
A Taste of C#
Barry Cornelius
Computing Services, University of Oxford
Date: 24th February 2002; first created: 11th March 2001
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

1 Introduction 1
2 The .NET Framework 1
3 TheSumProg program 3
4 Namespaces,using and Main 3
5 Types 4
6 Methods 7
7 Statements 8
8 Interfaces, classes and structs 9
9 Inheritance 12
10 Delegates 14
11 Events 15
12 Other points 16
13 Four kinds of .NET applications 16
14 Other examples of C# programs 18
15 Some conclusions 18
16 References 18

1 Introduction
Microsoft have hit back: having fallen out with Sun over Java, they have now developed a rival product. Whereas
the Java technology has produced a single language that is portable across many platforms, Microsoft’s .NET
Framework provides a number of languages that interoperate, initially only for most varieties of Microsoft
Windows.

Microsoft’s Visual Studio.NET product not only makes it easy to produce code for standalone programs (such as
console applications and windows forms applications) but also makes it easy to produce code that can be executed
by their web server software (IIS). The latter possibility not only allows the creation of dynamically generated
WWW pages, but also the ability to offerweb services, i.e., to provide methods that can be called by external
clients.

This document:

• considers the key aspects of the .NET Framework;

• provides an introduction to C#;

• gives some examples of some standalone programs written in C#.

The document assumes the reader has some knowledge of the Java programming language.

The use of C# to support web forms and web services are dealt with in another document ([2]).

2 The .NET Framework

2.1 Overview of the .NET Framework
Put simply, the .NET Framework consists of three aspects:

1. the Common Language Runtime (CLR);

2. a comprehensive set of class libraries;

3. class libraries associated with particular kinds of applications:

(a) console applications;

(b) windows forms applications;

(c) web form applications;

(d) web services.

1

A Taste of C#

2.2 The Common Language Runtime
In the past, compiler writers have put code to support the execution of programs into a runtime system. Instead
of providing a different runtime system for each programming language, the .NET Framework provides a runtime
system that is used by all of the languages that are targetted at the .NET Framework. This is called theCommon
Language Runtime(or CLR). Code that targets the CLR is calledmanaged code.

Microsoft are providing several .NET compilers: Managed C++, Visual Basic.NET, JScript and C#. In addition,
other people/companies are producing .NET compilers for other languages including COBOL, Eiffel, Haskell,
ML, Perl, Python, Scheme and Smalltalk.

A .NET compiler writer can rely on the CLR for a large number of tasks, including:

• creating new types;

• creating and initializing of objects;

• tracking references to objects and providing garbage collection;

• handling the calling of methods (including virtual methods);

• managing the access to array elements;

• providing support for exceptions and exception handling.

All of the .NET languages have compilers that generate code written in an intermediate language calledMSIL
(or IL). A file containing MSIL instructions can be run on any platform so long as the operating system for that
platform hosts the CLR engine. Currently, a CLR engine is available for Windows XP, Windows 2000, Windows
NT 4.0, Windows 98 and Windows Me.

2.3 The Common Type System
Besides providing the functionality normally expected from a runtime system, the CLR also defines aCommon
Type System(CTS) which must be supported by all .NET languages. The CTS says that each language must
provide value types (primitive types, struct types, enumerations) and reference types (class types, interface types,
array types, delegate types).

Thai and Lam ([9], p39) say: ‘The CLR provides full support for object-oriented concepts (such as encapsulation,
inheritance, and polymorphism) and class features (such as methods, fields, static members, visibility, accessibil-
ity, nested types, and so forth). In addition, the CLR supports new features that are nonexistent in many traditional
object-oriented programming languages, including properties, indexers and events.’

For efficiency reasons, the CTS has value types as well as reference types. So anint or a value of some struct
type will be stored on the stack or inline, whereas an instance of some class type will be stored on the heap (and
pointed to by some variable). However, any value (that is of some value type) can automatically be wrapped into
an object by a process known asboxing. So a value (of some value type) can be used in contexts where an object
is expected:

tArrayList.Add(27);

2.4 The primitive types
As well as providing a type system that is common to all .NET languages, the CLR also provides a set of primitives
types that is common to all .NET languages. The .NET primitive types include:

size C# VB.NET
System.Boolean 8 bool Boolean
System.Byte 8 byte Byte
System.Int16 16 short Short
System.Int32 32 int Integer
System.Int64 64 long Long
System.Float 32 float Single
System.Double 64 double Double
System.Char 16 char Char
System.Decimal 128 decimal Decimal

2.5 Language interoperability
Given that the compilers for each .NET language generate the same intermediate language, use the same runtime,
build the same kind of types and use the same primitive types, it is possible to build programs where the code is
written in different .NET languages.

For example, a Visual Basic.NET programmer can create a class that derives from a C# class and overrides some
of its virtual methods; or a C# programmer can handle an exception thrown by a method being applied to an object
of an Eiffel class; and so on.

2

2.6 Tool support

2.6 Tool support
Because there is a CLR, debuggers can support programs where the code has been written in different .NET
languages, and IDEs (such as Visual Studio.NET) can use the CLR to provide information to the programmer.
For example, if you have declared some variable:

ArrayList tArrayList;

then, when you start to type the code to apply a method totArrayList:

tArrayList.

as soon as you type the dot, the IDE can provide you with a pop-up window displaying a list of methods that can
be applied totArrayList.

2.7 Deployment
One of the problems with Windows applications is that they can be difficult to install. Besides providing the files,
the application may want to change the registry or provide shortcuts. It is also difficult and sometimes impossible
to uninstall applications. With .NET, all the code and any information needed to run an application are provided
in a collection of files. In order to install an application, you just need to create a directory containing these files,
and removing this directory uninstalls the application.

One of the main problems with installing a Windows application is that the installation may overwrite a DLL used
by some other application, and overwriting it causes the other application no longer to work. This is because the
two applications require different versions of the DLL file. Because in .NET, DLLs can be signed with a public
key and a version number, it is possible for the cache of DLLs to have two DLLs with the same name.

3 The SumProg program
Here is a C# program to read in two integers and output their sum:

namespace first
{

using System;
using System.Threading;
public class SumProg
{

public static void Main()
{

Console.Write("Type in the first number: ");
string tFirstString = Console.ReadLine();
int tFirst = int.Parse(tFirstString);
Console.Write("Type in the second number: ");
string tSecondString = Console.ReadLine();
int tSecond = int.Parse(tSecondString);
int tSum = tFirst + tSecond;
Console.WriteLine("The sum is " + tSum);
Thread.Sleep(3000); // wait for 3 seconds

}
}

}

4 Namespaces, using and Main

4.1 Namespace declarations and using directives
The first line:

namespace first

is the header of anamespace declaration. This header is similar to Java’s package declaration. Essentially the
classSumProg belongs to a namespace calledfirst.

Theusing directive:

using System;

means that the classes of the namespaceSystem can be used in the subsequent code without qualification. So we
can refer to theWrite method of theSystem.Console class byConsole.Write. The methodSleep belongs to
the classThread of the namespaceSystem.Threading. Hence we can use:

using System.Threading;
...
Thread.Sleep(3000);

3

A Taste of C#

4.2 An alternative approach
There are two kinds of using directives:using-namespace directivesand using-alias directives. A using-
namespace directive like:

using System;

means that any of the classes of theSystem namespace can be used in the subsequent code without qualification.
It is similar to Java’s:

import java.util.*;

If you have a lot of these kind of using directives, then, when you look at the code that follows, it is difficult to
detect from which namespace a class belongs.

An alternative approach is to use a using-alias directive to give an alias for a class:

using Console = System.Console;
using Thread = System.Threading.Thread;
...
Console.WriteLine("Hello world");
Thread.Sleep(3000);

Using this approach, you would need one using directive for each class that is used in the code.

4.3 The Main method
TheMain method may have one of the following signatures:

public static void Main()
public static int Main()
public static void Main(string[] pArgs)
public static int Main(string[] pArgs)

If its return type isint, a return statement should be used to terminate the program’s execution, e.g.:

return 0;

5 Types

5.1 Introduction
In C#, there are three kinds of types:value types, reference typesandpointer types. As a pointer type can only be
used in code marked asunsafe, we will ignore pointer types.

As in Java, a reference type is a class type, an interface type or an array type. C# has one other kind of reference
type: thedelegate type(which will be considered later).

A value type is either astruct typeor anenumeration type.

5.2 Struct types
As well as class types, C# also has struct types. Struct types are declared and used like class types.

If Fred is a class type, then, in both Java and C#, an instance ofFred can be created by:

Fred tFredOne = new Fred(100, 200);

This produces:

- 100 200

tFredOne

If we now do:

Fred tFredTwo = tFredOne;

we get:

4

5.2 Struct types

-

�
�

�
�
�7

tFredOne

tFredTwo

100 200

A declaration of a struct type looks similar to that of a class type:

public struct Bert
{

private int iX;
private int iY;
public Bert(int pX, int pY)
{

iX = pX;
iY = pY;

}
...

}

However, the declaration:

Bert tBertOne = new Bert(100, 200);

produces:

100 200

tBertOne

and:

Bert tBertTwo = new Bert(0, 0);

produces:

tBertTwo

0 0

If we now do:

tBertTwo = tBertOne;

we get:

100 200

tBertOne

100 200

tBertTwo

Like any other local variable (e.g., a local variable of typeint), a local variable that is of a struct type comes into
being when the block starts and ceases to exist when the block is exited. This is quite different from an object
(that is of some class, and is pointed to by some reference variable): the object is created by the use ofnew and
ceases to exist when the garbage collector says so. In implementation terms, a local variable that is of a struct type
is allocated on the stack whereas an object is allocated on the heap.

Other points:

1. It is faster to access a field of a struct than the field of a class.

2. Passing a struct (as a value parameter) to a method will be slower than passing a value of a class type.

5

A Taste of C#

3. Each struct type is derived from the type object.

4. A struct type can implement one or more interfaces.

5. Like class types, a struct type can declare fields, properties, constructors, indexers, methods and operators.

6. A struct type issealedmeaning that you cannot derive a new type from a struct type.

5.3 The simple types
C# provides a set of predefined types called thesimple types. Some examples are:byte, short, int, long, char,
float, double andbool. So C# has all the primitive types of Java. In addition, C# has unsigned/signed variants
of the integer types: they aresbyte, ushort, uint andulong. C# also has a simple type calleddecimal which
can be used for the exact representation of monetary values.

The names of these simple types are keywords (reserved words). All of them are simply aliases for some
predefined struct types. It is as if we had written:

using char = System.Char;
using double = System.Double;
using int = System.Int32;

Because a simple type (e.g.,int) is just an alias for a struct type (e.g.,System.Int32), every simple type has the
members that the struct type has. For example:

int tLargest = int.MaxValue;

is the same as:

int tLargest = System.Int32.MaxValue;

And the two calls ofToString in:

int tSomeInt = 123;
string tFirstString = tSomeInt.ToString();
string tSecondString = 123.ToString();

both access theToString method of the classSystem.Int32.

5.4 Enumeration types
An enum declarationintroduces a new type. It is declared in terms of an underlying type which if it is omitted
defaults toint:

enum Days: int
{

Sunday = 1,
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

}

Each enum member has an associated value which is either given explicitly or it is one more than the associated
value of the previous member.

Each enum declaration introduces a new type. An explicit conversion has to be done to convert between an enum
type and an integer type:

Days tDays = (Days)3;
int tSomeInt = (int)tDays;

5.5 Boxing and unboxing
As mentioned previously, the value types are struct types and enumeration types, where the struct types include
the predefined simple types. When appropriate, an object is automatically created from a variable that is of some
value type. This is known asboxing.

For example:

int tStudentNumber = 123;
object tStudentBox = tStudentNumber;

6

6 Methods

results in:

-

tStudentBox

123

123

tStudentNumber

Boxing is a two-stage process: create an object and then copy the value of the variable into the object.

Unboxing is achieved as follows:

int tStudentNumberAgain = (int) tStudentBox;

An InvalidCastException exception is thrown if you attempt to cast to an inappropriate type.

Automatic boxing and unboxing are not present in Java. Instead, in Java, you have to do these tasks explicitly
using the wrapper types, e.g.:

int tStudentNumber = 123;
Object tStudentBox = new Integer(tStudentNumber);
int tStudentNumberAgain = ((Integer)tStudentBox).intValue();

Microsoft’s marketing refers to C#’sunified type system. The phraseEverything is an objectis used: this means
that, because boxing and unboxing are automatically performed, everything can be treated as an object even if it
is a value of a value type.

Here is a more convincing example. Like Java, C# has a collection class calledArrayList. This class has a
method calledAdd which is declared as:

public int Add(object pObject);

So, like Java, we can do:

ArrayList tArrayList = new Arraylist();
tArrayList.Add("Hello world");
Date tDate = new Date(2001, 3, 13);
tArrayList.Add(tDate);

However, in C#, we can also do:

int tStudentNumber = 123;
tArrayList.Add(tStudentNumber);

In Java, you would have to write:

int tStudentNumber = 123;
tArrayList.add(new Integer(tStudentNumber));

6 Methods

6.1 value, ref and out parameters
In Java, all parameters arevalue parameters. A value parameter acts like a local variable of the method whose
initial value is the value of the argument used in the call.

C# also hasref parametersandout parameters. If a method has a ref/out parameter, then that parameter represents
the same variable as the variable given as the argument.

Here is an example of a ref parameter:

private static void iIncrease(ref int pCount)
{

pCount++;
}
public static void Main()
{

int tCount = 1;
iIncrease(ref tCount);
Console.WriteLine(tCount);
// 2 would be output

}

7

A Taste of C#

Note that the keywordref appears both in the parameter list and in the argument list.

An out parameter is used in a similar way to a ref parameter. The differences between a ref parameter and an out
parameter are:

• the argument for a ref parameter must have a value when the method is called;

• the argument for an out parameter must have a value when the method is exited.

6.2 params parameters
A params parametermay appear as the last parameter of a parameter list: it permits a variable number of
arguments. Here is an example:

private static int iHowMany(int pTestValue, params int[] pValues)
{

int tResult = 0;
for (int tIndex = 0; tIndex<pValues.Length; tIndex++)
{

if (pValues[tIndex]==pTestValue)
{

tResult++;
}

}
return tResult;

}
...
int tNumberFound = iHowMany(3, 1, 3, 3, 2);
// tNumberFound now has the value 2

6.3 No throws clause
Unlike Java, it is not possible in C# to document that a method may throw an exception. So a method’s header
does not have athrows clause.

7 Statements
The statements of C# are much like those of Java. Here we consider three differences.

7.1 foreach statements
With a foreach statement, you can visit each element of a collection. For example, the above for statement:

for (int tIndex = 0; tIndex<pValues.Length; tIndex++)
{

if (pValues[tIndex]==pTestValue)
...

can instead be written as:

foreach (int tValueFound in pValues)
{

if (tValueFound==pTestValue)
...

A foreach statement can be used for any type that implements theIEnumerable interface:

public interface IEnumerable
{

IEnumerator GetEnumerator();
}

In Java, the equivalent method toGetEnumerator is callediterator. TheIEnumerator interface is:

public interface IEnumerator
{

bool MoveNext();
object Current{ get; }
void Reset();

}

In Java, the equivalent interface toIEnumerator is calledIterator.

The following types implement theIEnumerable interface:

• any array;

• any of the collection classes (that are in theSystem.Collections namespace).

You can also produce your own types that implement this interface.

8

7.2 switch statement

7.2 switch statement
C#’sswitch statementhas two ‘improvements’ over that of Java’s:

1. It is not possible to fall through from one arm to the next. So:

case 0:
i = 1;

case 1:
j = 2;

is illegal. An arm must end in a statement that transfers control. Four examples of such statements are:

break;
goto case 1;
goto default;
return;

2. A string may be used as aselector:

switch (tCommand)
{

case "add":
...
break;

case "remove":
...
break;

}

7.3 try statements
C#’s try statementis similar to that of Java. However, a catch clause can omit the name of its parameter as in:

catch(IndexOutOfRangeException)
{

...
}

If you wish to catch any exception, the type of the parameter and the parentheses may also be omitted:

catch
{

...
}

8 Interfaces, classes and structs

8.1 A class declaration for dates
Chapter 11 of the ‘C# Language Specification’ ([6]) says that ‘Structs are particularly useful for small data
structures that have value semantics. Complex numbers, points in a coordinate system, or key-value pairs in a
dictionary are all good examples of structs.’ So, if we want to represent dates in a program, it would probably be
desirable to provide a struct type. However, we will be Java-luddites and use a class type.

So here is a class declaration for dates:

namespace utility
{

using IComparable = System.IComparable;
public class Date: IComparable
{

private int iYear;
private int iMonth;
private int iDay;
public Date(int pYear, int pMonth, int pDay)
{

iYear = pYear; iMonth = pMonth; iDay = pDay;
}
public int Year
{

get { return iYear; }
set { iYear = value; }

}
public int Month
{

get { return iMonth; }
set { iMonth = value; }

}
public int Day
{

9

A Taste of C#

get { return iDay; }
set { iDay = value; }

}
...
public override string ToString()
{

return iYear + "-" + iMonth/10 + iMonth%10
+ "-" + iDay/10 + iDay%10;

}
}

}

The first line of the class declaration is:

public class Date: IComparable

If a colon is present, a comma-separated list of names should be given following the colon. If you wish to derive
a class from a particularbase class, the first name should be the name of this base class; otherwise the class will
be derived from the classobject. The remaining names should be the names of interfaces that are implemented
by this class. So the above line says that theDate class is derived from the classobject and that it implements
theIComparable interface.

TheDate class declaration provides three private fields, a constructor, three properties and aToString method.
These can be used as follows:

Date tDate = new Date(2001, 3, 13);
int tYear = tDate.Year;
tDate.Year = 2002;
Console.WriteLine(tDate);

The first occurrence oftDate.Year will use theget accessorfor Year and the assignment totDate.Year uses
its set accessor.

There are three kinds of properties:

• read-writehas both get and set accessors;

• read-onlyonly has a get accessor;

• write-onlyonly has a set accessor.

Curiously,get, set andvalue are not keywords: they are tokens that have a special meaning in the context of a
property.

The default access for a member of a class is private and so the three occurrences of theprivate keyword in the
above class declaration can be removed.

Theoverride keyword has to be provided in the declaration ofToString becauseToString is avirtual method
of the classobject (which isDate’s base class). There is more information about this topic later.

8.2 Providing an Equals method
8.2.1 Just like Java

By default, both:

tDate.Equals(tToday)

and:

tDate==tToday

will provide reference semantics: they ask whethertDate andtToday point to the same object.

The default version of theEquals method is provided by a (virtual) method declared in the classobject. In the
classDate, we can overrideobject’s Equals by declaring:

public override bool Equals(object pObject)
{

if (pObject==null || GetType()!=pObject.GetType())
{

return false:
}
Date tDate = (Date)pObject;
return iYear ==tDate.iYear &&

iMonth==tDate.iMonth &&
iDay ==tDate.iDay;

}

10

8.3 Providing GetHashCode

This version ofEquals provides value semantics: so:

tDate.Equals(tToday)

asks whethertDate andtToday point to two objects that have the same value.

So far, all of this is the same as what you would do in Java.

8.2.2 Overloading the == operator

However, in C#, you can also overload many of the operators. For example,Date could provide declarations for
the== and!= operators. So instead of the above declaration ofEquals, we could provide:

public static bool operator ==(Date pLeft, Date pRight)
{

return pLeft.iYear ==pRight.iYear &&
pLeft.iMonth==pRight.iMonth &&
pLeft.iDay ==pRight.iDay;

}
public static bool operator !=(Date pLeft, Date pRight)
{

return ! (pLeft==pRight);
}
public override bool Equals(object pObject)
{

if (pObject==null || GetType()!=pObject.GetType())
{

return false:
}
Date tDate = (Date)pObject;
return this==tDate;

}

Note: if you do provide a declaration for==, you must also provide one for!=. Here are some statements showing
a use of each of the above three declarations:

bool tTest1 = tFirstDate==tSecondDate;
bool tTest2 = tFirstDate!=tSecondDate;
bool tTest3 = tFirstDate.Equals(tSecondDate);

Now Equals and== are both providing value semantics.

As a use of== looks nicer than a call ofEquals, you may be tempted not to bother with declaringEquals.
However, this may be unwise. Albahariet al ([1], p46) say that declaringEquals ‘provides compatibility with
other .NET languages that don’t overload operators’. What this means is as follows: when using such a language,
you will always be able to call theEquals method of your C# component even if your language does not allow
you to use the== operator of your component.

8.2.3 == and Equals for value types

When the== operator is used with two values that are of some value type, the== operator will deliver true if the
two values are bitwise equal. For most value types, this means that== has value semantics.

All value types are derived fromSystem.ValueType. This type definesEquals to have the same meaning as the
== operator.

8.2.4 Problems

There are a number of problems:

1. The definition of== is left to the designer of a type: it could be providing value semantics or it might not
be defined in which case you would get reference semantics for class types and bitwise equality for struct
types. So you need to search for the class/struct declaration to find out the answer. Similarly for theEquals
method. In Java, there is not so much uncertainty: when used with two reference variables, the== operator
always provides reference semantics and the recommendation of the designers of Java is that a class should
provide anequals method which implements value semantics.

2. The other problem is that the overloading of== does not apply to interface variables. If you want to use
an interface declaration to form the contract for a new type, surely it would be desirable to allow operator
declarations in an interface.

8.3 Providing GetHashCode

GetHashCode is used in much the same way ashashCode in Java. Visual Studio.NET gives a warning if a class
overridesEquals but does not overrideGetHashCode.

TheDate class could provide:

11

A Taste of C#

public override int GetHashCode()
{

return 0;
}

In my opinion, it would have been better if a call ofobject’s Equals method always produces an exception. This
would ensure that you would soon detect if your code callsobject’s Equals: this is rarely what you want to do
as it does not provide you with an appropriate result. I also believe that it would have better if a call ofobject’s
GetHashCode method returns the value 0. If a class fails to provideGetHashCode, thenobject’s GetHashCode
will be used instead: returning 0 would at least do something sensible. Similar comments apply to Java.

8.4 Providing CompareTo

As Date says it implements theIComparable interface, it needs to provide aCompareTo method:

public int CompareTo(object pObject)
{

Date tDate = (Date)pObject;
int tResult = iYear - tDate.iYear;
if (tResult==0)
{

tResult = iMonth - tDate.iMonth;
if (tResult==0)
{

tResult = iDay - tDate.iDay;
}

}
return tResult;

}

Gunnerson (3, p249) says ‘If a class has an ordering that is expressed inIComparable, it may also make sense to
overload the other relational operators. As with== and!=, other operators must be declared as pairs, with< and
> being one pair, and>= and<= being the other pair.’

9 Inheritance
As far as inheritance is concerned, there are two main differences between Java and C#.

9.1 Syntactical changes
Some of the syntax of inheritance is closer to C++ than Java:

1. a colon is used instead ofextends;

2. special syntax is employed to invoke a constructor from a constructor;

3. base is used instead ofsuper.

These points are illustrated by the following classes:

public class Figure
{

private int iX;
private int iY;
public Figure()

: this(0, 0) // 2
{
}
public Figure(int pX, int pY)
{

iX = pX; iY = pY;
}
...
public override string ToString()
{

return iX + ":" + iY;
}

}
public class Circle: Figure // 1
{

private int iRadius;
public Circle()

: this(0, 0, 0) // 2
{
}
public Circle(int pX, int pY, int pRadius)

: base(pX, pY) // 2, 3
{

12

9.2 Overriding virtual methods

iRadius = pRadius;
}
...
public override string ToString()
{

return base.ToString() + ":" + iRadius; // 3
}

}

9.2 Overriding virtual methods
Suppose we have:

Figure tF = new Figure(100, 200);
tF.Fred();

In both Java and C#, it is theFred method of theFigure class that will get called.

However, what happens if we have:

Figure tC = new Circle(100, 200, 50);
tC.Fred();

Assuming thatFigure andCircle both declare a method calledFred, whoseFred method gets executed: is it
Figure’s Fred or Circle’s Fred?

In Java, it isCircle’s Fred that gets executed becausetC is pointing to aCircle. This is known asdynamic
binding.

However in C# (and also in C++), what happens depends on whether the declaration ofFred in the base class
(Figure) includes the keywordvirtual, i.e., does it use:

public void Fred() ...

or:

public virtual void Fred() ...

If virtual is absent, i.e.,Fred is a non-virtual method, the declaration ofFred in Circle must include the
keywordnew, i.e.:

public new void Fred() ...

and the calltC.Fred() callsFigure’s Fred.

If virtual is present, i.e.,Fred is a virtual method, then:

1. either the declaration ofCircle’s Fred includes the keywordnew, i.e.:

public new void Fred() ...

andtC.Fred() callsFigure’s Fred;

2. or the declaration ofCircle’s Fred includes the keywordoverride, i.e.:

public override void Fred() ...

andtC.Fred() callsCircle’s Fred.

Summary:

call of virtual in non-virtual in absent
tC.Fred base class base class in base class

absent in warning warning error
derived class

new in Figure Figure warning
derived class

override in Circle error error
derived class

13

A Taste of C#

10 Delegates
In its simplest form, adelegateis a type representing the signature of a method. For example:

delegate int Massage(string s);

declares a new type calledMassage that is the type of methods that take astring and return anint. Perhaps:

delegate int:(string s) Massage;

would have been better syntax.

If we now write:

private static void iProcess(Massage pMassage)
{

string tString = Console.ReadLine();
int tInt = pMassage(tString);
Console.WriteLine(tInt);

}

then what a call ofiProcess such as:

iProcess(tMassage);

will do depends on the value of the delegate variabletMassage. We could have:

Massage tMassage = new Massage(StringLength);
iProcess(tMassage);

whereStringLength is declared as:

private static int StringLength(string pString)
{

return pString.Length;
}

HeretMassage is made to point to theStringLength method.

A method likeiProcess is sometimes called ahigher order methodas it is written in terms of a pointer to a
method (which is passed as a parameter).

If a delegate’s return type is void, a delegate variable can be assigned a value that represents (not just one method
but) a list of methods to be called:

delegate void Display(string s);
private static void iProcess(Display pDisplay)
{

string tString = Console.ReadLine();
pDisplay(tString);

}
private static void All(string pString)
{

Console.WriteLine(pString);
}
private static void FirstTwo(string pString)
{

Console.WriteLine(pString.Substring(0, 2));
}
public static void Main()
{

Display tDisplay = new Display(All) + new Display(FirstTwo);
iProcess(tDisplay);

}

HeretDisplay is assigned a list of methods, and so when it gets called:

pDisplay(tString)

each method of the list will get executed in turn. This use of delegates is called amulticast.

Although delegates are not part of Java, they appeared in Microsoft’s Visual J++. Sun Microsystems’ criticisms
of delegates are given at [8].

14

11 Events

11 Events

11.1 Using delegates for event handling
One of the main uses of delegates is for handling events.

Suppose we have some object of some classX, and we want to offer the ability to register methods that will be
called when the object changes. Suppose that each of these methods has a header like:

void MethodName()

In C#, we can introduce a delegate type to describe this:

delegate void Handler();

In the classX we can declare a public field to be of this type. Here is an example:

public class X
{

private int iValue = 0;
public Handler uHandler = null;
public void inc()
{

iValue++;
uHandler();

}
}

In a client class, we can then do:

X tX = new X();
tX.uHandler += new Handler(Fred);
tX.uHandler += new Handler(Bert);

whereFred andBert are appropriate methods.

If we do this, then whenever there is a call ofinc, the methodsFred andBert will also be called.

Although this will work, theuHandler field of X is very vulnerable. Any client can do anything it wants to it, e.g.:

tX.uHandler = null;

To prevent this,uHandler should be declared with the keywordevent as in:

public event Handler uHandler = null;

If you do this, clients can only execute the+= or -= operators onuHandler.

11.2 Passing information from the object to each method
Although theHandler type has been declared without parameters, it is useful to pass information from the source
of the event to each method. It is conventional for the delegate type to have two parameters: one being a pointer
to the object causing the event, and the other containing information about the event.

So usually the delegate type is like:

delegate void Handler(object pSource, XEventArgs pXEventArgs);

whereXEventArgs is a class derived fromSystem.EventArgs.

11.3 Common uses of events
One common use of events is for registering methods to be executed when an event such as a click of a button in
a GUI occurs.

Suppose we have:

using Button = System.Windows.Forms.Button;

A class can then declare a button using:

private Button iAddButton;

The constructor for the class can execute statements like:

15

A Taste of C#

iAddButton.BackColor = Color.Wheat;
iAddButton.Font = new Font("Times New Roman", 8);
iAddButton.Text = "Click Here";

whereColor andFont are classes from theSystem.Drawing namespace.

The Button class also has an event property calledClick. So if we want a method callediAddClick to be
executed whenever there is a click on this button, we should also get the constructor to do:

iAddButton.Click += new EventHandler(iAddClick);

whereEventHandler is a class of theSystem namespace.

12 Other points

12.1 Collections
C# has a number ofCollection classes including:

interface class
IList ArrayList
IList StringCollection
IDictionary Hashtable
IDictionary SortedList

Here are some comparisons with classes from Java’s Collections API:

C# Java
ArrayList ArrayList
N/A LinkedList
N/A HashSet
N/A TreeSet
Hashtable HashMap
SortedList TreeMap

12.2 Documentation comments
In Java, an ad-hoc format is used for comments that can be used to produce documentation. C#’sdocumentation
commentsuses an XML notation:

/// <summary>
/// The inc method is used to increase the balance.
/// </summary>
/// <param name="amount">
/// The amount by which the balance is increased.
/// </param>
public void inc(int amount)
...

12.3 Templates
Unlike C++, C# does not havetemplates. Templates (also known asgenericsor parameterized types) are likely to
appear in a future revision of C# (and Java).

12.4 Const, final and virtual
Keywords likeconst andvirtual have many different meanings in C++. Similarly, in Java the keywordfinal
has many uses. Some of these are not possible in C#:

JDK 1.0.2 JDK 1.1+ C#
constant field final final const
constant local variable N/A final N/A
constant parameter N/A final N/A
non-overridable method final final [default]

overridable method [default] [default] virtual
non-overridable class final final sealed

13 Four kinds of .NET applications
As mentioned earlier, the .NET Framework (and Microsoft’s Visual Studio.NET) makes it easy to produce console
applications, windows forms applications, web form applications and web services. Examples of standalone
programs that are console applications or windows forms applications will now be given. Although these examples
are coded using C#, each of these examples could just as easily have been coded in any other .NET language, such
as Visual Basic.NET ([4]).

Examples of C# being used to support web forms and web services are dealt with in another document ([2]).

16

13.1 Console applications

13.1 Console applications
Here is a program that reads in a temperature given in degrees Centigrade and outputs the corresponding value in
degrees Fahrenheit:

namespace ConsoleConvert
{

using System;
using System.Threading;
public class MyClass
{

public static void Main()
{

Console.Write("Centigrade value: ");
string tCentigradeString = Console.ReadLine();
double tCentigrade = double.Parse(tCentigradeString);
double tFahrenheit = 32 + tCentigrade*9/5;
Console.WriteLine("Fahrenheit value: " + tFahrenheit);
Thread.Sleep(10000);

}
}

}

13.2 Windows Forms applications
The .NET Framework includes a number of classes that can be used to provide an application driven by a GUI.
Some of these classes are used in the following program:

namespace WindowsConvert
{

using System;
using System.Drawing;
using System.Windows.Forms;
public class MyForm : Form
{

private TextBox tTextBox;
private Button tButton;
private Label tLabel;
public MyForm()
{

tTextBox = new System.Windows.Forms.TextBox();
tTextBox.Location = new System.Drawing.Point(64, 32);
tTextBox.Size = new System.Drawing.Size(120, 20);
Controls.Add(tTextBox);
tButton = new System.Windows.Forms.Button();
tButton.Location = new System.Drawing.Point(64, 64);
tButton.Size = new System.Drawing.Size(120, 20);
tButton.Text = "Get Fahrenheit";
tButton.Click += new EventHandler(iHandleClick);
Controls.Add(tButton);
tLabel = new System.Windows.Forms.Label();
tLabel.Location = new System.Drawing.Point(64, 104);
Controls.Add(tLabel);
Text = "WindowsConvert";

}
protected void iHandleClick(object sender, System.EventArgs e)
{

double tCentigrade = double.Parse(tTextBox.Text);
double tFahrenheit = 32 + tCentigrade*9/5;
tLabel.Text = tFahrenheit.ToString();

}
public static void Main()
{

MyForm tMyForm = new MyForm();
Application.Run(tMyForm);

}
}

}

The classMyForm is derived fromSystem.Windows.Forms.Form. Its constructor creates aTextBox object, a
Button object and aLabel object. It adds each of these to theControls property of theForm.

A Button object has anEvent property calledClick andMyForm’s constructor uses+= to add a method called
iHandleClick to the list of methods awaiting a click of the button.

When the button is clicked, theiHandleClick method is executed. This takes the string stored in theTextBox,
converts it to a double, produces the corresponding value in Fahrenheit, and stores this as a string in theLabel.

The classMyForm has aMain method. When this program is run, it creates aMyForm object and passes this
an argument toApplication’s Run method. The program will terminate when the close button of the form is
clicked.

Although it is possible to produce the above program using any text editor, Visual Studio.NET has a wizard that
can be used to generate a Windows Forms application. If this is used, you can generate the program by dragging a

17

A Taste of C#

TextBox, a Button and a Label from the ToolBox onto the form and then adding the C# code to respond to a click
of the button. Although the code Visual Studio.NET generates is more verbose than that given above, most of it is
reasonably easy to understand.

14 Other examples of C# programs
There are some other examples of C# programs at:
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.csharp/slides.baw/0052.htm

15 Some conclusions
I’ll cheat. In his article forJavaWorld([5]), Mark Johnson concludes as follows.

‘If I were a Windows developer, I would be rejoicing at the creation of C#. It is much easier to use than C++,
and yet is more full featured than Visual Basic. MFC programmers, in particular, should flock to this tool. It
seems likely that C# will become a major language for developing under the Windows platform. Because of C#
creator Anders Hejlsberg’s excellent track record, I expect the language to live up to its promises, assuming that
Microsoft delivers an implementation that does so. C# solves most of the same problems with C++ that Java solved
five years ago, usually in the same way. C# also solves the business problems that Microsoft encountered when
it found it could embrace and extend Java, but not extinguish it. And, if Microsoft marketing is to be believed,
COM will finally be usable. C# itself is not particularly innovative: there is little in this language that has not been
seen before. Still, its skillful combination of these well-understood features will provide good value to Windows
programmers. Of course, those not wanting to limit themselves to Windows can still choose from among the many
exceleent implementations of Java for Windows.’

‘Because of its lack of platform neutrality, C# is in no way a "Java killer." Even leaving aside Sun’s five-year head
start, and Java’s successful capture of the "gorilla" (market-owning) position among enterprise server languages,
C#’s Achilles’ heel is that it is tied to Windows. Of course, in theory it isn’t. But widespread cross-platform
implementation of C# is like widespread multivendor implementation of Win32 and COM: possible, in theory.’

‘High-technology consumers today, and especially IT managers, are appropriately wary of vendor lock-in.
Encoding procedural information assets in a way that ties them to a particular vendor is a Faustian bargain. The
Java platform is neutral with respect to operating systems. If you don’t like the service you are getting from one
vendor, or if your needs change, you can find another vendor that better meets your requirements. It will be some
time before that can be said of C# or .Net. In short, while C# is a fine language for Windows programming, it will
be able to compete with Java only when C# is freed from its Windows dependence. For the time being, C# users
still won’t get to decide where they’re going today.’

16 References
Microsoft have written a Reviewers Guide ([7]) for the .NET Framework and Visual Studio.NET. You may also
find it useful to read an article by Mark Johnson ([5]).

1. Ben Albahari, Peter Drayton and Brad Merrill, ‘C# Essentials’,
O’Reilly, 2001, 0-596-00079-0.

2. Barry Cornelius, ‘Web Forms and Web Services’,
http://www.dur.ac.uk/barry.cornelius/java/web.forms.and.services/

3. Eric Gunnerson, ‘A Programmer’s Introduction to C#’,
Apress, 2000, 1-893115-86-0.

4. Billy Hollis and Rockford Lhotka, ‘VB.NET Programming’,
Wrox Press, 2001, 1-861004-91-5.

5. Mark Johnson, ‘C#: A language alternative or just J–?’,
http://www.javaworld.com/javaworld/jw-11-2000/jw-1122-csharp1.html

6. Microsoft, ‘C# Language Specification’,
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpdownload.asp

7. Microsoft, ‘Visual Studio.NET and .NET Framework Reviewers Guide’,
http://msdn.microsoft.com/vstudio/nextgen/evalguidedownload.asp

8. Sun Microsystems, ‘About Microsoft’s "DELEGATES"’,
http://java.sun.com/docs/white/delegates.html

9. Thuan Thai and Hoang Q. Lam, ‘.NET Framework’,
O’Reilly, 2001, 0-596-00165-7.

18

http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.csharp/slides.baw/0052.htm
http://www.dur.ac.uk/barry.cornelius/java/web.forms.and.services/
http://www.javaworld.com/javaworld/jw-11-2000/jw-1122-csharp1.html
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpdownload.asp
http://msdn.microsoft.com/vstudio/nextgen/evalguidedownload.asp
http://java.sun.com/docs/white/delegates.html

	 Introduction
	 The .NET Framework
	 The SumProg program
	 Namespaces, using and Main
	 Types
	 Methods
	 Statements
	 Interfaces, classes and structs
	 Inheritance
	 Delegates
	 Events
	 Other points
	 Four kinds of .NET applications
	 Other examples of C# programs
	 Some conclusions
	 References

