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Abstract: There is currently great interest in determining physical 
parameters, e.g. fluorescence lifetime, of individual molecules that inform 
on environmental conditions, whilst avoiding the artefacts of ensemble 
averaging. Protein interactions, molecular dynamics and sub-species can all 
be studied. In a burst integrated fluorescence lifetime (BIFL) experiment, 
identification of fluorescent bursts from single molecules above background 
detection is a problem. This paper presents a Bayesian method for burst 
identification based on model selection and demonstrates the detection of 
bursts consisting of 10% signal amplitude. The method also estimates the 
fluorescence lifetime (and its error) from the burst data. 
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1. Introduction 

Single molecule fluorescence techniques are currently of great interest in biology for their 
ability to remove the inherent loss of information when ensemble averaging over many 
molecules [1]. Multiparameter fluorescence detection (MFD) and burst integrated 
fluorescence lifetime (BIFL) experiments can determine the characteristic fluorescence decay 
time of single fluorophores as they traverse a focal volume illuminated within the sample [2–
4]. Two challenges that accompany such experiments are the identification of the bursts of 
photons from the individual fluorophores and the determination of the lifetime from the data 
integrated over each burst. 

BIFL experiments are often performed with time correlated single photon counting 
(TCSPC) [5] in which two arrival times of each photon are recorded; one relative to the start 
of the recording (the ‘macrotime’) and the other relative to the excitation pulse train (the 
‘microtime’). For most organic dyes, the characteristic lifetime of the excited state is in the 
order of nanoseconds [1] and as such a macrotime resolution in the order of 50 ns and a 
microtime resolution in the order of picoseconds are suitable and achievable with modern 
electronics [5]. 

Burst identification is traditionally achieved by filtering (e.g. Lee filter [6]) and 
thresholding the detected photon flux based on the macrotime data (at, say, 50% above 
background) or through the use of statistical analysis and an iterative optimisation of an 
intensity threshold [7]. A sliding or stepped time window, of predetermined size, is used to 
isolate portions of the macrotime data. Lifetime can be determined with least-squares fitting 
of the histogram of microtimes; this reveals the characteristic exponential decay. However, it 
is often the case that maximum likelihood techniques should be used to overcome bias when 
dealing with Poissonian noise limited data, as routinely arises from bursts of limited photon 
counts [8]. 

Time gating has previously been used to discriminate the fluorescence emission from the 
Raman signal that may occur in some experiments. This occurs on a very short time scale 
almost coincident with the excitation pulse, and Shera et al. [9] showed a significant signal to 
noise improvement using a time-gated technique. Time gating in TCSPC can also easily be 
achieved, during or post acquisition and so additional and existing time-gating techniques can 
also be applied in parallel to the technique presented in this paper. In our simulations the 
Raman signal has been excluded in order that we can concentrate on the more difficult 
problem of identifying signal in the presence of a uniform background signal, which will 
always be the fundamental noise floor in any experiment, however carefully designed, and 
after temporal filtering by time gating has been applied. 

Bayesian techniques have been used to combine evidence in MFD experiments in order to 
classify burst data [10,11] using information from reference samples for each class. We offer 
an alternative application of probabilistic Bayesian techniques in order to identify the bursts 
themselves in the presence of only approximate prior knowledge about the fluorophore 
lifetime. 

In this paper we present a method of burst detection through Bayesian inference which 
makes use of the microtime data to select between background and signal models. The 
macrotime data is used purely to order the photon arrival microtimes on a real-time line and to 



select, by means of a sliding time window, consecutive sections of the photon arrival data as 
previous authors have done. The algorithm identifies bursts based on the distribution of 
microtimes, as described below, and can also measure the fluorophore lifetime from the burst 
isolated data. The key to this work is the way that evidence from individual photon counts is 
combined, working directly with the arrival microtimes and not their accumulation histogram, 
thus removing the need to make any assumptions about the noise in the accumulated data, be 
it Poissonian or Gaussian, as a dead-time in TCSPC detection can cause counting statistics to 
deviate from these models [12]. Also key is the selection of background and signal models 
and the use of Bayesian inference to choose between them. This method allows bursts to be 
detected when the signal-to-background ratio is much smaller than 50%, and we demonstrate, 
with simulated data, detection of bursts from a 10% signal component contaminated by a 
uniform random background. 

Experimental data were also collected and used to test the algorithms. A two-photon 
microscope was used for this purpose because of its inherently small focal volume. The target 
fluorophores in this case were quantum dots in a very dilute solution which are similar in size 
and fluorescence lifetime to a typical fluorescent protein. They can also be used as a donor for 
Förster Resonance Energy Transfer (FRET) [13,14] and this experiment may be the first step 
towards detecting single molecule FRET via BIFL when single or multiple acceptor 
fluorophores are in close proximity to the donor. 

2. Methods 

Bayes’ theorem offers a robust and consistent way of combining probabilistic evidence from 
different sources. If we have a model of a physical phenomenon that contains undetermined 
parameters, we can use Bayes’ theorem to determine likely values for these parameters in the 
light of given evidence. Also, a significant aspect of Bayesian analysis is its ability to select 
between different physical models. For our purposes, the selection is between two models: a 
signal model and a background noise model. Using the Bayes’ equation, we may write the 
probability of a signal being present within the current section of data, ( )DHP sig , as [15] 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

,
sig sig

sig

sig bg bgsig

P D H P H
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P H P D H P H P D H
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+
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where P(A) indicates the probability of some event A, and ( )BAP  the conditional probability 
of A given an event B has occurred, Hsig represents the signal model, Hbg the background 
model and D represents a set of data. Equation (1) expresses the resulting posterior 
conditional probability of Hsig being the appropriate model given the data D, P(Hsig|D), in 
terms of prior knowledge about the likelihood of a particular model expressed as a probability 
P(Hsig) and the probability of obtaining the data from a probabilistic signal model P(D|Hsig), 
and a normalising denominator. It should be emphasised that D represents a section of data of 
many photon arrival times and the result of applying this equation will be the probability of 
this data set containing meaningful information about a fluorescence event that matches our 
model Hsig. This analysis does not distinguish between single molecule events and those 
emanating from multiple molecules and the usual experimental precautions must be taken to 
ensure single molecule detection [1]. 

We can formalise suitable models for a random background and an exponential signal plus 
background in the following way. Our model of random background, Hbg, can be simply a 
uniform probability of a photon detection within the TCSPC measurement period, occurring 
between the periodic excitation pulses, allowing us to write the probability density function 
(PDF) of recording a photon as a function of the microtime Δt; i.e. ( )bgHtp ∆  represents the 

probability of recording a microtime within the time period Δt to Δt + dΔt, as 



 ( ) 1 ,bgp t H
T

∆ =   (2) 

where T is the total TCSPC measurement period, also noting Δt ∈ [0,T], and that 

( ) 1
0

=∆∆∫
T

bg tdHtp . The PDF for the signal model, Hsig, in the simple case where the 

excitation function is an assumed delta pulse and the instrument response is assumed to be 
perfect (i.e. introduces no temporal spreading), can be written as 
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T
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where w is the vector of model parameters (w0 ∈ [0,1], w1 ≥ 0) that represents the proportional 
background signal (w0) and the fluorescence lifetime (w1), and ( )1wtF ∆  describes the natural 
decay of the fluorophore as a function of the microtime Δt. If the microtime data are taken in 
sections of real macrotime by the sliding time window, the assumption can be made that the 
model parameters, w, are constant for the real-time duration of the current section of the data. 
We write ( )1wtF ∆  as a mono-exponential function (but more complex functions such as 
multiple or stretched exponentials can be used): 
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ensuring that ( ) 1,
0
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T

sig tdHtp w . 

The use of a mono-exponential model is justified since single fluorophores passing 
through the focal volume may reasonably be assumed to consist of a single species of a 
particular lifetime in many experiments. 

In the presence of very limited reliable prior knowledge, we use a prior PDF for w, 
( )wp , that has maximum entropy within the allowed parameter ranges (w0 ∈ [0,1], w1 ≥ 0), 

i.e. 

 ( ) 1 ,wp e αα −=w   (5) 

(note that dependence on w0 is not necessary). This introduces one hyper-parameter, α, which 
constrains the average w1 (<w1> = 1/α) in the prior, and can be set according to the likely 
order of magnitude of the parameter w1. 

The probability of recording a particular data set, D, consisting of p photons, from the two 
models, is denoted ( )sigHDP  and ( )bgHDP , can be written as a joint probability as follows, 
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and similarly for the background model, noting that here we can make use of the fact 
that ( ) 1=∫ ww dp . 
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We can now write down the probability of the signal model, Hsig, by substituting (6) and (7) 
into Eq. (1) and rearranging, as 
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noting that the prior probabilities of each model sum to unity and can be estimated 
empirically. The parameter vector, w, for the signal model can also be inferred as the PDF, 
( )sigHDp ,w , can be written using the Bayesian equation as 
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We may, should it be necessary, include the effect of an instrument response function (IRF) at 
this point. An IRF, estimated by a Gaussian function, may account for excitation pulse width 
and detection response time by replacing ( )1wtF ∆  by ( )1wtF ∆ : 
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Γ(u) is the likelihood that the IRF delays any photon detection by a time u, θ[u] denotes the 
step function (θ[u > 0] = 1 and θ[u < 0] = 0), and erf(x) denotes the error function. In reality 
the excitation pulse will not occur at Δt = 0 but will be slightly delayed; this delay is 
accounted for by uc and the width of the IRF is estimated by σ. 

Equation (9) describes how each photon arrival microtime contributes some evidence 
towards determining the most likely values in the parameter vector and this is illustrated in 
Fig. 1. 

Most likely values of the parameter vector can therefore be determined from the maximum 
in ( )sigHDp ,w , or from the minimum in ( )sigHDp ,log w− . We use the amoeba routine 

[16], based on the downhill simplex method, for minimisation of this function. The average 
values and error bars can also be determined from the first and second moment 
of ( )sigHDp ,w , where the most likely values serve as starting points for determining these 

moments. Where lifetimes were determined, we report the most likely value with an error 
interval equal to the second moment. 



 
Fig. 1. A simplified schematic illustrating the mathematical process of forming the posterior 
probability density function (PDF, blue lines) versus lifetime, from which the most likely 
lifetime and an associated error interval can be calculated. Starting from the prior probability 
density function, successive photon arrival times (red bars, shown at the appropriate microtime) 
contribute some evidence under this Bayesian framework, as calculated by the function F (see 
text). As more photons are measured the posterior PDF may become a single well-defined peak 
indicating the most likely lifetime value, w1. 

We have thus far allowed the recorded photon arrival times, Δt, to occupy any value in the 
continuous range [0,T], thus we denote the above as the “continuous algorithm”. In reality Δt 
will be binned and therefore occupy a finite number of discrete values. If, in addition, the 
values of w are also restricted to discrete values within a pre-defined parameter range, the 
PDF can be calculated on a discrete grid of values and we can now have a very efficient 
algorithm for deriving the PDF and P(Hsig) numerically where a trade-off between 
computational speed and accuracy can be made. This method forms the “discretized 
algorithm”, but does not necessarily limit w0 and w1 to the grid values as we can use the first 
two moments to calculate the means and standard deviations of the marginalised PDF. Thus a 
minimisation routine, such as amoeba, need not be used in this discrete framework as an 
exhaustive search of the grid to locate the peak posterior likelihood can be performed quickly. 

Care should be taken in the design of the grid. The variable range covered must 
sufficiently encompass the PDF in all dimensions, and the separation of grid points must be 
sufficiently small to prevent the entire PDF from falling between any two neighbours. This 
grid technique is thus highly suited to these experiments as the limited number of photon 
counts results in a smooth and broad PDF from which most likely values and moments are 
easily calculated. Many more photon counts may result in a sharply peaked PDF and the 
continuous formalism should be used in this case. 



A computer program was written in C to perform both the continuous and discretized 
algorithms. The discrete algorithm acts by pre-calculating a 3-dimensional ‘multiplier grid’ of 
values equal to ( ) ( )[ ]0101 wwtFTw +∆−  for all possible allowed values of w0, w1 and Δt. 
The 2-dimensional PDF (Eq. (9) can then be calculated very speedily by multiplying together 
the appropriate planes of the multiplier grid that correspond to the microtimes of the detected 
photons within the sliding macrotime window. Thus a discrete 2D map of the numerator of 
Eq. (9) is calculated and can be used for lifetime estimates (Eq. (9) and for the signal model 
probability (Eq. (8). 

In Section 3 we describe how the algorithm was tested with simulated and experimental 
data. Firstly the experimental methods are presented followed by the results for simulated and 
then experimental data. 

2.1 Two-photon Single molecule spectroscopy 

Single molecule spectroscopy was performed using a custom-built two-photon excitation 
system constructed around an upright 90i fluorescence microscope (Nikon, Tokyo, Japan) and 
similar to that described elsewhere [17,18]. In brief, excitation was provided by a titanium-
sapphire laser (Mira 900F, Coherent Inc, Santa Clara, CA, USA), operating at 890 nm and 
scanned into the image plane using an afocal NIR achromatic scanner and reprojection optics. 
Time-resolved detection was provided by a non-descanned detection channel with a hybrid 
photomultiplier (HPM-100-40, Becker and Hickl GmbH, Berlin, Germany) placed in the re-
projected pupil plane and a TCSPC personal computer plug-in board (SPC830, Becker and 
Hickl GmbH, Berlin, Germany). For single-molecule studies, the scanning system parks the 
excitation beam in the centre of the field of view while data are acquired. The laser power was 
adjusted during serial dilution of the samples under test to adjust the signal-background ratio 
while avoiding potential pulse-pile up due to excessive burst counting rates. (typically powers 
would not exceed 10 mW at the objective pupil). The First-in First-out (FIFO) mode of data 
acquisition was used for data collection with an ADC resolution of 4096 over a 10 ns 
measurement period. Data were collected using a bandpass interference filter at centre 
wavelength 520 nm (FF01-520/15-25: Semrock, Rochester, NY, USA). A Nikon 1.30 NA 
Plan Fluor, 40x oil immersion objective was used to focus the laser beam into the sample 
solution. 

2.2 Sample Preparation 

For single molecule spectroscopy, a 1 nM solution of Streptavidin conjugated quantum dots 
(Qdots, Invitrogen Corporation UK, Q10141MP) with peak emission wavelength of 525 nm 
was prepared by serial dilution of the stock solution in spectrophotometric grade, ultrapure 
water. The sample was pipetted into a clean, single depression cavity slide (Agar Scientific, 
L4090) and secured with a type 1.5 coverslip. 

3. Results 

3.1 Analysis of simulated data 

Photon arrival time data were generated in a Monte Carlo fashion to simulate a TCSPC 
experiment with a certain proportion of background and a given mono-exponential lifetime 
signal in 10 bursts (Fig. 2). Photon arrival macrotimes were randomised and microtimes were 
generated from random numbers weighted according to the form and lifetime of the 
fluorescence signal being simulated. During signal periods the background count rate was 
maintained and the lifetime was set to be 2 ns in all cases. A macrotime window was moved, 
in a sliding fashion, along the data set to extract a portion of the data to be analysed. The 
discretized Bayesian methods were applied and if the probability of the signal model being 
appropriate exceeded a threshold (PHsig) then a burst was indicated. Table 1 presents the input 
parameters to the algorithm used to produce Fig. 2. A sliding window of 50 ms traversed the 
macrotime data in 10 ms steps, and so 50 ms sections of data were independently analysed 
(the fact that the simulated data are highly periodic is irrelevant to the algorithm). The size of 



the sliding window was chosen to achieve a high temporal resolution whilst maintaining 
sufficient photons for analysis (and therefore a sufficient lifetime precision). The PDF was 
calculated on a grid where w0 was allowed to vary between 0 and 1 in 20 steps, w1 was 
allowed to vary between 0 and 10 ns in 50 steps and with 4096 Δt time bins, each separated by 
2.44 ps. The choice of P(Hsig) reflects the prior probability of a burst and should be estimated 
for the system under study. It can be tuned to balance true and false positive detections. In 
practice one would start with a low value and increase until bursts are detected; more detailed 
examination of the detected bursts should reveal if true bursts are being detected. 

Table 1. Values used by the discrete algorithm when analysing the simulated experiments 

Parameter Value   Parameter Value   Parameter Value 
Window size 50 ms   P(Hsig) 0.3   Microtime unit 2.44 ps 
Window step 10 ms   Min w1 0.0 ns   Macrotime clock 50 ns 
Signal probability Thr
eshold (pHsig) 0.5 

  Max w1 10.0 ns   Microtime interval (T) 10 ns 
  # w1 bins 50   # microtime bins 4096 

      # w0 bins 20       
      α 0.5       

 
We can see in Fig. 2 a and b that the red line of P(signal) = P(Hsig|D) peaks when a burst is 

detected. The ‘background’ (dotted line) trace is of w0 which is near 1 in the presence of no 
signal. Where a burst of signal occurs, this trace decreases indicating the proportion of signal 
contributing to the total intensity. Note that the background intensity remains constant 
throughout but the proportion of background to signal changes when bursts occur. 

For demonstration purposes, several sections of data were chosen for analysis with the 
continuous Bayesian method. These are also presented in Fig. 2. The discrete method 
provided estimates of lifetime of 3.2 ± 0.9 ns and 3.6 ± 1.8 ns for the data in Fig. 2 c and d 
respectively, whereas the continuous method provides estimates of 1.8 ± 0.3 ns and 1.9 ± 1.4 
ns (photon counts 1467 and 1078). We must bear in mind that the photon count that 
contributes to the signal is approximately 500 and 100 counts respectively. We can see that 
the discrete method is good at identifying bursts but the analysis of these bursts for lifetime 
should be performed with a more thorough analysis such as the continuous algorithm. 

The performance of the burst detection algorithm with decreasing signal proportion is 
presented in Fig. 2h, showing significant performance degradation below 10% signal. The 
parameters have been arranged such that there were minimal false positive detections; Fig. 2 h 
indicates the true and false positive detection rates. 

The total processing time for the discrete analysis was 12.7 seconds, on a standard office 
PC, to process the full photon train of 40,395 counts in the 50% signal case, including reading 
the data, setting up the multiplier grid and performing Bayesian analysis on each macrotime 
slice of 50 ms, stepping through 1.6 seconds of data in 10 ms steps. 
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Fig. 2. Bayesian burst detection from simulated data. Signal fluorescence lifetime is set to 2 ns 
in all cases. (a) Bursts where the signal proportion of 1/3 (bg: 2 x 104 s−1 sig: 1 x 104 s−1) are 
easily detected (and would equally be by simple thresholding of the macrotime trace). (b) 
Bursts with a signal proportion of 1/10 (bg: 2 x 104 s−1 sig: 2 x 103 s−1) cannot be detected from 
the macrotime trace alone. The Bayesian technique detects these bursts as shown by the 
resulting probability of a signal, P(signal) = P(Hsig|D) (red line). (c) The microtime trace with 
1/3 signal, extracted from the photon train near 0.8 seconds (see dotted line labelled ‘c’ in (a)). 
(d and e) Microtime traces representing 1/10 signal and pure background noise (see dotted lines 
in (b)). Microtime traces were formed from data re-binned into 100 bins for plotting clarity. 
Where bursts were detected, lifetime fitting was performed by the full continuous Bayes 
algorithm on the re-binned data. The fitted curves are shown (solid line) and on the right hand 
side (f and g) are plots of the 2D PDF around the most likely value, where white indicates high 
values, decreasing through a spectrum to black which indicate low values. (h) The percentage 
of true detected bursts (blue line) and false positive detections (red line) as a function of signal 
proportion. (‘counts’ = number of photon counts in trace, ‘lifetime’ = determined lifetime). 

3.2 Analysis of experimental data 

The data acquired with the experimental setup from the dilute quantum dot suspension are 
presented in Fig. 3. Several clearly identified bursts were detected (where P(signal) is above 
the PHsig threshold) by the discrete Bayesian algorithm, using the parameters shown in Table 
2, one of which could be easily identified because of its high peak intensity but many of 
which would have been missed by simple thresholding of the macrotime trace. Again, 2 bursts 
and a section of background were selected for lifetime analysis with the continuous Bayesian 
method and these are shown in Fig. 3 b, c and d. The discrete method provided estimates of 
lifetime of 6.21 ± 1.25 ns and 4.55 ± 1.64 ns for the data in Fig. 3 b and d respectively, 
whereas the continuous method provides estimates of 6.20 ± 1.44 ns and 4.88 ± 2.39 ns, 
respectively (photon counts 1015 and 84). An IRF was used in this analysis with empirically 
determined values of uc = 1.40 ns and σ = 0.1 ns. These data were also analysed with a 
traditional Levenberg-Marquardt (LM) non-linear least squares algorithm [19] which failed to 
find a suitable solution in the first case but gave an estimate of 2.6 ± 6.1 ns in the second case 
with 84 photons counted. This demonstrates the robustness of Bayesian techniques. 



 
Table 2. Values used by the discrete algorithm when analysing the experimental data 

Parameter Value  Parameter Value  Parameter Value 
Window size 10 ms  P(Hsig) 0.001  Microtime unit 2.44 ps 
Window step 10 ms  Min w1 0.0 ns  Macrotime clock 50 ns 
Signal probability 
Threshold (pHsig) 

0.5 
 Max w1 12.0 ns  Microtime interval (T) 10 ns 
 # w1 bins 50  # microtime bins 4096 

   # w0 bins 20    
   α 0.5    
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Fig. 3. Bayesian burst detection from experimental data of a dilute solution of quantum dots. 
(a) Macrotime intensity trace and corresponding signal probability. The obvious high-intensity 
burst is detected along with several low intensity bursts that are not apparent through analysis 
of the macrotime trace alone. (b, c and d) Microtime traces extracted from the photon train at 
the positions indicated by the dotted lines in (a). Lifetime fitting was performed on the 
microtime data and the fitted curve is shown (solid line, re-binned into 32 bins for clarity) and 
inset is a plot of the PDF around the most likely value. Data in graph (c) was rejected as 
background since P(signal) is below 0.5. Lifetimes of 6.20 ns and 4.88 ns were extracted by a 
full, continuous, Bayesian analysis of the high- and low-intensity bursts, respectively. 

A larger section of data was processed (approximately 65,000 photons counted) as a 
verification of the expected lifetime. Both Bayesian and LM techniques indicated an average 
lifetime of 4.5 ns when fitted with a mono-exponential model. Further analysis with LM and 
bi- and tri-exponential models indicated that these data for the ensemble are bi-exponential 
with components near 5.5 ns and 0.4 ns, in a 57:43 amplitude ratio. 

4. Conclusion 

In conclusion our fast discrete algorithm for burst identification in BIFL experiments uses the 
combination of evidence from the microtime data within the macrotime-based sliding window 
to determine the most likely model for that section of data. With this Bayesian technique we 
demonstrate the detection of bursts with 10% signal on a 90% background from simulated 
data. The more general continuous Bayesian algorithm can also be used for lifetime 
estimation with improved accuracy over a traditional Levenberg-Marquardt non-linear least 
squares algorithm with low photon count data. A direct comparison of the fully continuous 



Bayes method, working directly on the photon arrival times, with a previously published 
maximum likelihood method, working on the accumulation histogram, will be the subject of a 
future paper. 

Acknowledgments 

The authors wish to thank Cancer Research UK (programme grant C133/A/1812) and 
EPSRC/BBSRC (EP/C546105/1 and EP/C546113/1) for financial support. We are also 
indebted to B Vojnovic as co-supervisor of MR and for many useful discussions, and to B 
Vojnovic, R Newman and J Prentice for the design and construction of many hardware 
components that enable such experiments to take place. 

 


	References and links
	1. Introduction
	2. Methods
	Fig. 1. A simplified schematic illustrating the mathematical process of forming the posterior probability density function (PDF, blue lines) versus lifetime, from which the most likely lifetime and an associated error interval can be calculated. Start...
	2.1 Two-photon Single molecule spectroscopy
	2.2 Sample Preparation

	3. Results
	3.1 Analysis of simulated data

	Table 1. Values used by the discrete algorithm when analysing the simulated experiments
	Fig. 2. Bayesian burst detection from simulated data. Signal fluorescence lifetime is set to 2 ns in all cases. (a) Bursts where the signal proportion of 1/3 (bg: 2 x 104 s1 sig: 1 x 104 s1) are easily detected (and would equally be by simple thresh...
	3.2 Analysis of experimental data

	Table 2. Values used by the discrete algorithm when analysing the experimental data
	Fig. 3. Bayesian burst detection from experimental data of a dilute solution of quantum dots. (a) Macrotime intensity trace and corresponding signal probability. The obvious high-intensity burst is detected along with several low intensity bursts that...
	4. Conclusion

