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BSTRACT

 

: We have developed a multistage image analysis technique for the
simultaneous segmentation of blood vessels and hypoxic regions in dual-
stained tumor tissue sections. The algorithm, which is integrated in a task-ori-
ented image analysis system developed on-site, initially uses the 

 

K

 

-nearest
neighbor classification rule in order to label the image pixels. Classification is
based on a training set selected from manually drawn regions corresponding
to the areas of interest. If the output image contains a significant number of
misclassified pixels, the user has the option to apply a series of specific prob-
lem-designed routines (texture analysis, fuzzy 

 

c

 

-means clustering, and edge
detection) in order to improve the final segmentation result. Validation exper-
iments indicate that the algorithm can robustly detect these biological features,
even in tissue sections with a very low quality of staining. This approach has
also been combined with other image analysis based procedures in order to
objectively obtain quantitative measurements of potential clinical interest.
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INTRODUCTION

 

Hypoxia and tumor vasculature are two biological features that play a crucial role
in the radiation response of solid tumors. Both the importance of tumor oxygenation
and the relevance of blood flow, for the outcome of radiation treatment, were
described many years ago by Schwartz,

 

1

 

 and Gray 

 

et al.,

 

2

 

 respectively. Solid tumors
represent 90

 

%

 

 of all human cancer and are characterized by much lower oxygenation
levels than normal tissues, leading to increased resistance to radiotherapy and anti-
cancer chemotherapy, as well as a predisposition to increased tumor metastases.

 

3

 

The growth of a solid tumor requires the induction of its own blood supply, which it
does by stimulating the growth of cells from surrounding vessels into the tumor, a
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process that is referred to as 

 

angiogenesis

 

. However, the newly formed vascular
network in the tumor is very chaotic and as a result, blood flow is highly irregular,
causing the development of nutritient- and oxygen-deprived regions. This leads to
the development of both chronic (diffusion-limited) and acute (perfusion-limited)
hypoxia.

There is much current interest in the clinical significance of these different forms
of hypoxia yet the 

 

gold standard

 

 method for assessing hypoxia uses an Eppendorf
microelectrode. This method measures tissue oxygenation in the region of the elec-
trode tip and cannot provide any information pertaining to the different forms of
hypoxia. Very few of the current methods are easily accessible in routine clinical
practice, and correlations with the outcome of radiotherapy are still few.

 

4

 

 In addition,
even those studies attempting to investigate the relationship between the tumor vas-
cular architecture and oxygenation, suffered from major pitfalls as they failed to
extract subcellular scale information, or lacked the implementation of formal valida-
tion studies.

Image analysis has yet to contribute significantly to the investigation of hypoxia
and tumor vasculature, and most of the algorithmic approaches to date have focussed
on imaging modalities of limited resolution and with poor spatial information.

 

5,6

 

 For
example, Charpin 

 

et al.

 

7

 

 and Strieth 

 

et al.

 

8

 

 used image analysis to evaluate tumor
angiogenesis in tissue sections that contained CD31 immunostained blood vessels,
providing, however, very limited information on how the blood vessel detection is
achieved. Haustermans 

 

et al.

 

 described a technique within existing image analysis
software that allows an estimation of the presence of hypoxia in a tumor, based on
vascular parameters.

 

9

 

 According to that study, hypoxic areas as well as blood vessels
were detected by thresholding, and staining artifacts were removed by manual inter-
action. The proportion of tumor tissue area greater than a fixed distance from the near-
est stained blood vessel was subsequently calculated. Rijken and coworkers
developed more advanced techniques,

 

10–12

 

 but the processing is performed on tissue
section images acquired by means of fluorescence microscopy, where features of
interest are much more easily distinguishable. None of the previously mentioned
studies have reported validation experiments, which would exhibit the reliability of
the proposed techniques, or provided details concerning the image analysis algo-
rithms. Rather, they concentrate on clinical conclusions.

Following the previous discussion, there is a great need to standardize the meth-
ods of quantification and extract as much useful information as possible from immu-
nohistochemically stained tissue sections. The aim of this study was to develop a
novel image analysis technique for studying tumor hypoxia in relation to the func-
tional vascular geometry with direct quantitative measurements within different
tumor regions. Specifically, we used a multistage algorithm that focuses on simulta-
neous grading and detection of hypoxic regions and blood vessels, respectively,
present in large-scale histological images, acquired by means of light microscopy.
The following sections describe the analyzed histologic material and the algorithmic
steps of the method proposed. Quantitative results are provided in the form of correct
pixel labeling and image classification of tumor samples encountered in clinical
practice.
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MATERIALS

 

The specimens studied were histologic sections from various human bladder cell
carcinomas that had been doubled stained using standard immunohistochemistry for
hypoxia and vasculature. Blood vessels were identified with a monoclonal antibody
against CD31, which is expressed on the surface of endothelial cells. Visualization
of the antibody complex was achieved with a chemical reaction using diaminoben-
zidine, resulting in brown staining of the endothelial cell membranes. To stain
hypoxic cells, patients were injected with pimonidazole hydrochloride 16–24 hours
prior to surgery. This is a bioreductive agent that is only fully metabolized and binds
in the absence of oxygen. Binding was recognized by a monoclonal antibody and
visualized using vector red through an alkaline phosphatase reaction. All nuclei in
the sections were counterstained blue using haematoxylin.

The tissue-section images were captured as three-color 768 

 

×

 

 576 bitmaps using
a Zeiss Axioscop trans-illumination microscope, coupled to a JVC KY55F 1/3

 

′′

 

(6.4 

 

×

 

 4.8mm) 3-CCD color camera. Images were digitized using a Matrox
Meteor™ frame grabber, installed in a PCI bus 600MHz Pentium™ PC. A 

 

×

 

40
oil-immersion lens (NA 

 

=

 

 0.75) was used during acquisition, providing a compro-
mise between adequate resolution and maximum field of view of the region of inter-
est. The pixel size, using a 

 

×

 

0.5 demagnifier before the camera, at the object plane
(241.5 

 

×

 

 180.5

 

µ

 

m) was 0.3

 

µ

 

m 

 

×

 

 0.3

 

µ

 

m. Each point in the image corresponded to a
point in a three-dimensional (3D) vector space, with each location in the scene con-
sisting of 

 

R

 

 (red), 

 

G

 

 (green), and 

 

B

 

 (blue) components.

 

IMAGE ANALYSIS

 

This section describes the multistage technique for simultaneous segmentation
and grading of blood vessels and hypoxia, respectively. After the image is captured
with the hardware set-up described above, the user can perform various measure-
ments with an image analysis system that includes task-oriented operations. The
individual steps involved in the processing of the tissue section images are shown in
F

 

IGURE

 

 1.

 

Training Set

 

As stated in the introduction, the processing is initiated with the user prompted to
manually draw polygons, corresponding to the various features being segmented on
the displayed histologic image: the histologic background containing tumor cells
(BG), blood vessels (BV), high level hypoxic regions (HH), and low level hypoxic
regions (LH), which exhibit the same color as HH but are significantly weaker, due
to smaller uptake of the hypoxia marker. The resulting quantitative data constituted
a training set (i.e., data set), characterized by the 

 

red

 

, 

 

green

 

, and 

 

blue

 

 color features,
which was different for each of the 15 histologic images used in this study. To test if
additional or different color features produce better segmentation results, three other
spaces were also defined: (1) The RGBMrMgMb space, which is defined by the 

 

R

 

,

 

G

 

, and 

 

B

 

 values, plus the average intensities of the 3

 

×

 

3 nearest neighborhood around
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FIGURE 1. Flow-chart of the proposed multistage algorithm.
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an image pixel; and (2) The La*b* and Lu*v* color models, which represent color
and intensity independently, and are used regularly for color segmentation tasks.

 

13

 

KNN Classifier

 

After the training set is selected, the user can either delete it and redraw different
regions, or proceed to the pixel labeling stage. The algorithm uses a 

 

K

 

-nearest-neigh-
bor (KNN) classifier to label all the remaining points of the histologic image. This
is essentially a non-parametric classification procedure that can be used without
assuming that the forms of the underlying densities, which can be extracted from the
training set, are known. Let 

 

ω

 

i

 

, 

 

i

 

 

 

=

 

 1,…,4 represent the four pattern classes (i.e., BG,
BV, HH, and LH). Suppose the data set contains 

 

N

 

i

 

 points in class 

 

ω

 

i

 

 and 

 

N

 

 points in
total. Then a sphere (hypersphere if the data set is 

 

i

 

-dimensional, where 

 

i 

 

>

 

 3),
around the point 

 

x

 

 is drawn that includes 

 

K

 

 points irrespective of their class label.
Thus, if the volume of this sphere is 

 

V

 

 and contains 

 

K

 

i

 

 points from class 

 

i

 

, the class
conditional probability, denoted by 

 

p

 

(

 

x

 

/ω

 

i

 

), has the form 

 

p

 

(

 

x

 

/ω

 

i

 

) 

 

=

 

 

 

K

 

i

 

/

 

(

 

N

 

i

 

V

 

), and
using the Bayes’ theorem in accordance with an estimation of the unconditional den-
sity 

 

p

 

(

 

x

 

) 

 

=

 

 

 

K

 

/

 

(

 

NV

 

) and prior probability 

 

p

 

(

 

ω

 

i

 

) 

 

=

 

 

 

K

 

i

 

/N

 

, the 

 

a posteriori

 

 probability is

 

P

 

(

 

C

 

i

 

/

 

x

 

) 

 

=

 

 

 

K

 

i

 

/

 

K

 

, which is merely the fraction of the samples within the sphere that are
labeled 

 

ω

 

i

 

. For minimum error rate, the class most frequently represented within the
cell is selected (

 

KNN classification rule

 

14

 

). Thus, in the case where either of the 3D
color spaces are used (i.e., RGB, La*b*, or Lu*v*), the classification procedure
involves finding a sphere around each image pixel 

 

x

 

 that contains 

 

K

 

 points (indepen-
dent of their class), and then assigning 

 

x

 

 to the class having the largest number of
representatives inside the sphere. Similarly, a hypersphere is fitted in the case where
every pixel both in the image and the data set is characterized by the six-dimensional
vector: 

 

x

 

i

 

 

 

=

 

 (

 

Ri,Gi,Bi,Mri,Mgi,Mbi).

Selecting the Optimum Number of NN

One of the problems encountered frequently in non-parametric methods of den-
sity estimation concerns the choice of the constraint (the number of NN in our case)
that allows the form of the density to be determined entirely by the data. Specifically,
if the value of K is large the procedure becomes more robust, but some of the true
structure in the density is smoothed out. Yet K must be much smaller than the mini-
mum of Ni, the number of samples in class ωi, otherwise the neighborhood is no
longer the local neighborhood of the sample. In order to find a compromise for the
K value, the leave-one-out procedure15 was used to classify every sample in the RGB
training set using the remaining samples, for various values of K. This method was
performed for each training set selected from the 15 histological images, and the
classifier performance was then averaged producing the curve shown in FIGURE 2.
The classifier was tested for each of the first 50 NN, presenting the least misclassifi-
cations when K = 31, which was used as the optimum K value for labeling the tissue
section images. It can be also noticed from the graph that the KNN method performs
worse when either a smaller or a larger number of NN are taken into account during
the data set classification.
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Correcting Misclassifications

After pixel labeling of the tissue section images is complete, the user selects the
class of interest (i.e., BV, LH, etc.) and might either proceed to the quantitative anal-
ysis menu, if satisfied with the displayed output image, or perform other operations
to correct any misclassifications produced, which are usually distributed as small
clusters. In the latter instance, the user is provided with the option to apply reversibly
a remove_small_regions routine (see FIG. 1) that produces a low pass filtered image.
However, occasionally during the immunohistochemical staining procedure, some
small background regions tend to uptake mistakenly the vessel stain, causing the
KNN classifier to produce major misclassifications, since different structures (i.e.,
BV and BG or LH) retain similar color properties. If so, the user has the option to
use problem-specific operations to reclassify those pixels that have been mistakenly
labeled BV although they belong to the BG (and rarely to the LH) class. Specifically,
if the misclassified pixels form unwanted large regions that cannot be removed with-
out also removing the correctly classified vessels, a sequence of two image analysis
techniques combined with a clustering algorithm have been created to further clas-
sify the BV class.

Texture Analysis. Prompted by the algorithm proposed by Dubuisson-Jolly and
Gupta for color and texture fusion,16 we used simultaneous autoregressive (SAR)
models to compute texture features for each pixel in the R, G, and B plane separately.
Specifically, the SAR model defines the grey-level g(x,y) at a pixel location (x,y) as

(1)

where N is a neighbor set defined in the spatial domain, ε(x) is an independent Gaus-
sian random variable with zero mean and unit variance, ρN is the overall variance of
noise, µ is a sample mean of image grey level values, and θ(i,j) ((i, j) ∈ N) are the
model parameters. Different textures are characterized by different neighborhood
properties that, in turn, get represented by different model parameters. There are five

g x y,( ) µ θ i j,( )g x i+ y j+,( ) ρNε x y,( ),+
i j,( ) N∈

∑+=

FIGURE 2. Classifier performance versus number of nearest neighbors (NN).
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texture parameters computed at each pixel and in each color band (i.e., 15 color-
texture features overall), using the least squares error technique in a 11×11 window
centred on that pixel. Four of them are the direction sensitive parameters θ(i,j) that
capture textural characteristics in the horizontal, vertical, diagonal, and off-diagonal
directions, and the other is the overall variance ρN of the noise in N, which is a mea-
sure of randomness of texture.

Fuzzy c-Means Clustering. After the texture features are extracted for each color
plane, only those belonging to the pixels enclosed in the BV class are considered for
further processing. The fuzzy c-means clustering17 (FCM) algorithm, is used to clus-
ter these pixels into two more subclasses: true and non-true BV pixels. The cluster-
ing begins by selecting the desired cluster number, and randomly initializing C
cluster centres. FCM, different from hard clustering, does not make a clear-cut clas-
sification of the pixels in the data set. Instead, it creates a fuzzy membership matrix
Uij in which each element describes the probability that the jth input vector, xj, which
is first normalized, belongs to the ith cluster center, ui. Provided that C = 2, the fol-
lowing two recurrent equations were used:

(2)

(3)

where Uij is the fuzzy membership of xj to class i and m is the fuzzy factor that deter-
mines the degree of fuzziness of the membership function. After finding the member-
ship matrix, each cluster is updated according to all input vectors and the membership
between them. This procedure iterates until the membership function converges and
then each input vector is assigned to the cluster with the highest probability.

Edge Detection. After applying FCM clustering, both classes are displayed with
different color so that the user is able to select the class that contains the true BV
pixels. However, there is a possibility that the output image might contain falsely
some pixels (or pixel clusters), in the non-true BV class, although they are part of a
blood vessel. If this is the case, the user has the option to apply an edge detection
algorithm, which we already proposed in a previous study,18 in order to detect the
boundaries of the blood vessels, and then the entire section can be reconstructed eas-
ily from even a tiny, but correctly classified, region within the same vessel section
(i.e., true BV class), using a standard seed fill algorithm that visits all the pixels
enclosed by the detected boundary.

At this point it should be also noticed that if the user is not satisfied with the out-
put image either after FCM clustering or edge detection, the number of training set
classes can be increased (see FIG. 1), so that the new added class would correspond
to the background regions that possess falsely a color similar to that of blood vessels.
That case, however, is not encountered frequently and it happens only when the
histologic staining is of very low quality. However, by adding one more class that

Uij
1–

x j ui– 2

x j uk– 2
-----------------------

 
 
 

1
m 1–
-------------

k 1=

2

∑=

ui

Uij( )m x j⋅
j 1=

n

∑

Uij( )m

j 1=

n

∑
------------------------------------,=
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represents the erroneous uptake of the vessel stain from some background regions,
the number of misclassifications can be eliminated (more details are given below).

RESULTS AND DISCUSSION

The image processing software was written in the C++ programming language
under MS Windows™ 2000. For 768×576 size image data, the overall pixel labeling
took 15min whereas texture analysis, FCM clustering and edge detection required
less than 4min processing for those images that contained significant number of mis-

TABLE 1. Analysis of pixel misclassifications (KNN method)

Predicted Group Membership

Actual Group BG BV HH LH % Correct

(a) RGB space

BG 47,398 2,295 0 361 95

BV 4,760 21,894 305 2,014 76

HH 13 214 20,987 419 97

LH 493 1,168 126 18,473 91

Total 90

(b) RGBMrMgMb space

BG 48,164 1,121 0 769 96

BV 6,302 17,826 236 4,610 62

HH 28 716 17,829 3,058 82

LH 1,203 750 97 18,209 90

Total 84

(c) La*b* space

BG 42,622 2,386 0 5,046 85

BV 1,765 10,161 7,370 9,677 35

HH 0 0 21,594 38 99

LH 6 13 11,075 9,166 45

Total 69

(d) Lu*v* space

BG 45,404 2,961 0 1,689 91

BV 4,735 8,823 5,583 9,831 30

HH 6 264 21,113 248 98

LH 389 292 4,380 15,198 75

Total 75
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classifications. A test set of various areas corresponding to the four different patterns
under investigation (BG, LH, HH, and BV) was selected on full histologic images
and submitted to the KNN classifier with a view to quantitatively validating its per-
formance in terms of identification of the biological structures of interest. TABLE 1
shows the confusion matrix analysis (expressed in numbers of pixels), for the RGB,
RGBMrMgMb, La*b*, and Lu*v* spaces. The rows of the matrix represent the true
pixel classes, whereas the columns represent the chosen classes. Correctly classified
pixels appear as entries on the diagonal of the matrix. Although these results confirm
the high performance of the KNN classifier when features from the RGB space were
used, some confusion can be clearly seen between the BV and LH or BG class, and
vice versa. This is mostly due to the fact that some images were acquired from tissue
sections containing BG and hypoxic regions that had uptaken falsely the vessel stain,
which is a recurring phenomenon during the immunohistochemical staining proce-
dure. We also attempted to test the HSI (hue, saturation and intensity) space, but the
nonlinearity computation of the hue component made it impractical, producing
severe misclassifications (results are not shown here).

FIGURE 3A illustrates a histologic image containing the biological patterns of
interest (in the original color image hypoxic regions appear in red and blood vessels
in brown). There are four hypoxic regions (three of them touching the bottom border
of the image and the other one at the upper-right corner), and four blood vessels (that
at the upper-left corner is essentially a cluster of sections belonging to the same
blood vessel). The staining quality in this tissue section is good but it is difficult to
identify with confidence the LH and HH regions due to the variation in the red stain.
Both the LH and HH regions are part of the same hypoxic area in a tumor island but
LH exhibits lower intensity staining (less hypoxia) compared to HH (greater
hypoxia). At present, the discrimination of LH and HH is subjective but potentially
the relative proportions of these populations may give useful clinical information.
FIGURE 3B shows the resulting KNN classification after drawing four different small
regions on the full histologic image. The grey-level coding for each biological struc-
ture is shown next to the classified image. Notice that all the structures of interest are
identified rigorously, including the weakly stained blood vessels at the centre and
upper-left corner. Some BG pixels that have been misclassified as LH are located
close to the hypoxic regions touching the bottom border. These can be removed eas-
ily with the remove_small_regions routine (see CORRECTING MISCLASSIFICATIONS).

FIGURE 4A shows another example of a tissue section containing the structures of
interest, but this time with low staining intensity. Small areas, indicated by arrows,
in the BG and close to the LH regions have been mistaken as BV resulting misclas-
sifications in the labeled image (FIG. 4B). For this image the routines included in the
correcting_misclassifications module (see FIG. 1) were applied to remove those mis-
labeled pixels. FIGURE 4A also shows the final output image containing the borders
of blood vessels and low hypoxic regions as well as the shortest line that connects
each blood vessel with the closest hypoxic region. This is a routine included in the
perform_measurements section of the software tool developed,19 where a variety of
other quantitative measurements can be performed (e.g., vascular density, blood ves-
sel shape analysis, and LH to HH fraction). These measures will be tested in clinical
specimens to establish whether they can provide potential prognostic information or
can be used to assess the changes after radio- or chemotherapy.
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FIGURE 3. (A) A tissue section image with good staining quality: + denotes a blood
vessel and × a hypoxic region. (B) The output image after pixel classification. , HH; ,
LH; , BV; , BG.
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FIGURE 4. (A) A tissue section image with low staining quality and the borders of the
hypoxic regions with their minimum distances to the nearest blood vessel, as found by the
system. (B) The output image after pixel classification.
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FIGURE 5. (A) Image portion from a tissue section showing typical BG and LH
regions having false uptake of the vessel stain. (B) The output image using four classes.
(C) Correct identification of falsely stained areas (light gray) and the blood vessel (dark
gray), using five classes instead.
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In conclusion, the algorithm was tested on a series of histologic images with very
encouraging results (overall sensitivity between 82% and 95% and overall specific-
ity between 93% and 99%), suggesting the high reliability of the proposed tech-
nique. We also studied the performance of the maximum likelihood classifier as a
parametric technique (results are not shown), and the influence of adding more
(RGBMrMgMb), or using different color features (L*a*b* and Lu*v*) during clas-
sification, but these failed to provide robust classifications. Furthermore, we have
created a task-oriented image system that is very flexible and essentially parameter-
free, providing the opportunity to perform quantitative measurements that are cur-
rently made manually and subjectively.

In addition, provision has been made for histologic images that exhibit very low
staining quality, where the standard option is unable to remove mislabeled pixels
after KNN classification, allowing the user to include one more class in order to
model those regions having a color similar to that of other biological structures. A
typical example is shown in FIGURE 5A. This is a small portion of a histologic image
in which some BG nuclei have non-specific uptake of the vessel stain. Using four
classes, the KNN classifier results in wrong classification of some BG regions as BV
(FIG. 5B). However, the erroneously stained regions are detected robustly by
increasing the number of classes to five, where the additional class corresponds to
the BG areas having a color similar to that of blood vessels (FIG. 5C). Finally, if the
hypoxic areas need to be partitioned into more than two regions, the user can select
as many classes as required by drawing corresponding regions to the structures being
modeled, and then proceed to the classification procedure.
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