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ABSTRACT. A large group of tubulin-binding microtubule-depolymerizing agents act as
tumour vascular disrupting agents (VDAs). Several members of this group are now in
clinical trials in combination with conventional anticancer drugs and radiotherapy.
Here we briefly update on the development of tubulin-binding combretastatins as
VDAs, summarize what is known of their mechanisms of action and address issues
relating to treatment resistance, using disodium combretastatin A-4 3–O-phosphate
(CA-4-P) as an example. Characteristically, VDAs cause a rapid shutdown of blood flow
to tumour tissue with much less effect in normal tissues. However, the tumour rim is
relatively resistant to treatment. Hypoxia (or hypoxia reoxygenation) induces
upregulation of genes associated with angiogenesis and drug resistance. It may be
possible to take advantage of treatment-induced hypoxia by combining with drugs
that are activated under hypoxic conditions. In summary, VDAs provide a novel
approach to cancer treatment, which should effectively complement standard
treatments, if treatment resistance is addressed by judicious combination treatment
strategies.
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There are several groups of compounds being devel-
oped as tumour vascular disrupting agents (VDAs).
Conceptually distinct from anti-angiogenic therapy,
vascular disrupting therapy is aimed at causing a rapid
and catastrophic shutdown of the established tumour
vasculature, which thereby induces secondary tumour
cell death. The VDA that is most advanced in develop-
ment is DMXAA (5,6-dimethylxanthenone-4-acetic acid,
also known as ASA404), which was developed from
flavone acetic acid [1, 2]. Recently, DMXAA has been
shown to extend survival of non-small cell lung cancer
patients from 5.5 months to 14.0 months, when combined
with conventional chemotherapy (www.antisoma.com).
Tubulin-binding microtubule-depolymerizing agents are
by far the largest group of VDAs and are structurally
distinct from DMXAA. Disodium combretastatin A-4
3–O-phosphate (CA-4-P or ZybrestatTM) is the lead
compound of this group and is currently in Phase II/III
clinical trials against a range of malignancies, in
combination with conventional chemotherapeutic agents
and radiotherapy. Table 1 summarizes the range of
VDAs currently in clinical trial.

We have recently reviewed knowledge of the mechan-
isms of action and developmental status of CA-4-P and
DMXAA [2]. Following a brief historical perspective and
update on progress with the combretastatins, the main
aim of the current paper is to investigate potential
treatment resistance to VDAs and methods for over-
coming it, focusing on CA-4-P as a model VDA.

Historical perspectives

The modern concept of targeting the established
tumour vasculature for indirect killing of tumour cells
arose from the gradual recognition that established
tumour blood vessels were both functionally and
morphologically different from those in normal tissues.
A key finding was that endothelial cells lining blood
vessels in rodent tumours proliferate at a much higher
rate than those in normal tissues [3]. This was later
confirmed for human tumours [4]. Denekamp [5, 6]
subsequently proposed a vascular targeting approach to
cancer therapy based on this finding and investigated
the extent of vascular shutdown necessary to induce
substantial tumour cell death. At around the same time
in the 1980s, approximately 10 years after Folkman’s
ground-breaking description of tumour angiogenesis [7],
a vascular mode of action was ascribed to various
emerging cancer treatments such as hyperthermia,
photodynamic therapy, cytokines and flavone acetic
acid. Vascular damage was strongly implicated because
of extensive haemorrhagic necrosis (typical of the
response to vessel ligation) and a poor tumour cell
yield from excised animal tumours subjected to enzy-
matic digestion. These new cancer treatments contrib-
uted to the general interest in the tumour vasculature as
a relatively unexplored target. Figure 1 illustrates some
of the characteristics of the tumour microcirculation,
which makes it abnormal and hence a source of
potential molecular targets for therapy. Identification
of specific molecular targets on tumour vasculature that
could be used as a basis for therapy soon became a
major research interest. Burrows and Thorpe [8] proved
the principle of tumour vascular disruption in mice by
subcutaneously implanting neuroblastoma cells expres-
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Table 1. Vascular disrupting agents in clinical trial

Drug Web-site Drug type

ZybrestatTM www.oxigene.com/ CA-4-P, tubulin-binding agent
OXI 4503 As above CA-1-P, tubulin-binding agent
AVE8062 www.aventisoncology.com/ Synthetic combretastatin
ABT751 www.abbott.com/ Sulphonamide b-tubulin inhibitor
TZT-1027 www.daiichi.co.uk/ Tubulin-binding agent
TrisenoxTM www.trisenox.com/ Arsenic trioxide
NPI-2358 www.nereuspharm.com/ From marine fungus, tubulin binding
ASA404 www.antisoma.com/ DMXAA, flavonoid
ExherinTM www.adherex.com/ Peptide N-cadherin antagonist

DMXAA, 5,6-dimethylxanthenone-4-acetic acid, also known as ASA404, now licensed to Novartis AG.

Figure 1. Characteristics of the tumour microcirculation. (a) Electron micrographs of a microvessel within the P22 rat sarcoma
(bottom panel) and normal rat skeletal muscle (top panel). Note highly invaginated luminal surface of endothelial cells, large
nucleus, very restricted lumen, disorganized basement membrane and poor contact between pericyte and endothelial cell, in
the tumour compared with the normal vessel. (b) Blood flow rate in the P22 rat sarcoma, showing highly heterogeneous spatial
distribution of flow across a tumour section (approximately 10 mm in diameter). Blood flow was estimated from the relationship
between tissue uptake of intravenously administered 14C-labelled iodo-antipyrine and time course of the tracer in arterial blood.
Tissue levels of radioactivity were measured using autoradiography. (c) Complex vascular architecture of an HT29 human
colorectal carcinoma growing as a xenograft in a dorsal skin-flap ‘‘window’’ chamber in an immunocompromised mouse, also
showing rarefaction of the vascular bed towards the centre of the tumour (tumour approximately 3 mm in diameter). Vascular
contrast was achieved by intravenous injection of fluorescently labelled 40 kDa dextran, monitored by multiphoton fluorescence
microscopy. Left panel: a few minutes after administration of dextran. Right panel: approximately 15 min later, showing
extensive leakage of dextran into the interstitial space, indicative of high vascular permeability. EC, endothelial cell; P, pericyte;
BM, basement membrane; RBC, red blood cell; L, lumen; EJ, endothelial cell junction; N, nucleus of endothelial cell.
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sing the inflammatory cytokine interferon-c into mice.
This induced major histocompatibility complex (MHC)
class II expression on the tumour endothelium, which
was then targeted by using antibodies to mouse MHC
class II coupled to the toxin ricin. This led to the
eradication of large solid tumours, thus demonstrating
the potential for vascular disrupting approaches in
cancer therapy. Recent progress in the search for specific
molecular signatures on tumour vasculature, with
potential for treatment targeting, is reviewed by Neri
and Bicknell [9].

Development of the combretastatins

Sporadic reports of tubulin-binding agents having
vascular effects have appeared over many years [10–14].
A systematic study of the tumour vascular effects
following treatment with both newly discovered and
established tubulin-binding agents was carried out by
Chaplin et al [15] in the 1990s. The tubulin depolymeriz-
ing combretastatin, combretastatin A-4 (CA-4), emerged
as a promising vascular disrupting agent from this study.

17 combretastatins had been isolated from the Cape
Bushwillow tree Combretum caffrum by Professor Bob
Pettit at Arizona State University. A soluble sodium
phosphate salt of CA-4 (CA-4-P) was later developed
[16], which is readily administered in vivo and rapidly
cleaved to CA-4 by the action of endogenous non-specific
phosphatases. Colchicine and CA-4 are structurally
related and the two agents bind to tubulin at or close
to the same site. The tumour vascular damaging effects
of CA-4-P were first described in 1997 [17] and this
compound is now being developed as ZybrestatTM by
OXiGENE Inc., made possible by its relative lack of
toxicity compared with colchicine. This moderate toxicity
is most likely owing to a short plasma half-life for CA-4
and reversible binding kinetics, as opposed to the
pseudo-irreversible binding of colchicine. Tissues are
therefore exposed to the drug for a relatively short time,
which is nevertheless sufficient to cause vascular shut-
down in susceptible tumour blood vessels. In animal
models, this can be achieved within 20 min of drug
exposure [18].

A second combretastatin, combretastatin A-1 (CA-1)
[19], is also being developed as the sodium phosphate
salt, CA-1-P, by OXiGENE Inc. (designated OXI4503). In
pre-clinical models, CA-1-P is more potent than CA-4-P
[20, 21] and both compounds are currently being tested
in clinical trials. A synthetic derivative of the combre-
tastatins, the Aventis Pharma compound AVE8062, is
also in clinical trials. This is a pro-drug, the serine of
which is cleaved by aminopeptidases, to form the active
component [22]. Other synthetic analogues of the
combretastatins are at much earlier stages of develop-
ment.

Clinical trials of CA-4-P were initiated in 1998,
followed shortly by trials of a related compound,
ZD6126, and AVE8062. In Phase I/II clinical trials,
imaging techniques (contrast-enhanced proton magnetic
resonance imaging and positron emission tomography)
were used to measure tumour and normal tissue uptake
kinetics of contrast agents, as a measure of vascular
response [23–30]. The results from three Phase I trials for

CA-4-P have been reviewed [31]. These data confirmed
the tumour selectivity of these agents in the clinical
setting. However, in a majority of patients, the vascular
parameters returned to baseline by 24 h after treatment,
highlighting the need for optimization of dose schedules
and/or more effective agents. The results for CA-4-P are
consistent with animal studies performed at clinically
relevant doses [27, 32]. Clinical trials of VDAs have now
progressed to Phase II, in combination with conventional
chemotherapy and radiotherapy. In addition, there is a
Phase II/III trial of CA-4-P against anaplastic thyroid
cancer, in combination with conventional chemotherapy,
and a Phase Ib trial of CA-4-P in combination with the
anti-angiogenic agent, bevacizumab (AvastinTM) (www.
oxigene.com).

Mechanisms of action

Within minutes of drug administration, VDAs cause a
significant decrease in tumour blood flow with maximal
effects between 1h and 6 h (Figure 2). Drug-induced
vascular endothelial cell death is too slow a process to
account for these rapid changes, but for CA-4-P in vivo
effects are paralleled by very rapid remodelling of the
actin cytoskeleton of endothelial cells in vitro, which is
triggered by disruption of interphase microtubules
following drug binding [33]. Endothelial cells are
particularly sensitive to this compound and effects
include rounding up of cells, assembly of actin stress
fibres and actinomyosin contractility, formation of focal
adhesions, disruption of cell–cell junctions, including
those involving N- and VE-cadherin, and an increase in
monolayer permeability to macromolecules [33, 34]. In a
subpopulation of cells, additional effects involve F-actin
accumulation into surface blebs, with cells rounding up
and stress fibres misassembling into a spherical band
surrounding the cytoplasm, accompanied by malformed
focal adhesions. Signalling pathways associated with
these processes involve the GTPase, Rho-A and Rho
kinase and stress-activated protein kinase-2/p38
(SAPK/p38) [33], as reviewed by Kanthou and Tozer
[35].

In vivo, CA-4-P increases tumour vascular permeabil-
ity to macromolecules [36]. This is consistent with the in
vitro effects and may lead to a decrease in blood flow
because of an increase in viscous resistance to flow
owing to fluid loss from blood to tissue. Previously, we
have suggested that an increase in vascular permeability
to macromolecules could also lead to blood flow shut-
down via a transitory increase in tumour interstitial fluid
pressure (IFP) [2]. However, direct measurements of
tumour IFP, in the C3H mammary tumour model using
the ‘‘wick-in-needle’’ method, have now shown that IFP
does not increase at any time after CA-4-P treatment [37].
This does not rule out the possibility of an increase in the
differential between IFP and intravascular capillary
pressure following VDA treatment, leading to vascular
collapse, which would occur if intravascular pressure
decreases. This is suggested by upstream arteriolar
vasoconstriction induced by CA-4-P and AVE8062 [18,
38]. Arteriolar vasoconstriction and cytoskeletal remo-
delling of endothelial cells following VDA treatment, as
reported in vitro, may also contribute to an increase in
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geometric resistance to blood flow in vivo. As the blood
flow falls below a critical level, red cells stack together to
form rouleaux, increasing viscous resistance to flow and
further blood stagnation [39]. Sustained vascular damage
leads to haemorrhage into tumour tissue, coagulation
and tumour infiltration by immune effector cells such as
neutrophils and macrophages. In one study, CA-4-P
enhanced the immune response of rats bearing intrahe-
patic colon carcinomas [40]. The generality of this finding
is unknown but it will be important to determine the
ultimate effect of infiltrating immune effector cells on
treatment outcome with CA-4-P, as macrophages in the
tumour microenvironment have important pro-angio-
genic effects.

Extended exposure to CA-4-P can affect endothelial
cell proliferation and migration and is clearly toxic to
cells in vitro. Therefore, if drug exposures are sufficient,
VDAs can be anti-angiogenic as well as vascular
disrupting, and endothelial (and tumour) cell death
could contribute to treatment outcome. Death can occur
by several means. Firstly, extensive disruption of
interphase microtubules in endothelial cells can lead to
a relatively rapid form of necrotic cell death, in which
the blebbing morphology described above is an early
manifestation [33]. There is also evidence that disruption
of VE-cadherin junctions by CA-4-P is associated with a
cell death pathway mediated by inhibition of PI3K/Akt
signalling [34]. In proliferating endothelial cells, death is
associated with damage to mitotic spindles, which are at
least as sensitive to CA-4-P as interphase microtubules
[41]. Most investigators agree that the primary cell death
pathway in proliferating endothelial cells occurs via a
caspase-independent mechanism, which is nevertheless
linked to apoptosis and dependent upon mitotic arrest.
Death occurs as cells attempt to leave mitosis, such that
drug exposures of many hours are required for
significant cells to accumulate in mitosis and subse-
quently die.

Treatment resistance

Susceptibility to VDAs

Tumour blood vessels are generally extremely suscep-
tible to CA-4-P [42] and this was the basis for
combretastatins entering clinical trials. Many tumours
are characterized by regions of necrosis and hypoxia,
which suggest that the blood supply is barely adequate
to support tumour growth. Indeed tumour blood flow is
characteristically highly heterogeneous (Figure 1), with
blood in some vessels being practically stationary and/or
periodically reversing in flow direction. Morphologically
too, tumour blood vessels appear fragile and susceptible
to disruption. They are often sinusoidal in appearance,
with poor development of the vascular wall, comprising
of endothelial cells with poor cell–cell contacts and
abnormal basement membrane. Mural support cells, in
the form of pericytes, may be deficient and often make
poor contact with endothelial cells (Figure 1).

However, at the pre-clinical level, there is variation in
response to VDAs between different tumour types.
Knowledge of the factors that predict blood vessel
susceptibility to CA-4-P and other combretastatins will
enable selection of appropriate patients for current VDA
treatment and open up new avenues for research into
novel pathways for targeting the established tumour
vasculature. Susceptibility may occur at the cellular or
tissue level and putative factors determining suscept-
ibility are shown in Table 2.

There is evidence that vascular permeability to
macromolecules correlates with the response to CA-4-P
[48] and this may relate to the pre-treatment level of
interstitial fluid pressure. We have recently shown that
expression of a high-molecular-weight splice variant of
VEGF-A (VEGF188) in a mouse tumour model is
uniquely associated with pericyte recruitment and is
also highly resistant to CA-4-P [51]. Thus endothelial

Figure 2. Effect of CA-4-P on
tumour oxygenation and vascularity.
(a) Mice bearing CaNT mammary
carcinomas were treated with
50 mg kg21 intraperitoneal (ip) CA-
4-P and tumour hypoxia was identi-
fied by the intravenous injection of
pimonidazole (OxyProbeTM) and sub-
sequent tissue processing. The top
panel shows the control (untreated
tumour) and the bottom panel the
tumour at 1 h following CA-4-P
administration. Increased pimonida-
zole staining is observed, indicative
of substantial hypoxia induction. (b)
Rats bearing P22 sarcomas in dorsal
skin-flap ‘‘window’’ chambers were
treated with 100 mg kg21 ip CA-4-P
and vascularity monitored by con-
ventional transmitted light micro-
scopy. The top panel shows the
control (untreated tumours) and the
bottom panel the tumour at 1 h
40 min following CA-4-P administra-
tion. Rapid loss of a large fraction of
the visible vasculature and resistance
of the tumour rim is observed.
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cell–pericyte interactions are likely to be important for
the resistance of normal tissues to the effects of VDAs.

A potential advantage of all vascular-targeted strate-
gies is that cellular components of the tumour vascu-
lature are less susceptible than tumour cells to mutations
that give rise to drug resistance. However, there are
various sources of treatment resistance to VDAs that
need to be overcome and these are addressed below.

Toxicity
In clinical trials, dose-limiting toxicities for CA-4-P

included dyspnoea, myocardial ischaemia, reversible
neurological events and tumour pain. Most common
adverse events after a single intravenous injection of CA-
4-P were mild (Grade 1 or 2) nausea, vomiting, headache,
fatigue and tumour pain. CA-4-P did not cause haema-
tological toxicity associated with other classes of tubulin-
binding anticancer drugs such as the vinca alkaloids and
taxanes.

Cardiovascular side effects of the tubulin binding
VDAs have been the main concern in clinical trials. For
CA-4-P, hypertension preceded three cases of reversible
myocardial effects, which contributed to the establish-
ment of the current maximum tolerated dose.
Hypertension is most likely caused by vasoconstriction
of normal blood vessels. The concomitant use of
vasodilators with CA-4-P in rats, can eliminate the
hypertensive effect without altering the blood flow
shutdown effects in the tumour [52], suggesting that
this may alleviate some of the clinical problems.

Resistance of the tumour rim
Well-tolerated doses of VDAs in mice can kill over 90%

of tumour cells. However, tumours regrow from surviv-
ing cells in the tumour rim, which has proved excep-
tionally difficult to eradicate. Typically, a viable rim of
tumour tissue a few cells wide persists to repopulate the
tumour following VDA treatment at close to the
maximum tolerated dose level in animal models
(Figure 2). Resistance of the tumour rim, initially in
terms of the primary blood flow reduction achieved and
then in terms of the consequent extent of tumour
necrosis, appears to be the case not only for tumours in
animal models but also for human tumours [27]. This

characteristic accounts for most of the resistance to
VDAs. The extent of tumour growth delay following
VDA treatment in animal models is dependent on type of
tumour, dose and scheduling, but overall it is clear that
none of the current agents is curative as single agents.
However, there is encouraging evidence that VDAs will
enhance conventional treatments. Combined efficacy can
be achieved if the two treatments have independent
targets and/or provide spatial co-operation, indepen-
dent toxicities or potentiate each other’s actions.

Clearly, the primary target of VDAs is different from
conventional treatments designed to target tumour cells
directly, and so it is hoped that VDA treatment kills
some tumour cells that survive conventional treatment
alone. Spatial co-operation could be achieved by combin-
ing VDA treatment with a modality that targets the
tumour periphery. Conventional chemotherapeutic
agents and radiation are effective against highly pro-
liferating and well-oxygenated cells, which are most
evident in the periphery of tumours. In addition, blood
flow tends to be more efficient at the periphery, allowing
ready access to blood-borne anticancer agents. The
rationale for combining vascular disrupting agents with
conventional treatments is therefore apparent and pre-
clinical studies have indicated a benefit of combining
various combretastatins with radiotherapy and a range
of chemotherapeutic agents, most notably the platinum
drugs and taxanes [53, 54]. There is some evidence, at
least in mice, that these improvements in tumour
response can be achieved without any increased toxicity
[55].

Scheduling is an important and complex issue in
combination treatments. Pre-clinical studies have gener-
ally concluded that it is inadvisable to give radiotherapy
or chemotherapy shortly after VDA administration, when
the blood flow is reduced to the tumour regions that are
destined to survive the treatment. These areas will be
hypoxic and therefore radioresistant and poorly accessible
by blood-borne chemotherapeutic agents. However,
VDA-induced reduction in tumour blood flow can be
exploited to ‘‘trap’’ chemotherapeutic drugs in tumour
tissue, thus providing potentiation of the drug effect. In
most studies, it is difficult to separate this effect from any
spatial co-operation or direct interaction of a VDA with a

Table 2. Determining factors for tumour susceptibility to microtubule depolymerizing VDAs

Cellular level References Tissue level References

High endothelial (and tumour)
cell proliferation rate increase
susceptibility to cell killing

[3, 4] Regional instabilities in blood flow may
make any further drug-induced decrease
in flow catastrophic

[43, 44]

Differential expression of tubulin
isotypes, tubulin mutations,
post-translational modifications
of tubulin and types of MAPs may
influence microtubule disruption

[45] High vascular permeability and interstitial
fluid pressure may make blood vessels
prone to collapse if there is a further
acute increase in vascular permeability

[46–48]

Defective cell–cell junctions may
sensitize to further junctional
disruption

[33, 34] Immaturity of the vascular wall, e.g. poor
contact between endothelial cells and
pericytes, may reduce stability of tumour
blood vessels following endothelial
cell damage

[49]

Hypoxia and hypoglycaemia
influence signalling events

[50] Self-trapping of VDA as tumour blood
flow decreases increased drug exposure

[42]

MAP, microtubule-associated protein; VDA, vascular disrupting agent.
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second agent. However, at least in one case (the
combination of 5-fluorouracil (5-FU) with CA-4-P) an
effective tumour growth retardation has been achieved for
a combined treatment, in the absence of any correspond-
ing increase in tumour levels (trapping) of the drug [56].
In radiotherapy, damage to the tumour vasculature is
increasingly recognized as being influential in determin-
ing tumour cell survival, and radiation-damaged tumour
blood vessels may be particularly susceptible to VDAs.
There is some evidence that CA-4-P and ZD6126 have a
particular impact on the radiation-resistant hypoxic cell
population but the mechanism behind this effect requires
further investigation [57]. Recently, the clinical combina-
tion of CA-4-P and radiotherapy in a palliative setting for
non-small cell lung cancer has shown some benefit in
terms of tumour vascular effects, as measured by contrast-
enhanced dynamic CT [58].

In addition to combining VDAs with conventional
agents that have some selectivity for the tumour
periphery, combination with novel biological anticancer
agents also has significant potential. For instance,
antibodies with potent binding characteristics are found
to localize in the tumour periphery, with very little
penetration into the tumour centre, resulting in poor
efficacy as single agents. This is most likely a conse-
quence of both poor delivery (low blood flow) and poor
convective extravasation (high IFP) at the centre of
tumours. Spatial co-operation of high-molecular-weight
biologicals with VDAs has been found for the combina-
tion of radioimmunotherapy and CA-4-P or DMXAA in
pre-clinical studies [59, 60] and this is now being tested
in clinical trials.

Recent innovations in drug delivery systems may also
impact on the resistant tumour rim. Blood flow reductions
in tumour regions that are destined to survive the
treatment are a concern in terms of subsequent drug
delivery, as well as acting as a stimulus for expression of
growth-enhancing genes. The development of nanoparti-
cles that consist of a core and a pegylated lipid envelope,
for timed release of two different drugs, has been
described as one approach to tackling this problem [61].
In this case, vascular shutdown is instigated by release of
CA-4 from the outer envelope and this is followed, once
the nanoparticles are preferentially trapped in the tumour
tissue, by release of a chemotherapeutic drug, doxorubi-
cin, from the core. Another approach exploits CA-4
encapsulated in liposomes that incorporate specific
peptide sequences on their surface for preferential
targeting of irradiated tumour blood vessels via the
integrin, aVb3 [62]. In this way, it is hoped to increase
the selectivity of CA-4 to the tumour vasculature, when
used in combination with radiotherapy.

The cause of the resistant tumour rim is not completely
understood. There is some speculation that tumour cells
residing in the tumour periphery acquire oxygen and
nutrients from the surrounding undamaged normal
tissue, thus surviving VDA treatment. However, this
does not explain why blood flow is less compromised in
these peripheral regions, in the first place (Figure 2). Two
important factors are likely to be IFP and the vascular
architecture in the two regions. Interstitial fluid pressure
rises precipitously from the tumour periphery to the
tumour centre [46], such that a decrease in intravascular
capillary pressure at the tumour centre may be cata-

strophic, whereas it is tolerated at the periphery. Small-
calibre vessels are also more sensitive to shutdown than
larger ones and the proportion of these is often far higher
at the centre than at the periphery. A complex vascular
plexus often exists at the tumour periphery, compared
with a rarefaction of the vascular bed at the tumour
centre (Figure 2), so that in the event of extensive
vascular damage a residual flow is likely to persist at
the periphery rather than at the centre. Indeed, this
situation is often directly observed using microscopic
techniques.

Promotion of angiogenesis
The extensive ischaemic insult to tumours following

VDA treatment results in severe tumour cell hypoxia
even in the surviving tumour rim (see Figure 2) [63]. This
raises the possibility of hypoxia- or hypoxia reoxygena-
tion-induced angiogenesis, with the concern that regrow-
ing tumours will be particularly aggressive. An increase
in expression of both VEGF and basic fibroblast growth
factor (bFGF) proteins in xenografted tumours, following
CA-4-P and CA-1-P treatment, has been reported [64, 65].
In addition, both of these agents have been shown
recently to increase the number of circulating endothelial
progenitor cells in mice, which contribute to revascular-
ization of tumours following VDA treatment [66]. These
considerations may explain the good responses observed
in pre-clinical models for the combination of VDAs with
anti-angiogenic agents, such as the VEGF receptor
tyrosine kinase inhibitor, ZD6474 [67] and nitric oxide
synthase inhibitors [42]. In addition, infiltration of VDA
treated tumour tissue by macrophages, presumably
arising from chemoattractants derived from hypoxia or
necrosis may contribute to tumour revascularization.

It may be possible to exploit the VDA-induced tumour
ischaemia by combining VDA treatment with the so-
called bioreductive drugs [68], or with other hypoxia-
targeting strategies [69]. Bioreductive drugs are prodrugs
that are activated to cytotoxic agents under hypoxic
conditions. Oxygen protects the prodrug against reduc-
tive catabolism by cellular enzymes. In the absence of
oxygen, the drug is reduced to an active form or the
reduction process triggers release of an active effector
molecule. An example is the combination of DMXAA
with tirapazamine [70]. Figure 3 illustrates the potential of
combining CA-4-P with either tirapazamine or another
bioreductive drug, AQ4N (banoxantrone), which is
metabolized to the stable DNA binding agent and
topoisomerase II inhibitor, AQ4 (www.novacea.com) [71].

Development of drug-resistant tumour cells
A recent study in an animal model has also shown that

CA-4-P can increase the surviving tumour cell expres-
sion of the glucose-regulated protein GRP78 [72]. GRP78
is an endoplasmic reticulum-associated chaperone mole-
cule, which is inducible by severe glucose depletion,
anoxia and acidosis, and is associated with drug
resistance. This important finding illustrates the fact that
the response of tumour cells to vascular disrupting
agents can have a major influence on treatment outcome
and points to the potential impact of VDA treatment on
development of drug resistance, which warrants further
investigation.
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Summary

Vascular disrupting agents or VDAs, unlike anti-
angiogenic agents, cause a rapid and catastrophic
vascular collapse in tumour tissue, leading to extensive
tumour cell necrosis. In addition, anti-angiogenic effects
may be revealed in chronic dosing schedules. The actin
cytoskeleton and integrity of cell–cell junctions are
intimately involved in evoking vascular collapse.
Extended vascular shutdown, which is necessary for
tumour cell kill, requires a complex series of events
involving coagulation and immune effector cells.
Cardiovascular effects represent the most concerning
toxicity. The tumour rim is resistant to VDA treatment
and resistance may also occur via upregulation of genes
that are associated with angiogenesis and tumour cell
drug resistance. Several novel approaches have been
investigated to address these problems. Despite these
issues, VDAs have enhanced conventional therapy in the
pre-clinical setting and hold the promise for effective
complementation of conventional cancer treatments.
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