
Advanced Java
Barry Cornelius
Computing Services, University of Oxford
Date: last updated 20th June 2004; created: 21st February 2000
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

1 Introduction 1
2 Providing a graphical user interface (GUI) 1
3 The Collections API 10
4 Writing applets (for use with the WWW) 17
5 Other information about Java 25

1 Introduction
The tutorial given in ITSGuide 58: Getting started with Javaprovides basic information on developing programs
in the Java programming language. This Guide introduces some other topics on Java. In particular, it discusses:

• the creation of Java programs that have graphical user interfaces (GUIs);

• the handling of collections of data using the List, Set and Map interfaces of Java’s Collections API;

• the production of Java applets, code that gets executed when a person visits a WWW page.

This Guide refers to the WWW pages documenting the Core APIs: http://java.sun.com/j2se/1.4.2/docs/api.
These WWW pages can also be downloaded to filespace on your own computer. This
Guide uses the notationjavaapi:java/lang/String.html to refer to the WWW page
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

2 Providing a graphical user interface (GUI)

2.1 APIs for producing GUIs
One of the attractive features of Java is that it has APIs for producing GUIs. One of these APIs is called the
Abstract Windowing Toolkit(or AWT), and it is provided in the packagejava.awt. Although the AWT has been
present from the start, the facilities that the Java platform provides for producing GUIs have changed with each
major release of Java.

In JDK 1.0, a reasonably comprehensive set of features were provided. However, events such as mouse
movements, button clicks, and window closing, had to be handled in a way which led to inefficient code, and
code that was inappropriate in an object-oriented system.

In JDK 1.1, theevent-handlingmechanism was changed: instead, an object can register itself to handle any events
on a particular component (such as a mouse, a button or a window).

With the release of the Java 2 Platform in December 1998, a new set of classes for building GUIs was introduced.
These classes form what is known as theSwing API. Unlike the AWT, the code of the classes that implement the
Swing API is completely written in Java. Because of this, it is easy for a programmer to add new GUI components
that can be used alongside the Swing components. However, when writing programs that use the Swing API, it is
still necessary to use some of the basic classes of thejava.awt package.

The Swing API also has apluggable look-and-feel. The look of a window in a Windows 95/98/NT environment
is different from that in a Motif environment running on a Unix workstation. With the Swing API, you can
choose thelook-and-feelto be that of a particular platform, to be a platform-independent look-and-feel, or to be a
look-and-feel that depends on the platform on which the program is running.

Unfortunately, during the various beta releases of the Swing API, the position of the Swing API has moved.
This has been inconvenient for those people developing code (or looking at books) that use this API. Although
it has previously resided atcom.sun.java.swing and later atjava.awt.swing, the Swing API is now in the
javax.swing package.

2.2 What the Swing API includes and how it is organised
The packagejavax.swing consists of many classes. It providesGUI components such as buttons, checkboxes,
lists, menus, tables, text areas, and trees. It also includes GUI components that arecontainers (such as menu bars
and windows), and higher-level components (such as dialog boxes, including dialog boxes for opening or saving

1

http://java.sun.com/j2se/1.4.2/docs/api
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html


Advanced Java

files). And there are also classes for basic drawing operations, and for manipulating images, fonts and colours,
and for handling events such as mouse clicks.

Many of these GUI components will have common features. For example, there is a method called
setBackground that can be used to alter the background colour of a component. Although it would be possible
to include a method declaration calledsetBackground in each of the classes, this is not sensible. Because Java
hasinheritance, it allows classes to be arranged in aclass hierarchy: this means the Swing designers can declare
thesetBackground method in a class high up in the class hierarchy and it is automatically available in the classes
that are lower down in the class hierarchy. So, an extensive class hierarchy is used to organise the classes of the
Swing API (and the AWT).

2.3 A simple example of a GUI
Suppose we want a Java program that creates a window that has a button and a textfield (an area for storing a line
of text), and each time the button is clicked the textfield is updated to show the current date and time.

Rather than just present the program that accomplishes this task, the program will be developed in stages, each
stage conquering some of the problems that occur.

2.4 Stage A: obtaining the current date and time
To begin with, we need to know how to get the current date and time. The classDate from thejava.util
package can be used to do this. So the following program can be used to output the current date and time:

0001: // // GetDateProg.java
0002: // Stage A: outputting the current date and time to the screen.
0003: // Barry Cornelius, 22nd November 1999
0004: import java.util. Date;
0005: public class GetDateProg
0006: {
0007: public static void main(final String[] pArgs)
0008: {
0009: final Date tDate = new Date();
0010: System.out.println(tDate);
0011: }
0012: }

2.5 Stage B: creating a window
When producing a GUI, we will need to create windows on the screen. The Swing API has a number of classes
that enable a program to create a new window on the screen or to make use of an existing window.

The classes are:

• JWindow — allows a window without a border or a menu bar to be displayed;

• JFrame — allows a window with a border and possibly a menu bar to be displayed;

• JDialog — allows a dialog box to be displayed;

• JInternalFrame — allows a frame to be created inside an existing frame;

• JApplet — allows the frame of a WWW page to be accessed by a Javaapplet.

Here is a simple program that displays a new window on the screen:

0013: // Stage B: creating a window. // GetDateProg.java
0014: // Barry Cornelius, 22nd November 1999
0015: import javax.swing. JFrame;
0016: public class GetDateProg
0017: {
0018: public static void main(final String[] pArgs)
0019: {
0020: final JFrame tJFrame = new JFrame("GetDateProg: Stage B");
0021: tJFrame.setLocation(50, 100);
0022: tJFrame.setSize(300, 200);
0023: tJFrame.setVisible(true);
0024: }
0025: }

The program creates an object of the classJFrame. One ofJFrame’s constructors allows you to choose the string
that is put into the title bar of the window:

JFrame tJFrame = new JFrame("GetDateProg: Stage B");

The use of thisclass instance creation expressionjust creates theJFrame object: it does not display the window
on the screen. This is done by a call of the methodsetVisible:

2



2.6 Stage C: adding GUI components to the window

Figure 1: Stage B: a blank window is displayed

tJFrame.setVisible(true);

Unless you specify otherwise, when the window is displayed, it will be positioned in the top left-hand corner of
the screen. The call:

tJFrame.setLocation(50, 100);

says that you want the top left-hand corner of the window to be positioned 50pixels from the left-hand side of the
screen and 100 pixels down from the top of the screen. And the call:

tJFrame.setSize(300, 200);

says that you want the window to be 300 pixels wide and 200 pixels high.

When this program is executed, it just displays a blank window on the screen. The result of executing this program
is shown in the Figure.

The program has no code to understand the removal of the window: so if you want to stop the execution of this
program, you will need to pressCtrl/C in the window in which you typed the command:

java GetDateProg

2.6 Stage C: adding GUI components to the window
Some GUI components will now be put into the window that is displayed by the program. As with the previous
program, the first step is to create an object to represent that window:

3



Advanced Java

JFrame tJFrame = new JFrame("GetDateProg: Stage C");

In order to get our program to display a textfield and a button, the program needs to create these GUI components
and add them to thecontent paneof the frame.

The Swing API contains classes that enable us to represent textfields and buttons:

JTextField tJTextField = new JTextField("hello", 35);
JButton tJButton = new JButton("Get Date");

There are a number of constructors for these classes (as shown atjavaapi:javax/swing/JTextField.html
andjavaapi:javax/swing/JButton.html). The ones used above create a textfield containing 35 columns
which is initialized to the string"hello", and a button containing a label with the characters"Get Date". Once
again, this just creates two objects within an executing Java program that represent a textfield and a button. It does
not do anything with them, such as make them visible.

These GUI components need to be added to the content pane of theJFrame window. We can get a reference to
theJFrame’s content pane by executing the methodgetContentPane:

Container tContentPane = tJFrame.getContentPane();

The actual way in which GUI components are displayed within a container such as this content pane is controlled
by a layout manager. The default layout manager for a content pane is a layout known asBorderLayout.

TheBorderLayout layout manager allows you to use a method calledadd to place components in five divisions
of the content page appropriately known asNORTH, WEST, CENTER, EASTandSOUTH. These divisions are
illustrated by this diagram:

CENTER

NORTH

WEST EAST

SOUTH

You do not have to put a component in each division: the layout manager will arrange the spacing of the
components that you do provide:

tContentPane.add(tJTextField, BorderLayout.NORTH);
tContentPane.add(tJButton, BorderLayout.SOUTH);

The classjava.awt.BorderLayout conveniently provides constants namedNORTH, WEST, CENTER, EAST and
SOUTH.

If you are unhappy with the layout, you can either useContainer’s setLayout method to choose another layout
manager or you can use an object of classBox or JPanel to group items together. Both of these classes are in the
javax.swing package: theBox class uses a layout calledBoxLayout, and theJPanel class uses a layout called
FlowLayout.

When you have added all of the components to the content pane, you should apply the methodpack (from the class
java.awt.Window) to the frame. This arranges for the size of the frame to be just big enough to accommodate
the components. So this time there is no call ofsetSize: instead the call ofpack determines an appropriate size
for the window. A call ofpack often appears just before a call ofsetVisible:

tJFrame.pack();
tJFrame.setVisible(true);

Here is the complete program:

0026: // Stage C: adding GUI components to the window. // GetDateProg.java
0027: // Barry Cornelius, 22nd November 1999
0028: import java.awt. BorderLayout;
0029: import java.awt. Container;
0030: import javax.swing. JButton;
0031: import javax.swing. JFrame;
0032: import javax.swing. JTextField;
0033: public class GetDateProg
0034: {
0035: public static void main(final String[] pArgs)
0036: {

4



2.7 Stage D: responding to a click of the button

Figure 2: Stage C: a window containing a button and a textfield is displayed

0037: final JFrame tJFrame = new JFrame("GetDateProg: Stage C");
0038: final JTextField tJTextField = new JTextField("hello", 35);
0039: final JButton tJButton = new JButton("Get Date");
0040: final Container tContentPane = tJFrame.getContentPane();
0041: tContentPane.add(tJTextField, BorderLayout.NORTH);
0042: tContentPane.add(tJButton, BorderLayout.SOUTH);
0043: tJFrame.pack();
0044: tJFrame.setVisible(true);
0045: }
0046: }

What gets displayed when this program is executed is shown in the Figure. As this time there is no call of
setLocation, the window will appear in the top left-hand corner of the screen.

2.7 Stage D: responding to a click of the button
Having arranged for the textfield and the button to appear in the window, we need to be able to react to the user
clicking the button. As was mentioned earlier, handlingevents such as mouse clicks, mouse movements, key
presses, window iconising, window removal, ... , is an area in which the Java Platform was improved between
JDK 1.0 and JDK 1.1. Here we will look at how events are handled in versions of the Java platform from JDK 1.1
onwards.

In order to handle the event of a user clicking on theJButton component, you need to do two things:

• create an object that has anactionPerformed method containing the code that you want to be executed
(when the user clicks on theJButton component);

• indicate that this object is responsible for handling any events associated with theJButton component.

To put this a little more formally:

1. the program needs to create an object that is of a class that implements theActionListener interface
(which is defined in the packagejava.awt.event);

2. the program needs to use theaddActionListener method to register this object as thelistenerfor events
on theJButton component.

If you look at the WWW pagejavaapi:java/awt/event/ActionListener.html, you will see that in order
to implement thejava.awt.event.ActionListener interface you just need to have a class that declares one
method, a method calledactionPerformed that has the header:

public void actionPerformed(ActionEvent pActionEvent)

So, here is a class calledJButtonListener that implements this interface:

0047: // Stage D: a class whose actionPerformed method. // JButtonListener.java
0048: // writes to standard output.
0049: // Barry Cornelius, 22nd November 1999
0050: import java.awt.event. ActionEvent;
0051: import java.awt.event. ActionListener;
0052: import java.util. Date;
0053: public class JButtonListener implements ActionListener
0054: {
0055: public JButtonListener()
0056: {

5



Advanced Java

0057: }
0058: public void actionPerformed(final ActionEvent pActionEvent)
0059: {
0060: final Date tDate = new Date();
0061: System.out.println(tDate);
0062: }
0063: }
0064:

TheGetDateProg program can create an object of this class in the usual way:

JButtonListener tJButtonListener = new JButtonListener();

That satisfies the first requirement given above.

The program also needs to say that this object is going to be responsible for handling the clicks on the button.
What we are effectively wanting to do is to say:please execute this object’sactionPerformed method whenever
there is a click on theJButton component. In order to do this, we need to associate the object that has the
actionPerformed method with theJButton object; or, in the jargon of Java, ourJButtonListener object
needs to be added as alistenerfor any events associated with theJButton object. This can be done using:

tJButton.addActionListener(tJButtonListener);

Because theaddActionListener method has been applied totJButton, theactionPerformed method of the
object passed as an argument toaddActionListener (i.e.,tJButtonListener) will be executed at each click
of thisJButton component.

Here is the code of this version of theGetDateProg program:

0065: // Stage D: responding to a click of a button. // GetDateProg.java
0066: // Barry Cornelius, 22nd November 1999
0067: import java.awt. BorderLayout;
0068: import java.awt. Container;
0069: import javax.swing. JButton;
0070: import javax.swing. JFrame;
0071: import javax.swing. JTextField;
0072: public class GetDateProg
0073: {
0074: public static void main(final String[] pArgs)
0075: {
0076: final JFrame tJFrame = new JFrame("GetDateProg: Stage D");
0077: final JTextField tJTextField = new JTextField("hello", 35);
0078: final JButton tJButton = new JButton("Get Date");
0079: final JButtonListener tJButtonListener = new JButtonListener();
0080: tJButton.addActionListener(tJButtonListener);
0081: final Container tContentPane = tJFrame.getContentPane();
0082: tContentPane.add(tJTextField, BorderLayout.NORTH);
0083: tContentPane.add(tJButton, BorderLayout.SOUTH);
0084: tJFrame.pack();
0085: tJFrame.setVisible(true);
0086: }
0087: }

An example of what happens when theJButton component is clicked is shown in the Figure.

Note that we do not have any precise control over when theactionPerformed method is called: this is at the
whim of the person using the program. The act of registering code that will be executed later is sometimes referred
to as creating acallback.

2.8 Stage E: altering the JTextField component
Although the program of Stage D outputs the current date and time whenever theJButton component is clicked,
the program sends this output to thestandard output, i.e., to the terminal window that runs the program. What we
really want to do is to copy the date and time into theJTextField component. And it is the variabletJTextField
of themain method ofGetDateProg that points to theJTextField object that we want to be updated each time
the user clicks on the button.

How can we refer to thisJTextField object within theactionPerformed method? We cannot just use
tJTextField as this variable is local to themain method, and, anyway, themain method is in a different class
from theactionPerformed method.

The easiest way is to alter theconstructorfor the listener object so thattJTextField is passed as an argument:

JButtonListener tJButtonListener = new JButtonListener(tJTextField);

In this way, when theJButtonListener object is being created, the constructor knows whichJTextField object
we want to be altered: it is the one pointed to bytJTextField.

What can the constructor do with this information? Well, it can make its own copy of the pointer:

6



2.8 Stage E: altering theJTextField component

Figure 3: Stage D: whenever the button is clicked, the date and time are output

7



Advanced Java

Figure 4: Stage E: whenever the button is clicked, the textfield is updated

public JButtonListener(JTextField pJTextField)
{

iJTextField = pJTextField;
}

whereiJTextField is a private field of theJButtonListener object.

So when theJButtonListener object is created, it stores a pointer to theJTextField object in a field of the
JButtonListener object. Whenever theactionPerformed method is executed, it just has to alter the contents
of the object pointed to byiJTextField.

In order to change the value of aJTextField object, we need to apply a method calledsetText to the object,
passing the appropriate string as an argument. Since we actually want to set the textfield to a string describing the
current date and time, we need to do:

Date tDate = new Date();
iJTextField.setText("" + tDate);

Here is the complete text of this new version of theJButtonListener class:

0088: // // JButtonListener.java
0089: // Stage E: implementing the ActionListener interface.
0090: // Barry Cornelius, 22nd November 1999
0091: import java.awt.event. ActionEvent;
0092: import java.awt.event. ActionListener;
0093: import java.util. Date;
0094: import javax.swing. JTextField;
0095: public class JButtonListener implements ActionListener
0096: {
0097: private JTextField iJTextField;
0098: public JButtonListener(final JTextField pJTextField)
0099: {
0100: iJTextField = pJTextField;
0101: }
0102: public void actionPerformed(final ActionEvent pActionEvent)
0103: {
0104: final Date tDate = new Date();
0105: iJTextField.setText("" + tDate);
0106: }
0107: }
0108:

TheGetDateProg program for this stage is the same as that used for Stage D. An example of what happens when
theJButton component is clicked is shown in the Figure.

2.9 Stage F: closing the window
Although this has achieved our goal of altering theJTextField component whenever theJButton component
is clicked, there is one other thing that we ought to do. Up until now, the only way in which we have been able to
terminate the execution of the program has been to pressCtrl/C . With this example, it may be useful to terminate
the execution when the user closes the window.

In the same way that anActionListener object is created to handle clicks on theJButton,
we can establish an object which is responsible for handling events on a window. Unlike the
ActionListener interface where we only had to provide one method, theWindowListener interface
requires us to provide seven methods to provide for seven events concerning the manipulation of
windows. The details are given onjava.awt.event.WindowListener’s WWW page which is at
javaapi:java/awt/event/WindowListener.html.

8



2.9 Stage F: closing the window

Here is a class that implements theWindowListener interface:

0109: // // ExitOnWindowClosing.java
0110: // Stage F: implementing the WindowListener interface.
0111: // Barry Cornelius, 22nd November 1999
0112: import java.awt. Window;
0113: import java.awt.event. WindowEvent;
0114: import java.awt.event. WindowListener;
0115: public class ExitOnWindowClosing implements WindowListener
0116: {
0117: public void windowActivated(final WindowEvent pWindowEvent)
0118: {
0119: }
0120: public void windowClosed(final WindowEvent pWindowEvent)
0121: {
0122: }
0123: public void windowClosing(final WindowEvent pWindowEvent)
0124: {
0125: final Window tWindow = pWindowEvent.getWindow();
0126: tWindow.setVisible(false);
0127: tWindow.dispose();
0128: System.exit(0);
0129: }
0130: public void windowDeactivated(final WindowEvent pWindowEvent)
0131: {
0132: }
0133: public void windowDeiconified(final WindowEvent pWindowEvent)
0134: {
0135: }
0136: public void windowIconified(final WindowEvent pWindowEvent)
0137: {
0138: }
0139: public void windowOpened(final WindowEvent pWindowEvent)
0140: {
0141: }
0142: }

Note that this class has theimplements clauseimplements WindowListener and has method declarations for
each of the seven methods.

Because we only want to do something special when a window is about to close, some code has been provided for
thewindowClosing method whereas the other six method declarations have empty blocks.

When using theActionListener interface, we had to:

• provide an object of a class that implements theActionListener interface;

• register this object as alistenerfor clicks on theJButton component.

We have to do similar things when using theWindowListener interface.

Consider this version of theGetDateProg program:

0143: // // GetDateProg.java
0144: // Stage F: using a WindowListener to handle a window-closing event.
0145: // Barry Cornelius, 22nd November 1999
0146: import java.awt. BorderLayout;
0147: import java.awt. Container;
0148: import javax.swing. JButton;
0149: import javax.swing. JFrame;
0150: import javax.swing. JTextField;
0151: public class GetDateProg
0152: {
0153: public static void main(final String[] pArgs)
0154: {
0155: final JFrame tJFrame = new JFrame("GetDateProg: Stage F");
0156: final JTextField tJTextField = new JTextField("hello", 35);
0157: final JButton tJButton = new JButton("Get Date");
0158: final JButtonListener tJButtonListener = new JButtonListener(tJTextField);
0159: tJButton.addActionListener(tJButtonListener);
0160: final Container tContentPane = tJFrame.getContentPane();
0161: tContentPane.add(tJTextField, BorderLayout.NORTH);
0162: tContentPane.add(tJButton, BorderLayout.SOUTH);
0163: final ExitOnWindowClosing tExitOnWindowClosing =
0164: new ExitOnWindowClosing();
0165: tJFrame.addWindowListener(tExitOnWindowClosing);
0166: tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
0167: tJFrame.pack();
0168: tJFrame.setVisible(true);
0169: }
0170: }

This program includes code that creates anExitOnWindowClosing object:

9



Advanced Java

ExitOnWindowClosing tExitOnWindowClosing = new ExitOnWindowClosing();

and registers this object as a listener for window events on the window associated with thetJFrame object:

tJFrame.addWindowListener(tExitOnWindowClosing);

The following statement (from theGetDateProg program) ensures that, when the user clicks on the window’s
close button, the window is not removed from the screen:

tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

This is to ensure that the program retains control: the window will only be removed when the program executes
setVisible with an argument of false.

Now when the user manipulates the window, one of the methods of theExitOnWindowClosing class will get
executed. Most of these do not do anything. However, when the user clicks on the button to close the window, the
code of the following method declaration gets executed:

public void windowClosing(final WindowEvent pWindowEvent)
{

final Window tWindow = pWindowEvent.getWindow();
tWindow.setVisible(false);
tWindow.dispose();
System.exit(0);

}

You can see that when thewindowClosing method is called, some object (that is of the classWindowEvent) is
passed as an argument towindowClosing. This object contains details of what caused the window event to take
place. TheWindowEvent class has various methods that can be applied to thisWindowEvent object: one of these
is calledgetWindow. So, the first statement of thewindowClosing method makestWindow point to theWindow
object associated with the window being closed. ForGetDateProg, this is theJFrame object that was created by
its main method.

A reference variable (that is of a class type) can point to an object of its class or an object of any subclass.
Here,tWindow, a reference variable of the class typejava.awt.Window is pointing to an object of the class
javax.swing.JFrame, one of the subclasses ofjava.awt.Window.

The next statement of thewindowClosing method calls thesetVisible method. The call ofsetVisible with
argument false ensures that the window is no longer displayed on the screen. When aWindow object (such as a
JFrame object) is created, some other objects are created. The call ofdispose indicates that the space for these
objects is no longer required. Although in general it is useful to do this, it is unnecessary in this program as the
call of dispose is followed by the call ofSystem.exit that terminates the program.

2.10 Conclusion
In this section, we have only seen a glimpse of what is available in the Swing API. You may also want to look at:

• JTextArea andJScrollPane which enable you to set up a scrollable multi-line area of text;

• Box which enables you to group GUI components together;

• JDialog which enables you to display a dialog box forcing the user to respond to a question;

• JDesktopPane andJInternalFrame which enable you to create windows inside a parent window;

• JMenuBar, JMenu andJMenuItem which enable you to add a menu system to a window.

3 The Collections API

3.1 An introduction to the Collections API
Besides having APIs for GUIs, another attraction of Java is that it has an API for representing collections of values.
This API, which was new with the Java 2 Platform, is known as theCollections API.

The designers of the Collections API have decided that there are three main ways in which we will want to
represent a collection of values:

• as alist — ordered collection or sequence of values: there may be duplicates;

• as aset— collection where each value appears only once: there are no duplicates;

• as amap— collection where there is a mapping from keys to values: the keys are unique.

10



3.2 The interfaceList and the classesArrayList and LinkedList

They have providedinterfaces calledList, Set andMap that define the methods that can be applied to objects
that are lists, sets and maps.

One of the benefits of using aList is that it allows duplicates, i.e., it allows the same value to appear more than
once in the collection. This may be important. For example, if you are representing a collection of CDs, it may be
that you have the same CD more than once. Or it may be that you are some kind of collector; perhaps you collect
beermats. In this case, you will often have duplicates because these allow you the possibility of swopping one of
your duplicates with another collector.

The other benefit of using aList is that it allows values to be ordered in any way you like. For example, suppose
you want to represent a mailbox as a collection of messages. The user might want to add a message to this mailbox
at some particular position in the mailbox, or they might want to delete a particular message from the mailbox.
Or, if you have a queue of people, you will want insertions to be made at the tail of the queue whereas deletions
are to be made at the head of the queue. For both of these examples, aList could be used.

For theList interface, the API provides two classes that implement the interface. They are calledArrayList
andLinkedList. The classArrayList should be used if you want to make random accesses to the values of a
collection, e.g., for a collection of messages in a mailbox, you will want to access each individual message: you
might want to access the 5th message, then the 2nd, then the 7th, and so on. This is a typical situation in which
ArrayList would be used.

The other class that implements theList interface is calledLinkedList. This should be considered if you
want to make frequent insertions and deletions from a list. If insertions/deletions dominate the activities that are
performed on theList, then aLinkedList should be considered (instead of anArrayList). In practice, it seems
that the implementation ofArrayList is very good as it is often as fast or better thanLinkedList in situations
where. intuitively,LinkedList should be faster.

However, if your collection has no duplicates or you do not want such flexibility about ordering, you may want to
consider representing the collection using aSet. For theSet interface, a class calledHashSet is provided. This
gives a fast implementation of:

• adding new elements to a set;

• removing elements from a set;

• seeing whether a set contains a particular value.

Unlike theList, it is not possible to control the order in which values are stored in aSet. However, it may be that
the values being added to aSet have anatural order. This is an ordering that is based on comparing the values of
the collection. For example, for a set of strings, the collection may be ordered in alphabetical order; for a set of
people, the collection may be ordered by alphabetical order of the name field of each person; and so on.

For this kind of collection, the designers of the Collections API have provided asubinterfaceof Set called
SortedSet, and a class calledTreeSet that implements theSortedSet interface. So, for an object that is
of theTreeSet class, the method that iterates through the elements of the set produces the values in this natural
order.

Finally, for some collections, a particular part of each value in the collection in some way identifies the value: it
is called thekey. The distinguishing feature of theMap interface is that it permits us to represent a mapping from
keys to values. It could be used to represent a dictionary, a mapping from words to meanings. Or a database that,
given a person’s name, delivers the personal details of that person.

With the database, it may not be important for the values to be ordered: we may have no requirement to go
through the thousands of people in the database in some order. Instead, we just want the values of the collection
to be stored as efficiently as possible. For such a collection, the Collections API provides a class calledHashMap
(that implements theMap interface).

However, in the case of the dictionary, we may want the values of the collection to be sorted by the order of the
words, as this will allow us easily to output the dictionary. There is a subinterface of theMap interface called
SortedMap, and a class calledTreeMap that implements this interface.

The preceding paragraphs summarize the overall design of a large part of the Collections API, and also briefly
indicate the situations in which you might use the various interfaces and classes. In this Guide, we will just be
looking atLists.

3.2 The interface List and the classes ArrayList and LinkedList

A list is an ordered collection ofelements, where each element contains a pointer to a value. You could visualize
an object that is a list as:

11



Advanced Java

... ... ... ...
? ? ? ?

0 1 2 3

A list of the methods that can be applied to an object that is a list is given atjavaapi:java/util/List.html.

To begin with, we will just consider the following methods of theList interface:

• add — adds a new element to a list;

• remove — removes an element from a list;

• get — returns a pointer to the value that is at a particular position in the list;

• set — replaces the value of the element that is at a particular position in the list;

• size — returns how many elements there are in the list.

We will now look at an example that shows how these methods can be used.

In the example, we will use the classPerson that was produced in ITSGuide 58: Getting started with Java.
Suppose we have three people:

Person tTom = new Person("Tom%1.6%1981-12-25");
Person tDick = new Person("Dick%1.7%1980-3-18");
Person tHarry = new Person("Harry%1.8%1979-8-4");

Suppose we want to create a list containing these three people.List is an interface, and (as was mentioned earlier)
the Collections API provides two classes that implement this interface: they areArrayList andLinkedList. So
a list can be created using either:

List tList = new ArrayList();

or:

List tList = new LinkedList();

Both of these statements create anempty list.

Suppose we use anArrayList. We can visualize theArrayList’s empty list as follows:

-

tList

0 ...

Having created the empty list, the statements:

int tSize = tList.size();
boolean tIsEmpty = tList.isEmpty();

assign 0 to the variabletSize and the value true totIsEmpty.

SupposetTom points to aPerson object. We can add thetTom object to the list using:

tList.add(tTom);

The result can be visualized as:

-

?

?

-

1 ...

"Tom"

tTom

tList

where only the first field of thePerson object has been shown in detail.

12



3.2 The interfaceList and the classesArrayList and LinkedList

The designers of the Collections API have chosen tosharethe objects of a collection withclients of the collection.
This means that theadd method does not make its own copy of the object pointed to bytTom: it just establishes
a new element of the list that points to the object thattTom is pointing to. So, the value of any element of the list
that points to thetTom object will be affected if we later choose to change the value of the object pointed to by
tTom.

If we now do:

tList.add(tHarry); // TH

the list will contain two elements, the first one describing Tom, the second one describing Harry. The comment
after the call ofadd, i.e.,// TH, gives a cryptic indication of the state of the list after the method call has been
executed.

So we now have the following situation:

tTom

�

tHarry?

? ?

Q
Q

Q
Q

Q
Q

Qs

-

-

2 ...

"Tom" "Harry"

tList

Theadd method has a parameter that is of the classObject. This means that the method can be used with an
object of any class. It also means that the argument of the call does not have to be of the same class each time we
call the method, and so we could build lists where the elements of the list do not have the same class.

Theget method can be used to obtain the value of any element of the list. This method has one parameter: it
indicates the position of the element in the list. The numbering of the elements starts from 0 (rather than from 1).
So to get a pointer to the object at the first element of the list use:

Person tFirstPerson = (Person)tList.get(0);

Because aList can be used to store objects of any class, the result type ofget is Object. SotList.get(0)
returns a value of classObject and we have tocastthis in order to treat the object as aPerson object. If you cast
to the wrong type, then (at execution time) the program will crash with aClassCastException.

The above statement results in a situation that can be visualized as:

tList

�

tHarry

-

?

? ?

Q
Q

Q
Q

Q
Q

Qs

�
�

�
�

�
���
-

2 ...

"Tom" "Harry"
tFirstPerson

tTom

Note again that, because the Collections API adopts theshare approach, tFirstPerson points to the same object
as that of one of the elements of the list.

If we also execute the statements:

System.out.println(tFirstPerson);
System.out.println((Person)tList.get(1));
System.out.println(tList.size());

the following would be output:

Tom%1.6%1981-12-25
Harry%1.8%1979-08-04
2

13



Advanced Java

Whenadd is used with one argument as in the calls given earlier, the new element is added at the end of the list.
Instead, we can useadd with an additional argument that indicates a position:

tList.add(1, tDick); // TDH

This means thattDick is to be inserted at position 1 and the element previously at position 1 is now at position 2.

Here are some other examples of calls of methods from theList interface:

tList.add(3, tHarry); // TDHH
tList.add(0, tDick); // DTDHH
tList.remove(tHarry); // DTDH
tList.remove(1); // DDH
tList.set(0, tTom); // TDH

where the comments give a cryptic description of the state of the list after each statement has been executed.

3.3 Using the Iterator interface
We often want to do some task to each element of a list. This is known asiterating through the elements of the
list. With aList, it is possible to do this using the following code:

for (int tPersonNumber = 0; tPersonNumber<tList.size(); tPersonNumber++)
{

final Person tPerson = (Person)tList.get(tPersonNumber);
iProcessPerson(tPerson);

}

whereiProcessPerson is a method that contains the code that we want to execute on each element of the list.
Although this would be reasonably efficient for a list that is implemented as anArrayList, for aLinkedList it
is very inefficient. This is because aLinkedList is implemented as adoubly-linked list:

- .-
�

-
�

? ??

?? ????

tList

nullnull

"Dick" "Harry""Tom"

0 1 2

Consider what happens when the above code is used whentList points to aLinkedList object. Whenget is
called, the code ofget has to work its way down the list starting from the first element, and this has to be done on
each of the calls ofget.

So, we will avoid callingget in a loop. A different approach uses theiterator method that is defined in the
List interface:

Iterator tIterator = tList.iterator();

No matter whethertList is pointing to anArrayList object or aLinkedList object, the call ofiterator will
create information that enables the list to be iterated efficiently. AssumingtList is pointing to aLinkedList
object, then, after the above statement has been executed, some sort of structure like the following will have been
set up:

.-
�

-
�

? ??

6

�
�

�
�

�
�

�3

��������������1

-

- nullnull

0 1 2

3 0

tIterator

tList

1

shortcuts

pos 0 21size

14



3.4 The methodscontains, indexOf, lastIndexof and remove

The call ofiterator returns a pointer to an object which supports theIterator interface. This interface has the
methods documented atjavaapi:java/util/Iterator.html.

The methodsiterator, hasNext andnext can be used as follows:

Iterator tIterator = tList.iterator();
while (tIterator.hasNext())
{

final Person tPerson = (Person)tIterator.next();
iProcessPerson(tPerson);

}

The methodshasNext andnext can be efficiently implemented: a call ofhasNext just returns the value of
pos<size, and a call ofnext just returns the value of theposth element of the shortcuts and also increases the
value ofpos by 1.

3.4 The methods contains, indexOf, lastIndexof and remove

Given the method callediterator, it is very easy to find out whether a collection contains a particular value.
Suppose we have aList which contains a collection of values all of which arePerson objects. Suppose we now
want to write a method callediIsInList that returns true if and only if theList objectpList has an element
which points to an object representing a person with the namepName:

private static boolean iIsInList(final List pList, final String pName)
{

final Iterator tIterator = pList.iterator();
while (tIterator.hasNext())
{

final Person tPerson = (Person)tIterator.next();
if (pName.equals(tPerson.getName()))
{

return true;
}

}
return false;

}

Here is an example of a call of this method:

boolean tFound = iIsInList(tList, "Dick");

However, it is a waste of time declaring this method as theList interface has a method calledcontains that does
this job for us. So instead we can use:

Person tTargetPerson = new Person("Dick%%");
boolean tFound = tList.contains(tTargetPerson);

Each of the methods:

public boolean contains(Object pValue);
public int indexOf(Object pValue);
public int lastIndexOf(Object pValue);
public boolean remove(Object pValue);

(of theList interface) requires the target list to be searched from the head (or the tail forlastIndexOf) of the
list to find an element of the list that has the same value as the object pointed to bypValue. The WWW pages
that document this interface (javaapi:java/util/List.html) state that each of these methods looks for an
elemente such thatpValue.equals(e). Because the parametere is of typeObject, the method being used here
has the header:

public boolean equals(Object pObject);

BecausepValue, the target of theequals, is actually of the classPerson, and because the class declaration for
Person declares a method with the above header then that method will be used when any of these four methods
is executed.

So, when executing:

Person tTargetPerson = new Person("Dick%%");
boolean tFound = tList.contains(tTargetPerson);

thecontains method searches to see if it can find an element whichequals that oftTargetPerson. It will use
the method calledequals declared in the classPerson. This method says that twoPerson objects are equal if
and only if the names are the same. For this to work, the classPerson must provide a method with the header:

15



Advanced Java

public boolean equals(Object pObject);

rather than (or in addition to):

public boolean equals(Person pPerson);

The methodcontains is not particularly useful if you want to do something to an element of the collection.
Instead, it is better to useindexOf which will return the position of the element. Here is an example:

final Person tTargetPerson = new Person("Dick%%");
final int tPosition = tList.indexOf(tTargetPerson);
if (tPosition>=0)
{

final Person tPerson = (Person)tList.get(tPosition);
tPerson.setName("Richard");
...

}

Because the Collections API uses theshare approach, tPerson is pointing to the same object that an element of
tList is pointing to. So, the statement:

tPerson.setName("Richard");

also changes one of the elements oftList (which may or may not be what you want). If you prefer not to alter
the element of the list, the result of the call ofget should be cloned:

final Person tPerson = new Person((Person)tList.get(tPosition));
tPerson.setName("Richard");
...

It is also possible to useindexOf when you want to remove an element from a list: first find the appropriate
position in the list and then remove the element at that position:

Person tTargetPerson = new Person("Dick%%");
int tPosition = tList.indexOf(tTargetPerson);
if (tPosition>=0)
{

tList.remove(tPosition);
}

However, theList interface has anotherremove method which is more suitable (as it eliminates the need to call
indexOf). So, the above is better coded as:

Person tTargetPerson = new Person("Dick%%");
tList.remove(tTargetPerson);

3.5 An example of a complete program that manipulates a list
Here is a complete program that manipulates a list.

0171: // // ExamineList.java
0172: // Read a list of people from a file, output the list, and then examine it.
0173: // Barry Cornelius, 6th February 2000
0174: import java.util. ArrayList;
0175: import java.io. BufferedReader;
0176: import java.io. FileReader;
0177: import java.io. InputStreamReader;
0178: import java.io. IOException;
0179: import java.util. Iterator;
0180: import java.util. List;
0181: public class ExamineList
0182: {
0183: public static void main(final String[] pArgs) throws IOException
0184: {
0185: if (pArgs.length!=1)
0186: {
0187: System.out.println("Usage: java ExamineList datafile");
0188: System.exit(1);
0189: }
0190: final List tList = new ArrayList();
0191: // read a list of people from a file
0192: final BufferedReader tInputHandle =
0193: new BufferedReader(new FileReader(pArgs[0]));
0194: while (true)
0195: {
0196: final String tFileLine = tInputHandle.readLine();
0197: if (tFileLine==null)

16



3.6 Conclusion

0198: {
0199: break;
0200: }
0201: final Person tFilePerson = new Person(tFileLine);
0202: tList.add(tFilePerson);
0203: }
0204: // output the list that has been read in
0205: final Iterator tIterator = tList.iterator();
0206: while (tIterator.hasNext())
0207: {
0208: final Person tIteratePerson = (Person)tIterator.next();
0209: System.out.println(tIteratePerson);
0210: }
0211: // ask the user to examine the list
0212: final BufferedReader tKeyboard =
0213: new BufferedReader(new InputStreamReader(System.in));
0214: while (true)
0215: {
0216: System.out.print("Person? ");
0217: System.out.flush();
0218: final String tKeyboardLine = tKeyboard.readLine();
0219: if (tKeyboardLine.equals(""))
0220: {
0221: break;
0222: }
0223: final Person tTargetPerson = new Person(tKeyboardLine);
0224: System.out.print(tTargetPerson);
0225: final int tPosition = tList.indexOf(tTargetPerson);
0226: if (tPosition>=0)
0227: {
0228: System.out.println(" is at position " + tPosition);
0229: }
0230: else
0231: {
0232: System.out.println(" is absent");
0233: }
0234: }
0235: }
0236: }

The program begins by obtaining the name of a file from the command line. It then reads lines from this file, each
line containing the details about one person. As it reads each line, it creates aPerson object and adds this object
to a list. Having read the file, the program uses anIterator to output the contents of the list. Finally, the program
keeps reading lines from the keyboard (each line containing the details of a person) and finding out whether the
person is in the list. It keeps doing this until the user of the program types in an empty line.

3.6 Conclusion
As mentioned earlier, besides providing Lists, the Collections API also provides interfaces and classes for Sets
and Maps. These are used in a similar way to those for Lists.

4 Writing applets (for use with the WWW)

4.1 Using HTML to code WWW pages
When you use aWWW browser(such as Netscape’sNavigator or Microsoft’s Internet Explorer) to display a
WWW page, you will see a combination of paragraphs of text, bulletted lists of information, tables of information,
images, links to other pages, and so on. The people that have prepared WWW pages have coded them (or have
arranged for them to be coded) usingHTML (HyperText Markup Language).

Here is an example of some HTML:

0237: <HTML>
0238: <HEAD>
0239: <TITLE>A Simple Example</TITLE>
0240: </HEAD>
0241: <BODY>
0242: <P>
0243: This is the first sentence of the first paragraph. And here is the
0244: second.
0245: Here is a third sentence. And
0246: here is the last one of the first paragraph.
0247: </P>
0248: <P>
0249: Here is a second paragraph.
0250: It has a list of items:
0251: <OL>
0252: <LI>first point;</LI>
0253: <LI>second point;</LI>
0254: <LI>third point;</LI>
0255: </OL>
0256: </P>

17



Advanced Java

Figure 5: The output produced by the WWW page given inSimple.html

0257: </BODY>
0258: </HTML>

We will suppose that this text has been stored in a file calledSimple.html. The HTML language involves the use
of tags which usually occur in pairs. An example is<P> and</P> which are used to indicate that the embedded
text should be displayed by the WWW browser as a paragraph.

When someone (perhaps on the other side of the world) uses a browser to visit a WWW page, the HTML
instructions are transferred across the Internet to the browser; the browser interprets these instructions and then
displays something within the browser’s window. The HTML given in the fileSimple.html would cause a
browser to display something like that shown in the Figure. Here is a link to a WWW page containing these
HTML instructions:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/Simple.html.

4.2 Getting Java bytecodes executed when a WWW page is visited
Since the inception of the WWW in the early 1990s, people have been finding different ways of making a WWW
page more appealing to the visitor to the page. When Sun first produced Java in 1995, they thought it would be
useful if Java code could be executed as part of browsing a WWW page. The Java code could do some processing
and display its output within the pane of the WWW browser. They showed that this was possible by producing
a WWW browser that had this capability — was first calledWebRunnerand later calledHotJava. They then
persuaded Netscape whose browser (Navigator) was the most popular at that time to include a Java interpreter as
part of the code of Navigator. Support for Java within Microsoft’s Internet Explorer came later.

In order that the author of a WWW page could indicate which Java.class file was to be executed when the
WWW page was loaded, HTML was altered to include anAPPLET tag. Here is an example of some HTML that
includes anAPPLET tag. Suppose that this text is stored in the fileHelloApplet.html.

0259: <HTML>
0260: <HEAD>
0261: <TITLE>The HelloApplet Example</TITLE>
0262: </HEAD>
0263: <BODY>
0264: <P>
0265: Start.
0266: </P>
0267: <APPLET CODE="HelloApplet.class" WIDTH="150" HEIGHT="25">

18

http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/Simple.html


4.3 Deriving from Applet instead of declaring amain method

0268: <P>Java does not seem to be supported by your WWW browser</P>
0269: </APPLET>
0270: <P>
0271: Finish.
0272: </P>
0273: </BODY>
0274: </HTML>

WWW browsers ignore tags that they do not understand. So if a WWW browser is given this HTML and it does
not understand theAPPLET tag, it will display the messageJava does not seem to be supported by your
WWW browser. However, if a WWW browser is capable of running Java, then, when the HTML interpreter of the
browser sees thisAPPLET tag, it will start to obtain thebytecodes from the file mentioned in theCODE attribute of
theAPPLET tag. So, with the HTML given in the fileHelloApplet.html, it would download the bytecodes that
are in the fileHelloApplet.class. Unless you also include aCODEBASE attribute, the browser will assume that
this file is in the same directory from which it is obtaining the file containing the HTML instructions.

These bytecodes will be transferred from the.class file into a storage area known to the Java interpreter of the
WWW browser. Often the bytecodes of a.class file will take some time to be transferred and so the rest of the
WWW page is likely to be displayed before they arrive. When the bytecodes have finally arrived, the browser’s
Java interpreter will execute them.

So, although the author of the WWW page compiled the Java source code on his/her computer, the.class file(s)
that were produced by the compiler will be executed by the Java interpreter contained in a WWW browser that is
running on the computer of the person visiting the WWW page.

4.3 Deriving from Applet instead of declaring a main method
So far the Java source code that we have produced has been for programs that we have run on our own computer.
Such programs are calledJava applications. We are now about to produce Java source code that is to be run by
the Java interpreter of a WWW browser. This kind of source code is called aJava applet.

The source code for an application is different from that for an applet. For an application, we provide a class
that has a method calledmain, and this is the method that is executed first when we run thejava command, the
command that executes the Java interpreter. For an applet, we do not provide amain method: instead, we use
inheritanceto derive a class fromjava.applet.Applet andoverridemethods likepaint, init, start, stop
anddestroy. We do this because this is what the Java interpreter contained in the WWW browser expects.

Here is an example of some Java source code that is a Java applet:

0275: // The code of the HelloApplet applet paints a string. // HelloApplet.java
0276: // Barry Cornelius, 24th April 1999
0277: import java.applet.Applet;
0278: import java.awt.Graphics;
0279: public class HelloApplet extends Applet
0280: {
0281: public void paint(Graphics pGraphics)
0282: {
0283: pGraphics.drawString("Hello world", 50, 25);
0284: }
0285: }

This can be compiled in the usual way:

javac HelloApplet.java

in order to produce the fileHelloApplet.class.

Suppose we tell a WWW browser to read the WWW page that is in the fileHelloApplet.html. When it
reaches theAPPLET tag, it knows it has to obtain the bytecodes contained in the fileHelloApplet.class. When
these bytecodes have arrived, the Java interpreter contained in the WWW browser will create an object of the
HelloApplet class. And, because we have overridden thepaint method, the code of this method will be
executed. The result is displayed within the window of the browser (as shown in the Figure). Here is a link
to a WWW page containing these HTML instructions:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/HelloApplet.html.

The code ofHelloApplet is simple, and so the only classes that it depends on are classes from Java’s Core APIs.
However, normally the code for an applet will be dependent on other classes that the author has written. If this
is the case, then, as the Java interpreter executes the bytecodes, it will detect that the bytecodes of other classes
that need to be downloaded, and so it will return to the author’s WWW site to download the bytecodes from the
appropriate.class files.

4.4 Dealing with the different versions of the Java platform
Early versions of WWW browsers contain a Java interpreter that understandsJDK 1.0.2, the version of Java that
was prevalent at the time they were released. Each time a new version of a WWW browser was released, the

19

http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/HelloApplet.html


Advanced Java

Figure 6: The output produced by the WWW page given inHelloApplet.html

latest version of the Java interpreter was included in the browser. So the Java interpreter of some WWW browsers
understand JDK 1.1.x (although, unfortunately, with many versions of WWW browsers, some parts of JDK 1.1.x
are missing).

During the years 1996-1998, this led to a chaotic state of affairs: some browsers would only execute applets coded
with JDK 1.0.2, and other browsers only understood parts of JDK 1.1. It also seemed unlikely that any browsers
would provide a Java interpreter for the Java 2 Platform. The best advice during this time was to write the Java
source code for Java applets in terms of the language and the APIs of JDK 1.0.2, and to compile the source code
with the JDK 1.0.2 compiler.

Of course, such an approach does not mean that you can reap the benefits of later versions of the Java Platform.
For example, the way of handling events (such as the event of a user clicking a button) was improved between
JDK 1.0 and JDK 1.1. And the Java 2 Platform brought the release of the Swing and Collection APIs.

The Java 2 Platform equivalent of theHelloApplet applet is theHelloJApplet applet that is given here:

0286: // A JDK 1.2 version of the HelloApplet applet. // HelloJApplet.java
0287: // Barry Cornelius, 24th April 1999
0288: import java.awt.Graphics;
0289: import javax.swing.JApplet;
0290: public class HelloJApplet extends JApplet
0291: {
0292: public void paint(final Graphics pGraphics)
0293: {
0294: pGraphics.drawString("Hello world", 50, 25);
0295: }
0296: }

This class is derived from theJApplet class (from javax.swing), a class that is itself derived from
java.applet.Applet. But, because it uses the features that were new with the Java 2 Platform, how can we run
this applet?

Recognizing that browsers supporting different versions of Java interpreters was a major problem, Sun looked at
how this problem might be overcome. They decided that it would be more flexible to provide a plug in containing
a Java interpreter. (A plug-in is an additional piece of software that a browser can be configured to use. The
advantage of using a plug-in is that a user can update it without having to update the browser.)

This plug-in is known as theJava Plug-in. (Note: it was previously called theJava Activator.)

20



4.5 Using appletviewer when developing Java applets

The idea is that the applet is executed using the Java interpreter contained in this plug-in, and any Java interpreter
contained in the WWW browser will be ignored. But, how can you arrange for your browser to use the plug in’s
Java interpreter rather than the browser’s Java interpreter?

With early versions of the Java Plug-in, Sun suggested that developers of WWW pages that use Java applets code
their HTML in such a way that the visitor to the WWW page is asked to download the plug-in to their computer if
the plug-in appropriate to the version of Java required by the applet is not present on the computer.

Unfortunately, the way in which the HTML is written in order for this to happen depends on what browser is being
used. For example, the HTML that is required for Netscape’s Navigator is different from that that is needed for
Microsoft’s Internet Explorer. Although you could provide HTML that only works for one of these browsers, it is
better for your HTML to allow any browser. So the reasonably simpleAPPLET tag of the fileHelloApplet.html
needs to be replaced by the HTML of the fileHelloJApplet.html which is shown below.

This file contains a large number of difficult lines of HTML in order for it to work with both Navigator and
Internet Explorer. Essentially, the lines immediately following theOBJECT tag are used by Internet Explorer,
whereas those immediately following theEMBED tag are used by Navigator. There are details about what all this
means at http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html.

On that WWW page, Sun give an even more complicated version that can deal with situations not catered for by
the HTML given below. Even though it is complicated, once we have got it right the only parts that need to be
changed are the two sets of references to the name of the.class file (HelloJApplet.class), the width (150)
and the height (25).

With later versions of the Java Plug-in, when the user is installing the plug in, they can arrange for the plug-in’s
interpreter to be used when a WWW page is coded using an APPLET tag.

Obviously, you have no control over the users visiting your WWW pages: you do not know whether their browser
has the Java Plug-in installed, nor whether it is a recent version of the Java Plug-in, nor whether they have
configured the latter to understand the APPLET tag.

At the current time, probably the best advice is as follows:

• If you are writing the applet for your own use, download the latest version of the Java Plug-in; configure it
to be used when an APPLET tag is used; and code your WWW pages in terms of the APPLET tag.

• If you are providing your applet for others to use, do not use the APPLET tag: instead use the complicated
HTML given below.

0297: <HTML>
0298: <HEAD>
0299: <TITLE>The HelloJApplet Example</TITLE>
0300: </HEAD>
0301: <BODY>
0302: <P>
0303: Start.
0304: </P>
0305: <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
0306: width="150" height="25"
0307: codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
0308: <PARAM NAME="code" VALUE="HelloJApplet.class">
0309: <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
0310: <COMMENT>
0311: <EMBED type="application/x-java-applet;version=1.2"
0312: width="150" height="25"
0313: code="HelloJApplet.class"
0314: pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
0315: <NOEMBED>
0316: </COMMENT>
0317: No JDK 1.2 support which is what is needed for this applet
0318: </NOEMBED>
0319: </EMBED>
0320: </OBJECT>
0321: <P>
0322: Finish.
0323: </P>
0324: </BODY>
0325: </HTML>

Here is a link to a WWW page containing these HTML instructions:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/HelloJApplet.html.

4.5 Using appletviewer when developing Java applets
When developing a Java applet, the.class file will often be changed before the final version is produced. One
problem that authors of Java applets often face is the difficulty in persuading a WWW browser to load a new
version of a.class file if the .class file has changed on the author’s WWW site. With some releases of some
WWW browsers, pressing theShift key at the same time as clicking the browser’sReloadbutton may cause it

21

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/HelloJApplet.html


Advanced Java

to reload everything. If this does not work, then the only sure way to get round this problem is to exit from the
WWW browser and to start it up again.

If you are developing a WWW applet, it will be very tedious if you have to restart the WWW browser frequently.

However, the SDK/JDK comes with a tool calledappletviewerthat can be used to view the output of an applet
whose.class file is mentioned in a WWW page. So, having compiled some Java source code, e.g.:

javac HelloJApplet.java

theHelloJApplet.class file can be executed and its output can be displayed by running the following Unix/MS-
DOS command:

appletviewer HelloJApplet.html

You can keep this appletviewer program running. If you subsequently make a change to theHelloJApplet.java
file and then recompile it, you can get appletviewer to load the new version of theHelloJApplet.class file by
clicking on theReloadoption of the appletviewer’s menu. So this appletviewer program provides a useful tool for
testing Java applets.

4.6 The lifecycle of a Java applet
TheHelloJApplet applet just overrides thepaint method. Most applets do something more involved than just
painting. In order to write any code for an applet you need to be aware of thelifecycleof an applet, i.e., the
various stages that an applet goes through from birth to death.

When the bytecodes of an applet are loaded (or reloaded), theinit method of the applet is executed. Then the
applet’sstart method is executed. This method is also re-executed when the user comes back to the WWW page
associated with the applet after having visited another page. Whenever the user leaves this page, thestop method
is executed. Finally, thedestroy method is executed if the WWW browser has to unload the applet.

By default, the classjava.applet.Applet defines methods forinit, start, stop and destroy that do
nothing, i.e., they have empty bodies. So, if you want to define some actions to take place at the various points in
the lifecycle of an applet, you just need to override the appropriate methods.

Overriding thestart andstop methods is important for applets which start a newthread.

4.7 Overriding the init method
All of the classes that create a window on the screen (i.e.,JWindow, JFrame, JDialog, JInternalFrame and
JApplet) have acontent pane. This is the main area of the window, and, we saw earlier that a program can access
the content pane of an object of one of these classes by executing itsgetContentPane method.

So, instead of overriding thepaint method to output the string"Hello world" as is done by theHelloJApplet
applet, we could instead add aJLabel containing this string to the applet’s content pane. As we only want to
execute the code to add theJLabel object to the content pane once, it is appropriate to put the call ofadd in an
init method of an applet. Here is an applet that does this:

0326: // An applet that adds a JLabel to its content pane. // JLabelJApplet.java
0327: // Barry Cornelius, 3rd May 1999
0328: import java.awt.BorderLayout;
0329: import java.awt.Container;
0330: import javax.swing.JApplet;
0331: import javax.swing.JLabel;
0332: public class JLabelJApplet extends JApplet
0333: {
0334: public void init()
0335: {
0336: final JLabel tJLabel = new JLabel("Hello world");
0337: final Container tContentPane = getContentPane();
0338: tContentPane.add(tJLabel, BorderLayout.CENTER);
0339: }
0340: }

Here is a link to a WWW page containing these HTML instructions:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/JLabelJApplet.html.

4.8 Restrictions imposed on Java applets
So far, programs have been able to read from files, to write to files, and to call methods (such asSystem.exit)
that behind the scenes makesystem calls, i.e., calls to routines of the underlying operating system. Using some
of the APIs that have not been considered, it is also possible to write Java source code that communicates with
other computers. Although it is reasonable for these sort of activities to be performed by Java source code that is
a program, i.e., aJava application, is it appropriate for these activities to be performed byJava applets?

22

http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/simple/JLabelJApplet.html


4.9 Reworking an application as an applet:GetDateApplet

To be more specific: if you visit a WWW page, and the author of that WWW page causes your WWW browser
to execute some bytecodes produced by the author, are you happy for these bytecodes to write to files on your
computer, or to read any of your files?

The designers of Java took the view that it is not necessarily appropriate for these activities to be performed by
Java applets that have been downloaded from the Internet. So, the environment of an applet is controlled by the
user of the WWW browser. For example, there is no access to local files from Netscape’s Navigator, whereas
HotJava users can configure which files can be read from and which can be written to. More details about these
restrictions are given at http://java.sun.com/sfaq/.

This approach is often called theSandboxapproach. This was Sun’s first attempt at controlling what an applet can
do. With later revisions of the Java Platform, Sun have been providing ways in which an applet can be allowed
to perform these activities. It is now possible to add to an applet adigital signatureauthorized by acertificate
obtained from acertificate authority. If you download thissigned appletand you allow your WWW browser to
accept its certificate, the applet is said to be atrusted applet. There are more details about how to execute signed
applets at http://java.sun.com/security/signExample12/.

Sun’s main WWW page on security restrictions is http://java.sun.com/security/.

4.9 Reworking an application as an applet: GetDateApplet
Many of the programs that you have already produced can easily be rewritten as Java applets. Often this can
be done by putting the code of themain method into an applet’sinit method. For example, we could take the
statements of themain method of theGetDateProg program (given earlier inStage F) and put them into aninit
method of aGetDateApplet class. The resulting code is shown here:

0341: // // GetDateApplet.java
0342: // An applet containing the button to get the date and time.
0343: // Barry Cornelius, 22nd November 1999
0344: import java.awt. BorderLayout;
0345: import java.awt. Container;
0346: import javax.swing. JApplet;
0347: import javax.swing. JButton;
0348: import javax.swing. JFrame;
0349: import javax.swing. JTextField;
0350: public class GetDateApplet extends JApplet
0351: {
0352: public void init()
0353: {
0354: final JFrame tJFrame = new JFrame("GetDateApplet");
0355: final JTextField tJTextField = new JTextField("hello", 35);
0356: final JButton tJButton = new JButton("Get Date");
0357: final JButtonListener tJButtonListener =
0358: new JButtonListener(tJTextField);
0359: tJButton.addActionListener(tJButtonListener);
0360: final Container tContentPane = tJFrame.getContentPane();
0361: tContentPane.add(tJTextField, BorderLayout.NORTH);
0362: tContentPane.add(tJButton, BorderLayout.SOUTH);
0363: tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
0364: tJFrame.pack();
0365: tJFrame.setVisible(true);
0366: }
0367: }

In producing this class, the two statements ofGetDateProg that establish a window listener:

final ExitOnWindowClosing tExitOnWindowClosing = new ExitOnWindowClosing();
tJFrame.addWindowListener(tExitOnWindowClosing);

have been omitted. This is because theExitOnWindowClosing class has awindowClosing method that calls
System.exit. For the reasons explained in the previous section, it is not appropriate for an applet to have this
code.

When an applet is executed, if it creates any new windows then these will appear with ayellow warn-
ing banner displaying the textWarning: Applet Window. This text warns the user of the WWW
browser that the window being displayed has not been produced by atrusted applet. The WWW page at
http://java.sun.com/products/plugin/plugin.faq.html says that theyellow warning banner is an important security
feature. It cannot be disabled by untrusted applets. If you use a signed applet, where the signing key is trusted by
the end user, then the warning banner will not be shown.

Here is a link to a WWW page containing HTML instructions to run this applet:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateApplet/GetDateApplet.html.

Instead of getting the applet to produce a new window (tJFrame), we can use the pane of the applet itself. In the
following code,this is used to refer to theGetDateAppletPane object (which is derived fromJApplet):

0368: // // GetDateAppletPane.java
0369: // An applet containing the button to get the date and time.

23

http://java.sun.com/sfaq/
http://java.sun.com/security/signExample12/
http://java.sun.com/security/
http://java.sun.com/products/plugin/plugin.faq.html
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateApplet/GetDateApplet.html


Advanced Java

0370: // Barry Cornelius, 22nd November 1999
0371: import java.awt. BorderLayout;
0372: import java.awt. Container;
0373: import javax.swing. JApplet;
0374: import javax.swing. JButton;
0375: import javax.swing. JTextField;
0376: public class GetDateAppletPane extends JApplet
0377: {
0378: public void init()
0379: {
0380: final JTextField tJTextField = new JTextField("hello", 35);
0381: final JButton tJButton = new JButton("Get Date");
0382: final JButtonListener tJButtonListener =
0383: new JButtonListener(tJTextField);
0384: tJButton.addActionListener(tJButtonListener);
0385: final Container tContentPane = this.getContentPane();
0386: tContentPane.add(tJTextField, BorderLayout.NORTH);
0387: tContentPane.add(tJButton, BorderLayout.SOUTH);
0388: }
0389: }

Here is a link to a WWW page containing HTML instructions to run this applet:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateAppletPane/GetDateAppletPane.html.

4.10 Producing code that can be used either as an application or an applet
If you want to use some Java source code sometimes as an application and sometimes as an applet, it would be
better not to have duplicate copies of the code as is the case with themain method of theGetDateProg class and
theinit method of theGetDateApplet class. It is usually easy to rewrite the code of the program and applet
classes so as to avoid the duplication.

0390: // // GetDateBoth.java
0391: // An applet containing the button to get the date and time.
0392: // Barry Cornelius, 22nd November 1999
0393: import java.awt. BorderLayout;
0394: import java.awt. Container;
0395: import javax.swing. JApplet;
0396: import javax.swing. JButton;
0397: import javax.swing. JFrame;
0398: import javax.swing. JTextField;
0399: import javax.swing. RootPaneContainer;
0400: public class GetDateBoth extends JApplet
0401: {
0402: public static void main(final String[] pArgs)
0403: {
0404: final JFrame tJFrame = new JFrame("GetDateBoth");
0405: iSetUpContentPane(tJFrame);
0406: tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
0407: tJFrame.pack();
0408: tJFrame.setVisible(true);
0409: }
0410: public void init()
0411: {
0412: iSetUpContentPane(this);
0413: }
0414: private static void iSetUpContentPane(final RootPaneContainer pWindow)
0415: {
0416: final JTextField tJTextField = new JTextField("hello", 35);
0417: final JButton tJButton = new JButton("Get Date");
0418: final JButtonListener tJButtonListener =
0419: new JButtonListener(tJTextField);
0420: tJButton.addActionListener(tJButtonListener);
0421: final Container tContentPane = pWindow.getContentPane();
0422: tContentPane.add(tJTextField, BorderLayout.NORTH);
0423: tContentPane.add(tJButton, BorderLayout.SOUTH);
0424: }
0425: }

Here is a link to a WWW page containing HTML instructions to run the above code (as an applet):
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateBoth/GetDateBoth.html.

4.11 Using the Java archive tool
As was mentioned earlier, theCODE attribute in the HTML that is used to run an applet identifies the name of
the file containing the bytecodes of the applet’s class. However, normally, the author of an applet will provide a
number of supporting classes as well as the class of the applet. It was pointed out earlier that the bytecodes of
each of the.class files will be downloaded from the author’s WWW site as the Java interpreter being used by
the WWW browser detects that it requires them.

For example, suppose a directory contains the files for theGetDateApplet applet. The following files would
have to be downloaded in order to execute this applet:GetDateApplet.class andJButtonListener.class.

24

http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateAppletPane/GetDateAppletPane.html
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateBoth/GetDateBoth.html


5 Other information about Java

Obviously, programs are usually a lot more complicated than this: such programs may have a large number of
.class files.

The Java 2 SDK (or the JDK) contains a tool that enables the author of an applet to combine a number of files
into a single file. The resulting file is called aJava Archive. The tool is calledjar, and, like the other commands
of the SDK/JDK, it can be run from a Unix/MS-DOS command line. The documentation for thejar command
saysWhen the components of an applet or application (.class files, images and sounds) are combined into a
single archive, they may be downloaded by a Java agent (like a browser) in a single HTTP transaction, rather
than requiring a new connection for each piece. This dramatically improves download times.jar also compresses
files and so further improves download time.

Assuming that the directory containing the files for theGetDateApplet applet only contains.class files that are
associated with this applet, then a Java Archive can be produced from these.class files by the Unix/MS-DOS
command line:

jar cvf GetDateApplet.jar *.class

The first argument to thejar command, which in this example iscvf, indicates the options that you want to be
passed to thejar command. There are three main ways in which thejar command is used. If the options contain
ac, then this means that you want to create an archive; if they contain at, you want thejar command just to list
the contents of an archive (that already exists); and if they contain anx, you want the command to extract some
.class files from an archive.

If the options include the letterv, then thejar command will produce some output to tell you what it is doing —
meansverbose. Finally, thef means that the name of an archive is given as the next argument. When ac option
is present, the remaining arguments give the names of the.class files that you want to be put into the archive. In
Unix/MS-DOS, the notation*.class refers to all of the files in the current directory that have a.class extension.

So the abovejar command produces a file calledGetDateApplet.jar that contains a compressed archive of
the two.class files that constitute theGetDateApplet applet.

Suppose a WWW page contains aCODE attribute to say that the bytecodes of an applet’s class are stored in the
file GetDateApplet.class. If you want the WWW browser to download the bytecodes in the Java Archive
GetDateApplet.jar instead of downloading each.class file, you will need to include anARCHIVE attribute as
well as theCODE attribute.

If your HTML uses anAPPLET tag or anEMBED tag, the syntax of theARCHIVE attribute is:

archive="GetDateApplet.jar"

and, if your HTML uses anOBJECT tag, you need to include:

<PARAM NAME="archive" VALUE="GetDateApplet.jar">

Note you need aCODE attribute as well as theARCHIVE attribute: the latter gives the name of the file containing
the Java Archive (in which all the.class files are stored) and theCODE attribute gives the name of the class file
that contains the class of the applet, i.e., effectively it identifies the bytecodes that are executed first.

As mentioned earlier, there are two advantages in using a Java Archive:

• One HTTP connection from the computer running the WWW browser to the computer of the author’s WWW
site is made to obtain the bytecodes in the Java Archive instead of making lots of HTTP connections, one
for each of the.class files.

• Because the information in the Java Archive are stored in a compressed format, there is less bytes to be
downloaded.

Here is a link to a WWW page containing HTML instructions that use the fileGetDateApplet.jar:
http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateJar/GetDateApplet.html.

5 Other information about Java
ITS Guide 58: Getting started with Javacan be used to find out about the basics of writing programs in Java.
Guide 58also provides:

• the URLs of some WWW pages that form the primary resources for information about Java;

• details about books that are appropriate for someone who is already familiar with programming.

25

http://www.dur.ac.uk/barry.cornelius/papers/advanced+/code2/Applets/GetDateJar/GetDateApplet.html

	 Introduction
	 Providing a graphical user interface (GUI)
	 The Collections API
	 Writing applets (for use with the WWW)
	 Other information about Java

