Fst 
but not Fts; and weakly discernible if for some binary predicate, Fst and 
Fts, but not Ftt and not Fss. When I  say an individual is identifiable (at a 
time or throughout a period of time), I mean it is absolutely discernible (at 
a time or throughout a period of time); thus individuals, in my sense, are 
always absolutely discernible. By “indistinguishables” I  mean things that 
are at most weakly discernible, if discernible at  all.4

Should the negation of identity itself be an allowed predicate? It is 
not, or not obviously, a relation definable in terms of the invariant val-
ues of any particular physical quantity (although, e.g., as suggested by 
causal set theory, a speculative program in quantum gravity, that might yet 
change). Rather, and more plausibly if physics is at bottom about quanti-
ties rather than things, it should be implicitly defined by them all, by the 
PII in the sense (9.1). So my proposed methodology counts against it. 
If it is allowed anyway, with identity taken as primitive, the PII in the 
form (9.1) is trivialized, and as an account of identity of physical things it 
loses its philosophical interest. But Quine’s classification remains:  it is just 
that among the things that are only weakly discerned, are those that are 
only discerned by the negation of identity. The essential notions for our 
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purposes are absolute and weak discernibility,5 categories that are defined 
whether or not primitive identity is allowed.

In summary:  individuals are absolutely discernible. Indistinguishables, 
assuming they can be discerned at all, are at most weakly discernible. 
Since a permutation leaves their state-description unchanged, it should leave 
their predicative description—in terms of allowed predicates—unchanged 
as well. But that means reference to only one of a number of indistin-
guishables, by an allowed monadic predicate, however complex, is impos-
sible:  if it applies only to one indistinguishable, and not to any other, it 
would absolutely discern it, contrary to supposition. If it applies to one 
indistinguishable, it must apply to every; if it is a binary predicate and 
applies to one pair of indistinguishables, it must apply to every pair; and 
so on. Call such predicates permutation invariant (or invariant for short). 
Any talk of indistinguishables, if it is to respect permutation symmetry (if 
it is to be allowed, if it is to be invariant under permutation symmetry) 
must be conducted in terms of invariant predicates. I  shall also talk of 
indistinguishable as permutables.

The contrast, evidently, is with predicates and function symbols (includ-
ing names) that do not respect this symmetry—as are used in descriptions 
of laboratory systems and everyday things. And now there is an obvious 
difficulty. The descriptions (states) of electrons, protons, and neutrons are 
invariant under permutations; electrons, protons, and neutrons are therefore 
at most weakly discernible. In short, they are indistinguishable. Yet ordinary 
objects are constituted by electrons, protons, and neutrons, so reference to 
ordinary objects must break permutation symmetry. Or to turn the problem 
around: what, from the point of view of a symmetry-preserving description 
in terms of indistinguishables, is being described by a symmetry-breaking 
description in terms of individuals?

Call it the paradox of constitution:  descriptions of macroscopic things 
may be singular; but specification of the electrons, protons, and neutrons 
of which they are composed is impossible without breaking permutation 
symmetry.

9.2  Particles and Trajectories

The paradox seems stronger in the case of classical particles, where we 
think we know what we are talking about. But here there is an easy 
response:  simply deny that classical particles should be treated as indis-
tinguishable; insist that permutability of classical particles is simply 
unintelligible.

Since weak discernibles are permutable, and weak discernibility (as we 
have just seen) is a perfectly well-defined logical category of objects, this 
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claim is hardly obvious. But it is supported by a simple argument:  let the 
state-description pick out the exact motions of particles (so the state is not 
just a probability distribution); then the particles can be identified by their 
trajectories, and are, therefore, not indistinguishable.6

There is something right about this argument,7 but there is something 
wrong with it too, for in certain circumstances the same can be said in 
quantum mechanics. In place of points in phase space, we have rays in 
Hilbert space. Let ΠN  be the permutation group for N elements, and let 
c be a normalization constant. Consider a state of N particles of the  form

 | = | | | |( ) ( ) ( ) ( )Φ
Π

〉 〉⊗ 〉⊗ ⊗ 〉 ⊗ ⊗ 〉
∈
∑c

N

a b c d
π

π π π πφ φ φ φ… … , (9.4)

where each summand is the tensor product of N pairwise-orthogonal 
one-particle vectors φ   , elements of the one-particle Hilbert space  
labeled by the symbols “a,” “b,” etc. (so there are no repetitions of these 
symbols). Such a state is totally symmetrized; as such it is invariant under 
permutations. It describes indistinguishable particles, specifically, bosons. 
If we allow for superpositions of states of the form (9.4), we obtain the 
entire Hilbert space of N bosons.8 But restricting to states like (9.4), we 
can speak of one-particle states instead; and we may take it that each of 
these states, as orthogonal to any other, is absolutely discernible. It is true 
that in this case we do not have trajectories as such, but there is some-
thing just as good under a further restriction. Thus, let the unitary dynam-
ics U factorize, so it is of the  form

 U | = | | | |( ) ( ) ( ) ( )Φ
Π

〉 〉 ⊗ 〉⊗ ⊗ 〉 ⊗ ⊗ 〉
∈
∑c U U U U

N

a b c d
π

π π π πφ φ φ φ… … . (9.5)

Then each one-particle state has a unique trajectory, namely, its orbit 
under  U. The analogy with the classical case is complete. But now, if 
classically we can simply identify particles with trajectories—so that 
particles are not indistinguishable—then why not in quantum mechanics 
simply identify particles with the orbits of one-particle states? And if we 
can:  does it follow that quantum particles are distinguishable after  all?

Of course symmetrized N-particle states are not in general of the 
form (9.4),9 whereupon it is no longer possible to identify (or replace) 
particles by one-particle states. And there is another difficulty in the 
case of fermions, in the analogous state to (9.4) (but antisymmetrized 
rather than symmetrized):  in that case the state can also be rewritten 
in terms of other collections of N orthogonal one-particle states, as 
the singlet state of spin makes clear. Which is the right collection? 
Both difficulties show that something else is going on in quantum 
mechanics.



1

170  | Puzzles about Individuals in Biology and Physics

There surely is, but it seems to have very little to do with indistinguish-
ability. The same problems arise for distinguishable quantum particles. 
The state space for N distinguishable particles is spanned by product states

 | = | | | |Φ〉 〉⊗ 〉 ⊗ ⊗ 〉 ⊗ ⊗ 〉φ φ φ φa b c d… …  (9.6)

rather than by states of the form (9.4). For any state (9.6), each particle 
can be assigned a unique one-particle state (the kth in the sequence as 
specified by the tensor product)—a unique pairing of particles with states. 
But no such assignments of one-particle states to particles is possible for 
superpositions of states (9.6).10 And as for the second problem, the ambi-
guity of the one-particle states in the case of fermions:  it arises for the 
singlet state of spin, regardless of whether or not the two fermions are 
indistinguishable. (I shall come back to this question in section  9.6.)

The correct conclusion to draw, surely, is not that particle indistinguish-
ability makes no sense in either classical or quantum mechanics;11 it is that at 
least in some circumstances in quantum mechanics, and nearly always in clas-
sical mechanics, one can shift from a description in terms of indistinguishables 
(particles that have trajectories or that are in one-particle states) to a descrip-
tion in terms of distinguishables (the trajectories, the one-particle states). And 
notice, in this shift, we pass from a description in terms of all indistinguish-
able particles (in (9.4) and (9.5), of all N particles), to a description of a par-
ticular trajectory, a particular one-particle state, apparently without any need to 
make reference to any other trajectory or any other one-particle  state.

9.3  Indistinguishability in  Ordinary Language

The same shift in ontology can be mimicked in ordinary language. 
Consider:

 (i) Buckbeak the hippogriff flies higher than Pegasus the winged horse.

Permuting the expressions “Buckbeak the hippogriff” with “Pegasus the 
winged horse” would give an entirely different sentence, one that con-
tradicts (i). But suppose we omit proper names and make do with 
descriptive predicates instead, for example, “is Buckbeak-shaped” and “is 
Pegasus-shaped,” where being Buckbeak-shaped includes being a hippog-
riff and so on, as descriptivists about proper names recommend. Assume 
for convenience that these are the only two mythical creatures (the only 
two things in our domain of discourse), so we do not have to worry about 
uniqueness. In that case (i)  is equivalent to (dropping quantifiers)

 (ii) there is x and there is y such that x is Buckbeak-shaped and y is 
Pegasus-shaped and x flies higher than  y.
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Now consider the complex predicate

 (iii) x is Buckbeak-shaped and y is Pegasus-shaped and x flies higher 
than y, or y is Buckbeak-shaped and x is Pegasus-shaped and y 
flies higher than  x.

Evidently (iii) is invariant under permutation of x and y. Taken as a single 
complex predicate, and assuming it is the only allowed predicate (or that 
there are others but they are all equally permutation-invariant), then x and 
y are only weakly discernible (note that (iii) is irreflexive). Under this con-
straint, it is impossible to make reference to x or y singly; yet (iii) under 
existential quantifiers conveys the same information as  (ii).

In terms of properties, we have a way of understanding properties of 
permutables as disjunctive properties. It carries over to quantum mechan-
ics, where properties are represented by projection operators. Sums of 
orthogonal projectors correspond to disjunctions of the corresponding 
properties. Since they all sum to one, to obtain the negation of a property 
subtract it from one. Then for N indistinguishable quantum particles, the 
projector corresponding to the fact that there is exactly one particle that is 
an A, with corresponding 1–particle projector  P,  is

 
(iv)

  
P I P I P I P P I P

I P I P I P P
⊗ − ⊗ ⊗ − + − ⊗ ⊗ −

⊗ − + + − ⊗ ⊗ − ⊗
( ) ( ) ( ) ( )

( ) ( ) ( )
…

… … … .  

where there are N factors in each term of the summation, and 
N

N
1

=
⎛
⎝⎜

⎞
⎠⎟

summands (it is clear how this generalizes to properties shared by k N≤
particles). (iv) is not a property that one of the N particles has, and none 
of the others:  it is a property of the collective. It is the property that 
exactly one of N indistinguishable things is an A, or has the correspond-
ing property  P.

In the predicate calculus the parallel construction  is

 

(v)

  

( ) (
(

1 2 1 2 3

1 1

Ax Ax Ax Ax Ax Ax Ax
Ax Ax Ax

N N

N

∧ ¬ ∧ ∧ ¬ ∨ ¬ ∧ ∧ ¬ ∧ ¬ ∨
∨ ¬ ∧ ∧ ¬ ∧−

… …
… … NN ).

As with (iii), (v)  is permutation-invariant, and as with (iv), it is a com-
plex N-ary predicate that is true of all N particles. Of course there are 
permutation-invariant predicates with arity n N< , but they only report 
what is true of every sub-collection of n particles out of N; of what is 
true of every particle (n  =  1), of every pair of particles (n  =  2), and so 
on. Thus, “there is an x that is a Buckbeak shape or a Pegasus shape, 
that does not fly higher than itself” exhausts what can be said of one of 
the two (hence of both). The more informative predications are those that 
include all their relations. In this sense, permutability forces a kind of 
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structuralism:  it is the global ascriptions of properties and relations that 
are the most informative.

Are they informative enough? It seems so, at least to the extent that 
sentences in the predicate calculus about collections of N things are infor-
mative enough without the restriction to permutation symmetry. For it is a 
theorem that any categorical first-order sentence (hence a sentence whose 
models all have the same finite cardinality) describing N objects is logi-
cally equivalent to one of the  form

 ∃ ∃ ∃x x Fx xN N1 2 1… …  (9.7)

where F is totally symmetric (Saunders 2006a). And here I  am relaxed 
about the restriction to finitely many things, because states on classical 
phase space and in Hilbert space (supposing it is separable) are likewise 
restricted to descriptions of finite numbers of particles.

Having understood how to go from ordinary descriptive sentences to 
descriptions invariant under permutations, it is obvious how to go back 
again. From (iii), use the “that which” construction instead of quantifiers 
and variables in each disjunct, to  obtain

 (vi) That which is Buckbeak-shaped flies higher than that which is 
Pegasus-shaped, or that which is Buckbeak-shaped flies higher than 
that which is Pegasus-shaped.

The disjunction is then redundant; at the same time, there is no ques-
tion of interchanging “that which is Buckbeak-shaped” with “that which 
is Pegasus-shaped” salva veritate, for “flies higher” is asymmetric. And 
from (vi), pass to “the Buckbeak shape,” “the Pegasus shape,” and then 
to “Buckbeak” and “Pegasus,” like passing from “that which is butter” to 
“butter.” We obtain the sentence (9.1) that we started with. The predicates 
“is Buckbeak shaped” and “is Pegasus shaped” function as what I shall 
call individuating predicates.

Evidently there are two steps involved: first, find an individuating predi-
cate; second, make use of it as a mass noun, in object position in predi-
cates, without any requirement of permutability. But to be serviceable—to 
be available in a wide variety of states of affairs—the individuating predi-
cate should not include too much. It should be stable in time, if it is to 
serve as criterion that can actually be used, whilst allowing for plenty 
of change. “Animal shape” is reasonably robust in this sense, but only 
when understood in terms of general anatomy, not in terms of the precise 
shape that an animal has at a particular moment in time. It should not be 
too generic, either, if it is to absolutely discern one out of a collection 
of things at one time. It is a Goldilocks property, that is just right as a 
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referring expression for a general context of use. Considerations like these 
are familiar to descriptivist theories of  names.

9.4  Reasons for  Permutation Invariance

Agreed that we can see how the trick is done; what is the point of it? 
The lengthy disjunctive properties corresponding to permutation-invariant 
predicates seem rather contrived. Why restrict to properties like this, or 
equivalently, to predicates like  this?

One answer is that in quantum statistical mechanics and field theory, 
there are important empirical consequences of permutability. But while 
there are advantages to symmetrizing in classical statistical mechanics, in 
that case it leads to no directly testable consequence. It is unlikely to be 
of practical use in formal logic, either, so let me put the pragmatic answer 
to one side. The question remains:  why symmetrize?

An obvious line of thought is that the symmetry arises because it doesn’t 
matter which particle has which trajectory (or one-particle state), because 
the particles involved are “simples”; they all have exactly the same intrin-
sic properties (the same mass, charge, and spin). The various permutations 
of these particles (with everything else unchanged) yield observationally 
indistinguishable states of affairs, so they should not be conceptually dis-
tinguished, either. But it is not obvious how this is to work at the level 
of everyday language. In the case of Buckbeak and Pegasus, it invites us 
to picture a realm of things, all with the same intrinsic properties, each 
of which can have one or other of a number of animal-shapes. What are 
these things, exactly?

It is the wrong picture. It may be the wrong picture in quantum 
mechanics too, where—for example in string theory—the intrinsic 
(state-independent) properties of simples are in danger of disappearing 
altogether. If none of the intrinsic properties of elementary particles turn 
out to be state-independent (not mass, charge, or spin),12 what, precisely, 
remains?

An alternative picture is that the redundancy attaches not to a choice 
among physical particulars that are intrinsically the same, but to some-
thing else; to a referential device, for example, or perhaps to something 
more metaphysical.13 In formal logic:  to values of variables as elements of 
some class �,  over and above their function as relative pronouns and the 
expression of pluralities. In phase space and Hilbert space:  to values of 
particle labels, over and above their function of keeping track of sequence 
position (in terms of ordered sequences of 6-tuples or coordinates, for 
phase space points, and tensor products of one-particle states, for rays in 
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Hilbert space). The redundancy in each case is eliminated by passing to 
permutation-invariant descriptions. Let us take each case in  turn.

9.4.1  Logic and Model  Theory

The suggestion is that permutation symmetry may function in logic and 
model theory in roughly the way that it functions in a physical theory:  it 
corresponds to a certain kind of redundancy of representation that can be 
eliminated by passing to an invariant description. How might this  work?

Recall that an interpretation 5  of a first-order language ,  consists of a 
universe of discourse �,  an assignment of relations P5

 on �  for each ,
-predicate P, and of functions f 5 : � � �× × →…  (n factors) to function 
symbols f (n arguments) in ,. Proper names are 0-ary function symbols, 
assigned designated elements of � . A  valuation σ  on ,  is a mapping of 
variables x x→ ∈σ �,  inducing a mapping to truth values as:  Px is true 
if and only if x Pσ ∈ 5 , with obvious extensions to quantified variables. 
A  model of an , -sentence (with no free variables) is an interpretation 
under which it is true for every valuation.

A model, therefore, comes equipped with relations on �.  How are they 
defined? Proper names are assigned designated elements of �.  Designated 
how? Predicates are interpreted by their extensions, for monadic predi-
cates, by subclasses of �.  What are those elements, and how are they 
specified? The primary role of variables in syntax, apart from generality, 
is that the same variable may be repeated in a sentence:  this their function 
as relative pronouns (the “that which” construction). But under a valuation 
of 5, they are also assigned elements of �.  These elements are given in 
advance. They are, perhaps, abstract particulars. How are they related to 
physical particulars?

There are the usual suspects:  by way of proper names; by the inten-
tions of the users of the language; by indexicals; by way of identity (the 
model just is the world); by an antecedent understanding of the referents 
of proper names and of the extensions of predicates—take your pick. Or, 
returning us to our topic, it doesn’t matter which element of �  is associ-
ated with which physical particular. It is the structure of the model as a 
whole that represents the  world.

Indeed, there is a puzzle here that has long been an embarrassment to 
philosophers. It was first stated by Quine, as one of a number of argu-
ments for his doctrine of “ontological relativity.”14 According to Quine, at 
bottom, values of variables are no more than “neutral nodes” that can be 
shuffled among one another without any linguistic effect. They look very 
much like permutables.

Quine argued as follows. Let λ :� �→  be a bijection, what Quine 
called a “proxy function” on the universe of discourse, and consider, 
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for any interpretation U, the interpretation U* under which P is true of 
λ  of what P was true of under U (with the obvious action of λ  on 
sequences); and similarly for function symbols. It then follows that any 
, -sentence true under U will be true under U* as well, even though it 
talks about quite different things (elements in D). In this way λ  induces 
a new and “unintended” interpretation 5 *  of ,  (to put it in Putnam’s 
terms). Quine viewed the matter as an extension of his doctrine of under-
determination of meaning:  reference was “relative to a manual of transla-
tion.” But he also put the matter like  this:

Reference and ontology recede thus to the status of mere auxiliaries. True 
sentences, observational and theoretical, are the alpha and omega of the 
scientific enterprise. They are related by structure, and objects figure as 
mere nodes of the structure. What particular objects there may be is indif-
ferent to the truth of observation sentences, indifferent to the support they 
lend to the theoretical sentences, indifferent to the success of the theory in 
its predications. (Quine 1990,  31)

In the case of finite models, the parallel with permutability is hard 
to ignore. But it cannot be the same:  Quine’s argument applies to 
any first-order language, any sentence, any interpretation, whether or 
not its allowed predicates are permutation invariant. It is also clearly 
paradoxical—and was seen as such by Putnam.15 On the other hand, the method of  
section 9.3 also applies to any first-order language, any sentence, any inter-
pretation, so long as it describes a finite number of things. And indeed, 
permutation-invariant sentences like (iii) are indifferent between U and U* 
as their intended model; for them there is no paradox. Permutability is not 
the same as ontological relativity; it is the cure for it. If we mimic the 
procedure used in physics, the problem is solved.

There remains, however, the peculiarity that on passing to a description 
in terms of permutation-invariant predicates, singular reference to any of 
these “neutral nodes”—to anything less than the entire state of affairs—is 
impossible. Quine, on the reading I  am giving, was half-right in his diag-
nosis:  in classical and quantum mechanics, true sentences, the alpha and 
omega of ontology, are related by structure, and values of variables serve 
as mere nodes of the structure, tying it together, but not tying it to any-
thing:  it is the structure as a whole that is instantiated in the world. Only 
if this structure is sufficiently variegated is there a passage to singular 
reference, and that proceeds quite differently:  it is reference to qualita-
tive features of this structure, whether using proper names, Fregean senses, 
Russellian descriptions, causal chains, or ostension.

If, further, these qualitative features are robust (they admit variation) 
and are stable (they persist in time), then they are individuating proper-
ties. They are the values of variables and referents of proper names, and 
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relations on them are the extensions of predicates, where now there is no 
requirement of permutation symmetry. Indeed, permuting one qualitative 
feature into another, altogether different, with all else unchanged, not only 
yields a distinct state of affairs, but is likely to take us out of the space of 
physically possible states of affairs altogether.

But can’t we just run Quine’s argument all over again, in talk of these 
qualitative features? Of course we can, but then there are other responses to 
the puzzle, one being that we have an antecedent understanding of what the 
elements of the universe of discourse are, of which of them are the referents 
of proper names, and of which of them lie in the extension of one predicate, 
rather than another—in short, of what are the “perfectly natural properties.” 
All of that is expressed, or represented, in the ground-level representation, 
in terms of permutables and invariant predicates of the structure as a whole.

9.4.2  Phase Space and Hilbert  Space

A point 〈 〉 ∈q, p
! "!

ΓN  is specified by 2N triples of numbers, where each 
triple is indexed by a particle label k N= 1, ,… ,  thus:

 〈 〉 〈 〉 ∈q, p
! "!

= , ; .. ; , ; .. ; ,1 1q p q p q pk k N N
NΓ .  (9.8)

Given that the Hamiltonian is a symmetric function of the N particles—the 
sequence position of the arguments of the Hamiltonian does not matter—the 
labels become irrelevant to the dynamics. The permutations are thus sym-
metries. The phase space point 〈 〉q, p

! "!
 yields the same set of N trajectories 

in μ-space as the initial  data

 π π π π π π π〈 〉q, p
! "!

= , ; .. ; , ; .. ;(1) (1) ( ) ( ) ( ), ( )q p q p q pk k N N  (9.9)

for π ∈ΠN . If there are no repetitions of phase space coordinates, there 
will be N! distinct sequences of the form (9.8), (9.9), each correspond-
ing to a set of N one-particle trajectories in μ-space, differing only in 
which trajectory is assigned which particle label (passive view), or which 
is assigned which particle (active  view).

The distinction is as real, no more and no less, as the distinction between 
which element in �  is assigned to which extension P5

 of each predicate 
P. Just as permutation-invariant predicates are oblivious to such distinctions, 
invariant functions on phase space (and in particular the Hamiltonian)—
functions invariant under permutations of particle labels—are blind to them too.

Similar remarks apply to particle labels in quantum mechanics, and 
property ascriptions (in terms of totally symmetrized projectors, of the form 
(iv)) that are indifferent to distinctions as to which particle is in which 
one-particle state, for states of the form (9.6). And as in quantum mechan-
ics, it is clear how to proceed to a new universe of discourse, in which the 
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distinctions, previously ignored, no longer arise at all. Classically, points 
of ΓN related by permutations can be simply identified:  that is, ΓN

 can 
be replaced by the quotient space Γ ΠN

N/  of ΓN
 under ΠN . This is 

reduced phase space. In place of N! equivalent points in ΓN ,  there is a 
single point, denote 〈 〉 ∈q p, .! Γ ΠN

N/  Here 〈 〉q p,!  is the same set of N 
pairs of configuration space and momentum space coordinates as in (9.8) 
and (9.9), yielding the same N trajectories in µ -space as all the 〈 〉q, p

! "!
s,  

but expressed as an unordered  set:

 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 ∈q p, .! … …= { ; , ; , , ; , , ; }q p q p q q pa a b b c c d d

N
p Γ

~
   (9.10)

Assuming there are no repetitions,16 then just as with (9.4), we may speak 
directly of the one-particle values of position and momenta (or phase-space 
coordinates) 〈 〉 〈 〉q p q pa a b b; , ; ,

 and so on, as points or point-like regions 
of μ-space, rather than of particles that have those coordinates or those 
trajectories; or equivalently, just use the word “particle” to denote such 
coordinates, or values of position and momentum, or point-like regions of 
μ-space, or properties.

Isn’t this just to revert to particle labels, and won’t the same consider-
ations apply as before? No: particle labels were defined by sequence-position 
in 〈 〉q, p
! "!

, but 〈 〉q p,!  is not a sequence. In place of 〈 〉 〈 〉q p q pa a b b; , ; , etc. 
we could just as well have written 〈 〉 〈 ′ ′〉q p q p; , ;  and so on. Likewise in 
(9.4):  in | , |φ φa b〉 〉 , etc. “a” and “b” are not labeling particles, but orthogo-
nal one-particle states:  they are distinguishable.

With no use of the machinery of sequences and particle labels, there 
is no reference to values of labels; so no redundancy either. Predications 
true of one trajectory, or one one-particle state, will no longer be true if 
that trajectory or one-particle state is substituted for another—indeed, will 
in general be an out-right mathematical impossibility. With no restriction 
to permutation-invariant predicates, singular reference to particulars—so 
long as there are no repetitions—is straightforward, or as straightforward 
as it ever is in the use of coordinates to define positions and momenta (or 
velocities) of particles. And notice that in passing to reduced state space, 
and making no use or mention of particle labels or names (but only of 
coordinates 〈 〉 〈 〉q p q pa a b b; , ;  and thereby of places a, b in one-particle 
phase space), we are implementing the reductionist ploy recommended 
by  Quine:

Those results [in quantum statistics] seem to show that there is no dif-
ference even in principle between saying of two elementary particles of 
a given kind that they are in the respective places a and b and that they 
are oppositely placed, in b and a. It would seem then not merely that 
elementary particles are unlike bodies; it would seem that there are no 
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such denizens of space-time at all, and that we should speak of places a 
and b merely as being in certain states, indeed the same state, rather than 
as being occupied by two things. (Quine 1990,  35).

Places, Quine is recommending, should take object position, and predica-
tions should be made of them. The state they are both in is the one- particle 
state. Note, however, that in making no mention of place in momentum 
space, Quine makes it seem easier than it is to pass to an ontology of 
places. It is places in μ-space (one-particle phase space) that replace parti-
cles, not physical space. It is not a reduction of material bodies to regions 
of space:  it is a reduction of permutable particles to point-like regions of 
μ-space, and in quantum mechanics, to one-particle states in Hilbert space.

Can we think of either of these as properties? Classically, if strictly 
point-like, this is a property represented by a delta-function (a distribu-
tion) on μ-space, whereas properties are ordinarily associated with func-
tions (characteristic functions). But in quantum mechanics it is purely a 
matter of terminology:  there states are rays, and rays are “regions” of  
 —meaning subspaces—and subspaces are properties, denoted by the 
associated projectors P|φ〉 . The reduction, then, in the quantum case, 
 consists in passing from a global description of N indistinguishables, in 
terms of the totally symmetrized projection

 P P P P
a b c d| | | |φ φ φ φ〉 〉 〉 〉⊗ ⊗ ⊗ ⊗ ⊗ +.. .. all permutations  (9.11)

acting on   ⊗ ⊗…  (N factors), to talk of distinguishable properties, 
the projections P P

a b| | ,φ φ〉 〉,
 
and so on, each acting on  −  or equally, to 

talk of one-particle states. And when the unitary evolution factorizes (as 
in (9.5)), we can talk of the orbits of these one-particle states as well, 
or sequences of properties; just as we speak of trajectories in classical 
mechanics, or sequences of positions in μ-space.

But whether point-like regions of phase space, or one-particle states, can 
really function as individuating properties is another question. Given the 
dynamics, they may imply a kind of persistence in time (pass to the tra-
jectories, where available); but the property itself, of having such-and-such 
position and momentum or such-and-such a one-particle state, does not 
persist, and cannot function as a state-independent property, even (or rather 
especially) when such properties are carefully identified in the laboratory 
(say by a sufficiently precise state-preparation device, whereby a particle is 
produced in a definite state)—the investigation, experimental and theoreti-
cal, of particles in such a state consists exactly in seeing how the particle 
evolves in time, how its state changes in time. Whatever characterizes it as 
a state cannot be a state-independent property. We must look elsewhere for 
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individuating properties that can be used as names to define a state-space 
of distinguishable particles.

We have explained the need for permutation symmetry; we can see, 
roughly, why it requires global descriptions, and how, contra Quine, they 
are descriptions of definite things nonetheless. We have an answer of sorts 
to the paradox of constitution in the classical case, at least at one instant of 
time. But not even that is available, in general, in quantum mechanics, and 
the answer is in any case unsatisfactory. So what are the state-independent 
properties that can function as names for distinguishable things?

9.5  Demarcating Properties

I return to the notion of stable and robust properties that are fine-grained 
enough to stand in for single objects, but not so fine-grained as to have no 
interesting state space; Goldilocks properties, properties that are just right. 
But by now it should be evident that to solve the paradox of constitu-
tion we do not need uniqueness:  it is enough to speak of relatively small 
numbers of particles, entangled or otherwise, as apart from all particles. 
Permutation symmetry only has to be broken enough to get down to a 
definite collective, stable in time; the description of the collective itself 
may be in terms of permutables. Or for another way of putting it:  it is 
enough to show how a total symmetrized state-space can be replaced by a 
Cartesian product of two state-spaces, each totally symmetrized.

In fact, it is enough to show how this goes in a sufficiently good approx-
imation, in some regime of energy and scale of interest in the laboratory 
(or for that matter that of everyday things). By our general ansatz, we 
should look for properties shared by some but not all permutables, proper-
ties that are robust and stable in time for the dynamical regime in ques-
tion. Call them demarcating properties; individuating properties arise as the 
limiting case, where the “small number” is unity. Thus, in place of proper-
ties like (9.11) that specify everything, or, like (iv), the property of there 
being exactly one thing with some property, we need a more coarse-grained 
projector—say a demarcating property P that applies to n out of N par-
ticles. In that case the collective has the totally symmetrized property:

 P P I P I P⊗ ⊗ ⊗ − ⊗ ⊗ −
−

.. ( ) .. ( ). .
n N n factors  factors! "### $### ! "######## $#######

+ permutations.  (9.12)

Because demarcating properties will only be available in a certain dynami-
cal regime, and for limited periods of time, we shall say they are emergent 
properties, rather than fundamental ones. We then use the method of sec-
tion 9.3, and use P in object position—but as a mass term, like “butter,” or 
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better, a natural kind term, like “metal.” Thus, if the demarcating property is 
the projection onto bound states of the electron and proton, it is “hydrogen.”
We can equally construe P as the name of a plurality, and speak of Ps, 
or of instances of P, or of particles of kind P. There will now be a range 
of dynamical behavior available to Ps (consistent with the fact that they 
are Ps, that it is hydrogen), ensured by the fact that the demarcating prop-
erty is stable and robust. P can thus function as a label in state space, 
hosting a non-trivial dynamics, that applies to P particles, as opposed to 
not-P particles. And evidently the interchange of Ps with not-Ps will not 
be a symmetry; typically a transformation like that will take us out of the 
state-space altogether. But the Ps are still permutable among themselves, 
and the not-Ps are still permutable among themselves.

The idea, then, to return to the classical case, is to refer to more 
coarse-grained regions of μ-space than the point-like places of section 
9.4.2:  in effect, to find regions of phase space that can function like natu-
ral kinds. Let us see how this works in the simplest case of two particles. 
Because there are just two, the demarcating property will in fact be an 
individuating property, but the example extends easily to the N-body  case.

Let μ-space be coarse-grained with respect to two independent degrees 
of freedom h, v (“horizontal” and “vertical” respectively), each into two 
regions, as in figure 9.1. Thus each particle can be either in A or B, 
and, independently, in U or D (“up” or “down”). There are four cells in 
all, denote AU, AD, BU and BD. This induces a coarse-graining of the 
two-particle phase space. If the particles are distinguishable, this is the 
space Γ2 :  it is partitioned into 16 regions, as illustrated in figure 9.2a. 
If the particles are indistinguishable, it is the space Γ Π2

2/ . It is parti-
tioned into 10 regions, as shown in figure 9.2b. (There are just 10 distinct 
descriptions of the two particles in terms of permutation-invariant predi-
cates; 10 ways of distributing two indistinguishable particles over the four 
cells of figure  9.1.)

The Quine redux is to pass from talk of things being in regions AU, 
AD, BU and BD, to talk of regions being in the occupied or unoccu-
pied states—in the 0-particle state, the 1-particle state, and the 2-particle 
state. However, there are correlations among these states:  if AU is in the 
2-particle state, then AD, BU, and BD are in the 0-particle state; and so 
on. The constraint is conservation of total particle number.

The similarity with the occupation-number formalism of nonrelativistic 
quantum field theory is obvious:17 the dynamics, as in that theory, consists 
in variations among integer-valued states of distinguishable things (modes 
of the field, labeled, typically, by wavelengths or frequencies), subject to 
conservation of total particle number. But now in addition each individ-
ual has a smooth “internal” degree of freedom—thus, in the case of AU, 
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Figure  9.1 μ-space with degrees of freedom h and v, coarse-grained into regions 
A  and B, and U and D, respectively
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Figure  9.2a ī-space for two distinguishable particles each with two degrees of 
freedom h and v. Each axis represents both degrees of freedom, coarse-grained into 
region A, B and U, D respectively
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Figure  9.2b Reduced phase space for two indistinguishable particles, with the 
same coarse-graining of μ-space as  figure  9.1
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variation with respect to values of h restricted to A, denote hA, and of v 
restricted to U, denote vU; and similarly for AD, BU, and  BD.

But we are looking for a correspondence with a classical Hamiltonian 
evolution for distinguishable particles, not with quantum theory. To that 
end, let us just treat regions defined by the coarse-graining of the horizon-
tal degree of freedom as things, that is, call them A and B respectively; 
leave the vertical degrees of freedom as common to each. In addition, 
A and B have the internal degrees of freedom hA and hB respectively. As 
before, A and B are to be found in one of the three states, the 0-particle, 
the 1-particle, and the 2-particle state, subject to constraints. In general, as 
A and B change in time, this description has the further peculiarity than the 
numbers of degrees of freedom of A and B change as well. Thus when one 
of them (say A) is in the 0-particle state, it no longer has any degrees of 
freedom, whereas B has four:  two horizontal (in this case, both hB) and two 
degrees of freedom v. But still, peculiar as they are, with these rules we can 
pass from the coarse-grained description of two indistinguishable particles to 
the coarse-grained description of two distinguishable regions of phase space.

Notice now that the peculiarities disappear in the special case that A 
and B are each in the 1-particle state, and the dynamics is such as to keep 
them there. In that case, effectively, certain regions in phase space will 
not be accessible, the regions shaded in figure 9.3a. In this regime, par-
ticle number is frozen as a degree of freedom of A and B, and it can be 
left out of the effective description. So long as the dynamics acts in this 
way, A and B are always in the one-particle state; they can each be called 
“particles.” The only degrees of freedom remaining are the two internal 
ones and the vertical degree of freedom. The accessible (unshaded) region 
of Γ Π2

2/  has the structure of a phase space Γ2
 for two distinguishable 

particles, figure 9.3b, where the effective Hamiltonian lives. It is an effec-
tive dynamics—it gives a good approximation to the underlying dynamics 
of the permutables—only so long as the underlying dynamics keeps the 
shaded regions inaccessible; so long as the properties A and B are stable 
and robust over  time.

How does our toy model generalize? It is obvious how to add addi-
tional degrees of freedom; what about additional particles? Evidently, if 
we have unique demarcating properties for each extra particle, then we 
have individuating properties, whereupon we pass to a description of N 
distinguishable particles, completely breaking permutation symmetry.18 
But more typical, when N is large and the particles are microscopic, the 
dynamics only freezes out a small number of coarse-grained properties. 
Thus, for two such properties (as in our toy model), the N particles may 
be divided into NA permutables confined to region A, and NB permutables 
confined to region B, by properties of the form (9.12), where n NA=  (and 
expressed in words as disjunctions of predicates related by permutations, 



1

On the Emergence of Individuals in Physics | 183  

as in (v)). We can then pass to an effective phase-space structure, but now 
using “A” and “B” as mass terms rather than proper names. The result is a 
phase space for NA indistinguishable A-particles interacting with NB indis-
tinguishable B-particles, each permutable only among themselves.19

In real physics, of course, these demarcating properties are often only 
statable in a technical language. They do not line up with ordinary words. 
But the border is porous; talk of air easily goes over to talk of nitrogen, 
oxygen, and carbon dioxide. It may be that to talk of “spin” as a mass term 
seems odd, but less so with “charge” (and “mass,” after all, is a mass-term 
par excellence). Mass, various kinds of charge, and spin are expected to 
suffice in a grand unified theory. Specify these (the combination of these 
demarcating properties) and you specify quarks of one flavor rather than 
another, or of quarks rather than leptons, and so on. In the Standard Model, 
demarcating properties are bound states of quarks:  one bound state is a 
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Figure  9.3a Shaded areas represent dynamically inaccessible regions of reduced 
phase  space

(b)

D

Particle A

Particle B
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Figure  9.3b ī-space for distinguishable particles, labeled by individuating 
properties A  and B, with degree of freedom v, coarse-grained into regions U and 
D.  Particles A  and B also have internal degrees of freedom hA and hB respectively
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proton, another is a neutron, and so on through the hadrons. In all these 
cases we can see what I  have been calling “internal” degrees of freedom 
clearly do arise, and can be experimentally probed (for example in the case 
of longer-lived hadrons, in elastic scattering experiments). In nuclear phys-
ics demarcating properties are bound states of protons and neutrons, yield-
ing the 118 known nuclei. Internal degrees of freedom concern variations 
in nuclear structure that keep the nucleus intact. But typically, in effective 
theories, these “internal” degrees of freedom are neglected altogether:  the 
whole point of an effective theory is to provide a simplified description at 
the appropriate regime of energy and  scale.

However demarcating properties like these do not on their own provide an 
answer to the paradox of constitution; nor by themselves can they yield indi-
viduating properties—this time, not through lack of robustness, but through 
lack of uniqueness. However complex a bound state of a large number of 
molecules, or protons and neutrons, if it is stable, it is unlikely to be instan-
tiated just the once in the universe. This much was right about our earlier 
solution to the constitution puzzle in terms of points in of μ-space:  what is 
needed in addition are spatial demarcating properties, of being of definite 
spatial extent at a given time, in spatiotemporal relation to various other 
things, likewise localized in space and time. How, exactly, do these arise? 
This has nothing to do with questions about the physical meaning of coordi-
nate systems, or inertial or freely falling frames. I mean, given all that: how 
do localized systems arise, in a way that it is stable over  time?

That they arise, in this way, is not in doubt. And of course spatial local-
ization is routinely studied—and assumed—in the physical sciences, whether 
in terms of boundary conditions and confining potentials, rigid bodies, crys-
tals and lattices, or in terms of dynamical models (as for example in plasma 
physics and cosmology). There are countless questions about all of these 
uses and studies—and answers. But the burden of proof, at this point, is 
unclear. The original question was about permutation symmetry; the prove-
nance of properties of spatial localization might be thought a larger question.

The paradox of constitution can therefore be solved:  in terms of quantum 
demarcating properties, on the one hand (in terms of the formation of stable 
bound states, robust over long periods of time); and in terms of spatial demar-
cating properties, on the other (as used throughout the physical sciences).

9.6  The Problem of  Measurement

You who are content with this answer, and are relaxed about the various 
options for solving foundational problems in quantum mechanics, can stop 
reading here. The puzzle as we have posed it, in terms of permutation 
symmetry, is solved. But others not so sure, or who are persuaded that the 
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foundational problems in quantum mechanics exactly concern questions of 
ontology, read  on.

A first point is that the dynamics, relevant to the formation of bound 
states and questions of stability over time, is the unitary dynamics; it is 
Schrödinger’s equation. The definition and investigation of dynamics like 
this is more or less what quantum mechanics at low energy scales is about. 
But the fact that there are localized events at all, in quantum mechanics, is 
not without difficulty.

Why not make do with properties as defined by projectors—and specifi-
cally, projectors on localized regions ∆  of configuration space or phase 
space? In place of the much too fine-grained properties P|φ〉  

(projectors 

onto rays in  ), use coarser-grained projectors P∆  instead. Thus, given 
(as before) a minimally entangled state (9.4), suppose that n of the N 
one-particle states | , | ,φ φa b〉 〉 …  are localized in ∆ , some small spatial 
region, with the remainder localized in the complement of ∆ , and that 
the supports of these states (in configuration space) are changing slowly 
in time. In that case the N particles have the property (9.12), with P P= ∆ ,  
over some appreciable period of time. In that case too, the expectation 
value of any local dynamical quantity is the same, whether the state is 
totally symmetrized over all N particles, or the product of symmetrized 
states for n and N–n particles.

This is an important consistency check. It also has the supreme vir-
tue that it works for superpositions of such states, too, as long as in all 
the states superposed, n of N permutables are located in ∆ . This follows 
from linearity:  any superposition of states each with property P itself has 
property P, meaning, is an eigenstate (with eigenvalue 1)  of the associ-
ated projector. For the same reason, the problem of nonuniqueness of fer-
mion one-particle states, briefly remarked on in section 9.2, is solved. That 
problem, recall, was that for fermions, even when minimally entangled, 
there is no unique set of N orthogonal one-particle states entering into the 
entanglement. But whether or not a state is an eigenstate of an operator is 
independent of the basis in which the state is written.

This point is perfectly familiar in special cases. I  have already men-
tioned an example:  the spherically symmetric singlet state of spin, which 
can be written with respect to z-component of spin, | ψ+ 〉z

 and | ψ− 〉z ,  as

 | =
1

(| | | | )
20Ψ 〉 〉⊗ 〉 − 〉⊗ 〉+ − − +√

ψ ψ ψ ψz z z z .  

It can equally well be written with respect to any other components of 
spin, say  | ψ± 〉y ,  as
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 | =
1

(| | | | )
20Ψ 〉 〉⊗ 〉 − 〉⊗ 〉+ − − +√

ψ ψ ψ ψy y y y .  

It is the same state nonetheless. But then a similar non-uniqueness of 
composition applies to any state of this form. Thus for any orthogonal 
one-particle states | , |ϕ ϕa b〉 〉 , the  state

 | =
1

(| | | | )
2

Φ〉 〉⊗ 〉 − 〉⊗ 〉
√

φ φ φ φa b b a  (9.13)

can be written  as

 
1

(| | | | | |
2√

φ φ φ φ+ − − +〉 ⊗ 〉 − 〉 ⊗ 〉,  

where

 φ φ φ φ φ φ+ −〉 〉 + 〉 〉 〉 + 〉=
1

(| | ) , | =
1

( | | )
2 2√ √a b a bi i  

or, indeed in terms of | , |1 2φ φ〉 〉 ,  where

 | =
1

(| | ) , | =
1

(| | ) .
2 21 2φ φ φ φ φ φ〉 〉 + 〉 〉 〉 − 〉

√ √a b a b  

In the case of the singlet case of spin, this indeterminateness is explained 
in terms of rotational symmetry:  no one direction in space is preferred. 
But the indeterminateness afflicts any two fermions in a minimally entan-
gled state20—in fact, it afflicts any N fermions, in a minimally entangled 
fermion state. So it afflicts fermions, period, whatever their state. This 
method for passing to individuals, for special states of the form (9.4), 
as one-particle states, was pointless anyway, but now we see that in the 
case of fermons, failing a notion of preferred basis, it was completely 
illusory.

But the underdetermination of fermion one-particle states is irrelevant 
to the dynamical emergence of any demarcating property, if defined by 
the spectrum of a self-adjoint operator and written as a projection opera-
tor. The basis in which a state is written makes no difference to the sub-
space in which it lies. Quite generally, so long as the dynamics is unitary, 
dynamical considerations are indifferent to the basis used to represent the 
state:  the choice of basis is like the choice of coordinates in classical 
spacetime theories. Of course, like a coordinate system in classical space-
time theories, a basis can be better or worse “adapted” to the dynamics 
and initial state; it may be more or less convenient (from the point of view 
of explicit equations and calculations) to use one basis rather than another. 
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Thus, if the initial state is spherically symmetric (and this is a symmetry 
respected by the Hamiltonian), use spherically symmetric coordinates.

The only obstacle, then, to defining spatial demarcating properties in 
quantum mechanics in a dynamically stable way is in understanding how 
states satisfying projectors like (9.12) for P P= ∆  arise in the first place. 
Such states describe systems of particles well-localized in ∆  over appre-
ciable periods of time.21 How do they  arise?

But this problem, we now see, is not at all trivial. For in quantum 
mechanics states like these do not readily arise under the purely unitary 
evolution. There is no point in simply positing them at much earlier times, 
either; quantum mechanical states, initially localized, tend to spread over 
time. Admittedly, if they are states of large numbers of bound particles (so 
of relatively large mass), this dispersion is slow, especially if they are left 
to themselves. Thus, a rock of mass 1  kg, prepared in a state localized to 
within a micron, freely evolving in time, will remain localized to within 
a few microns for the entire lifetime of the universe. But if it is subject 
to complex external forces, if, say, it is tumbling chaotically, in the way 
that Hyperon tumbles in its orbit about Saturn, it will become delocalized 
much sooner—much, much sooner. Hyperion has a mass of about 1020 kg, 
and diameter 105 m; according to the estimate of Zurek and Paz (1995), 
if initially well-localized, it will become completely delocalized over its 
entire orbit about Saturn in less than 10  years.

Of course if we are willing to apply quantum mechanics to macroscopic 
bodies, there are any number of ways in which initially localized quantum 
states become wildly delocalized on much smaller timescales:  virtually 
any quantum experiment can be arranged to have this result. Rather than 
Schrödinger’s cat being alive or dead, depending on the outcome of the 
experiment, have it end up in one corner of the laboratory rather than 
the other, if possible alive either way. Evidently we are up against the 
quantum-mechanical problem of measurement.

We may even be at the heart of it. For the three worked-out solu-
tions to the measurement problem (worked out, at least, for nonrelativ-
istic quantum mechanics) all take the quantum state as representative of 
something physically real, and they all engineer a process by which the 
state is localized, whether effectively (according to effective equations), or 
fundamentally (by tampering with the unitary equations). They all involve 
“wave-packet collapse,” over length and timescales that are under theoreti-
cal control. In Everettian (many-worlds) quantum theory and in pilot-wave 
theory, according to which the universal state propagates unitarily at the 
fundamental level, the collapse is effective, as defined in decoherence the-
ory (taking slightly different forms in the two cases). In dynamical col-
lapse theories like the GRWP theory (due to Ghirardi, Rimini, Weber, and 
Pearle), the collapse is fundamental, and the equations at the fundamental 
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level are no longer unitary. In all cases the collapse, effective or real, is 
associated with probabilistic events, so it is also inseparable from that 
other dimension to the problem of measurement, the role of the quantum 
state in determining probabilities.

But in all these theories, collapse, however it is achieved, is onto states 
of mesoscopic bodies that are sharply localized in position and momen-
tum space. Any account of ontology based on the structure of the quan-
tum state, subject to collapse onto well-localized states at a rate subject to 
theoretically control, stable in time, will ipso facto provide an account of 
how spatiotemporal demarcating properties can be dynamically defined. If 
defined by fundamental equations, as fundamental properties; if by effec-
tive equations, as emergent properties.

I plump for effective collapse and its explanation in terms of deco-
herence theory, preserving the unitary dynamics unchanged, without any 
additional hidden variables. The spatial localization of quantum states of 
ordinary things, as branches decohere, is then dynamically emergent. The 
states best adapted to this dynamics, for reasonably massive particles, are 
Gaussians, localized in position and momentum space. This is the “deco-
herence basis”—the right basis for resolving the ambiguity in (9.13), when  
| Φ〉 has a decohering structure, consistent with the unitary dynamics.

In whatever way decoherence theory solves the measurement problem,22 
it solves the problem of spatiotemporal localization as well, the final piece 
of the jigsaw of how to break permutation symmetry at the effective level 
of description, consistent with permutation symmetry at the fundamental 
level. Decoherence theory defines spatial demarcating properties for mol-
ecules and larger structures, from decoherence scales and times on up, as 
dynamically emergent properties. Given a sufficiency of other demarcating 
properties, we obtain individuating properties too. And thereby we arrive 
at an account of how individuals arise at an emergent level in physics, and 
thence across the special sciences.23
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Notes

1. What more, precisely, of the mathematical structure of physical theories might 
be understandable as physical ontology (or the structure of physical ontology) is an 
open question. In the tradition of Russell, Carnap, and Quine, presumably, all of 
it—when reformulated in formal logic. But the ontology then is essentially made up 
of the members of sets in an elaborate construction in set theory, with no distinction 
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between mathematical and physical particulars. I  am sceptical of this tradition, espe-
cially if cashed out in tems of the Ramsey sentence (as it so often is by structural 
realists):  see Saunders and McKenzie  2014.

2. For an indication of the scope of this method in application to space-time 
points and classical particle and field theories, see my 2003a, 2003b, 2013a and, for 
mirror-symmetry,  2007.

3. This definition of identity was first proposed by Hilbert and Bernays (1934), 
based on the axiom schema for identity introduced by Gödel in 1930 in his proof of 
the completeness of the predicate calculus. It played a largely implicit role in Quine’s 
early writings on identity (e.g. in his 1950), but it was explicit in Quine  1960.

4. Are elementary particles in quantum discernible at all? I  have argued that 
fermions are, in my 2003a, 2006b, 2013b, and in Muller and Saunders 2008, but ele-
mentary bosons (as opposed to bosons that are multiplets of fermions) pose a special 
difficulty. It may this can be solved (see, for example, Muller and Seevink 2009), 
but elementary bosons, with the sole exception of the Higgs, are all gauge bosons, 
like photons, which we might well do better to talk of as excitations of modes of 
quantum fields. The Higgs, meanwhile, is exceptional for a number of reasons.

5. Why no particular role for relative discernibility? But there could be; for 
example, if we were to systematize talk of causal relations, or the before-after 
relation.

6. Assuming of course, their trajectories are absolutely discernible. That need 
not be the case (for example, the trajectories of Black’s iron spheres, unchanging in 
time in an otherwise empty universe, are only weakly discernible).

7. It was explicit in Bach (1997 7), but it was surely implicit in a number of other 
criticisms of the notion of classical indistinguishables; see e.g. Van Kampen  1984.

8. Since quantum states are rays, rather than vectors, there is another possibil-
ity:  the ray will still be invariant if permutations produce a change of overall phase. 
In fact the only consistent assignment of phase changes of this kind is alteration of 
sign for odd permutations, i.e. antisymmetrization (fermionic states, which therefore 
satisfy the Pauli exclusion principle). (Important as the distinction between states 
[rays] and vectors is, I  shall not belabor it in what follows.)

9. Such minimal entanglements have been called “trivial” by Ghirardi et  al. 
2002, Ghirardi and Marinatto 2004 (see also Penrose 2004,  598).

10. As before, for “minimal” entanglements of the form (9.4), there is just 
enough entanglement to obliterate the correspondence between place in the tensor 
product and one-particle state, while still picking out a set of N one-particle states. 
This does not yield a determinate assignment of one-particle states to particles, how-
ever, when the latter are distinguishable.

11. Although that has been suggested; see Dieks and Lubberdink  2011.
12. There is a physically deep way of making, e.g., spin state-dependent (super-

symmetry), but there is also a shallow way (as shown by Goldstein et  al. 2005a, 
2005b), which applies to any supposedly intrinsic property of elementary particles. 
The shallow method suffices for our purposes.

13. “Bare particulars,” for example, or perhaps “haecceities.” Huggett (1999) 
suggests that haecceitism is the culprit, a position endorsed by Albert (2000, 47–48) 
and elsewhere by me (Saunders 2013b,  356).
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14. Quine 1968. Another concerned the Lowenheim-Skolem theorem, which 
I  shall not consider here (restricted as we are to finitary theories).

15. It is otherwise known as “Putnam’s paradox” (Lewis 1984). Lewis’s solu-
tion, in terms of “perfectly natural properties,” bears some relation to the one that 
I  offer; see  below.

16. Cases of repetitions are important to the observable differences between clas-
sical and quantum statistics. For a detailed discussion, see Saunders 2006a,  2013b.

17. Otherwise known as the Fock space representation:  see any introductory text 
in quantum field theory; see also Teller (1995). I  single out the nonrelativistic case 
because in relativistic quantum theory only conservation of total energy, not particle 
number, is ensured.

18. As can sometimes arise in statistical mechanics:  in the case of colloids, for 
example (see Swendson 2002, 2006), or, say, stars in stellar nebulae.

19. This connects fairly directly to the Gibbs paradox, and the extensivity of the 
entropy, both in classical and quantum theory. See my 2006a and  2013b.

20. There is something to the explanation from spherical symmetry. The triple of 

operators { }
1 2

P P P P P P
a b| | | | | |, ,φ φ φ φ φ φ〉 〉 + 〉 − 〉 〉 〉− − −

 
satisfy the same commutation rela-

tions as the spin operators { , , }S S Sx y z , for orthogonal directions x, y, z in space. In 

this sense any state of the form (9.13) also has a kind of spherical symmetry.
21. It follows that they are states well-localized in momentum-space as well 

(subject of course to the constraints imposed by noncommutativity). They pick 
out—or rather define, assuming phase space is an emergent structure—small patches 
of phase space. There are no strictly point-like classical objects (points of μ-space), 
if quantum mechanics is  true.

22. See Saunders 2010, Wallace 2012, chaps. 1–3 for more on emergence, deco-
herence theory, and many worlds. I do not believe decoherence theory in a one-world 
setting can solve the measurement problem, if the unitary dynamics is fundamental, 
for their still remains a multiplicity of decohering states, i.e., there are many worlds.

23. Notice that neither the trajectories of pilot-wave theory, nor the “flashes” or 
mass-densities of collapse theories, have any role to play in the emergent notion of 
individuals here in play. What need, then, for “primitive ontology” in these theories?
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