
Design of classes
Barry Cornelius
Computing Services, University of Oxford
Date: January 2001
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

1 minimal public interface 1
2 Providing equals 1
3 Providing hashCode 3
4 Providing compareTo 6
5 Providing a clone 7
6 References 9

1 minimal public interface
When teaching interfaces and classes, I stress that it is important that each class has:

• methods calledequals, hashCode, toString, and (if appropriate) a method calledcompareTo;

• a constructor that initializes the object from a parameter of typeString;

• get methods;

• set methods (if appropriate);

• some means for cloning an object.

Some of these (e.g.,equals, hashCode, compareTo) are needed if objects of the class are to be stored in a
collection. When we produce a class, we may be uncertain as to whatclients(users of our class) will want to do
with objects of the class. I do not believe we should change the class later or produce a subclass later. Instead, we
should provide these things at the outset.

In some ways, a class is poorly constructed unless it has all of these methods and constructors. In a book entitled
‘Object-Oriented Design Heuristics’ ([4]), Arthur Riel introduces the idea of theminimal public interface. He
says: ‘If the classes that a developer designs and implements are to be reused by other developers in other
applications, it is often useful to provide a common minimal public interface. This minimal public interface
consists of functionality that can be reasonably expected from each and every class.’

Bill Venners has also written an article on the topic of minimal public interfaces: it is entitledThe canonical object
idiom ([11]).

2 Providing equals

2.1 The need to provide equals with an Object parameter
I find it incredible that so many books on Java introduce classes as a means of representing real-world objects and
yet do not provide each class with the ability to find out whether two objects of the class have the same value.

Suppose a book introduces a class calledDate. Then, if it does mentionequals, often you will find it declared
with a parameter of typeDate:

public boolean equals(final Date pDate)
{

return iYear==pDate.iYear && iMonth==pDate.iMonth && iDay==pDate.iDay;
}

If a client attempts to add objects of this class to an object of the Collections API (orHashtable or Vector), they
are in for a shock. None of the following methods will work with the above declaration ofequals:

Hashtable contains, containsKey, get, put, remove
Vector contains, indexOf
List contains, remove, indexOf
Map containsKey, containsValue, get, put, remove
Set add, contains, remove

1

Design of classes

Instead, I teach that for theequals method to be useful it requires a parameter of typeObject.

2.2 Using getClass in the code of equals
For example, if we are providing a class calledDate, we could declare the following:

public boolean equals(final Object pObject)
{

if (pObject==null || getClass()!=pObject.getClass())
{

return false;
}
final Date tDate = (Date)pObject;
return iYear==tDate.iYear && iMonth==tDate.iMonth && iDay==tDate.iDay;

}

This code uses a method calledgetClass (which is declared in the classjava.lang.Object). This is a method
that returns a value of typejava.lang.Class, a value that describes the class of its target. In the above code for
equals, thegetClass method is called twice:

pObject==null || getClass()!=pObject.getClass()

In the second call, the target of the call ofgetClass is the object to whichpObject is pointing. So the value that
is returned is the class of this object.

In the first call, there is no explicit target. WhengetClass is called without a target (from theequals method),
it will be applied to whatever object is the target of the call ofequals. So the first call ofgetClass is finding out
the class of the object to whichequals is being applied.

Since theequals method appears in a class calledDate, you would think that the target of theequals method
must be an object of classDate, and so this kind of call ofgetClass will always return the classDate. However,
suppose we derive a class calledNamedDate from Date:

public class NamedDate extends Date
{

private String iName:
...

}

Suppose thatNamedDate does not overrideequals. If we write:

tFirstNamedDate.equals(tSecondNamedDate)

then this will be a call ofDate’s equals method and both calls ofgetClass will return the classNamedDate. So,
even though this code appears in the class declaration forDate, in some circumstances the first call ofgetClass
will return a value that is a subclass of the classDate.

2.3 Using getClass in preference to instanceof

When providing a proper version ofequals, many authors (including [1]) use code forequals that has the
following form:

public boolean equals(final Object pObject)
{

if (! (pObject instanceof Date))
{

return false;
}
final Date tDate = (Date)pObject;
return iYear==tDate.iYear && iMonth==tDate.iMonth && iDay==tDate.iDay;

}

Here theinstanceof operator is being used instead of callinggetClass twice.

Although the code using theinstanceof operator looks easier to understand, it is inappropriate to use this code
because it causes problems if you or someone else later uses inheritance to subclass this class and you want the
subclass to override the version ofequals provided byDate.

The problem is that this version ofequals does not always satisfy one of the rules of the contract ofequals
mentioned in the WWW pages that document the classObject ([8]). This rule says that theequals method ‘is
symmetric: for any reference valuesx andy, x.equals(y) should return true if and only ify.equals(x) returns
true’.

Suppose we were to provideDate with the version ofequals given above, and providedNamedDate with the
following version ofequals:

2

3.1 The need to providehashCode

public boolean equals(final Object pObject)
{

if (! (pObject instanceof NamedDate))
{

return false;
}
return super.equals(pObject) && iName.equals(((NamedDate)pObject).iName);

}

Then we would have a problem when we useequals with two objects, one being of classDate and the other
being of classNamedDate. This can be illustrated by executing the code:

Date tDate = new Date(2001, 1, 22);
NamedDate tNamedDate = new NamedDate(2001, 1, 22, "JICC5");
System.out.println(tDate.equals(tNamedDate));
System.out.println(tNamedDate.equals(tDate));

The first call of equals is being applied to aDate object and soDate’s equals method will be used.
This call will lead to pObject pointing to an object of classNamedDate. So what happens with the test
pObject instanceof Date? Is this going to delivertrue or false whenpObject is pointing to aNamedDate
object? Well, for a condition that has the form: ‘RelationalExpressioninstanceof ReferenceType’ the definition
of Java (given in the book ‘Java Language Specification’ ([2])) says: ‘At run time, the result of theinstanceof
operator istrue if the value of theRelationalExpressionis not null and the reference could be cast to the
ReferenceTypewithout raising aClassCastException’. Since the cast(Date)pObject is allowed when
pObject is pointing to aNamedDate object, thenpObject instanceof Date is allowed and has the value
true. So the code moves on and produces the valuetrue or false depending on whether theiYear, iMonth
andiDay values of the two objects are the same. In the above example, they are the same, and so the valuetrue
will be produced.

The second call ofequals usesNamedDate’s equals method. It will always produce the valuefalse. This is
becausetDate does not satisfy the test that checks whether the parameter is aninstanceof NamedDate.

So, when anequals method is written usinginstanceof, it does not always satisfy the symmetric rule. For
more information about this, see:

• Pages 44 to 59 of the book ‘Practical Java’ ([3]) by Peter Haggar.

• At [5], there is a WWW page containing an article by Mark Roulo entitled ‘How to avoid traps and correctly
override methods fromjava.lang.Object’.

Both of these authors point out thatinstanceof (rather thangetClass) is used in the code of theequals
methods of some of the classes of Java’s Core APIs. And so you may run into the non-symmetric problem if you
want to produce a subclass of one of these classes. In his book, Peter Haggar says: ‘A quick glance through the
source code of the Java libraries shows the use ofinstanceof in equals method implementations is common.
You also find the use ofgetClass. The Java libraries are not consistent in how they implement theequals
methods of their classes, thereby making consistent equality comparisons difficult’.

3 Providing hashCode

3.1 The need to provide hashCode

If you declareequals properly, you need also to declarehashCode. There are warnings about this in the
documentation of some of the classes. For example, the WWW pages that documentjava.util.Hashtable
([10]) state that ‘to successfully store and retrieve objects from a hashtable, the objects used as keys must
implement thehashCode method and theequals method’. By this, it means that a class should override the
methods calledhashCode andequals that are declared injava.lang.Object. So you should declare methods
with the following headers:

public int hashCode();
public boolean equals(Object pObject);

ThehashCode method will get used behind the scenes by the following methods:

Hashtable contains, containsKey, get, put, remove
HashMap containsKey, containsValue, get, put, remove
HashSet add, contains, remove

3

Design of classes

3.2 The contract that hashCode should satisfy
The contract thathashCode needs to satisfy is given in the WWW pages that document the classObject ([9]).
They say that the general contract ofhashCode is:

• ‘Whenever it is invoked on the same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer, provided no information used in equals
comparisons on the object is modified. This integer need not remain consistent from one execution of an
application to another execution of the same application.’

• ‘If two objects are equal according to theequals(Object) method, then calling thehashCode method on
each of the two objects must produce the same integer result.’

• ‘It is not required that if two objects are unequal according to theequals(Object) method, then calling
the hashCode method on each of the two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results for unequal objects may improve the
performance of hashtables.’

3.3 Providing a hashCode method that returns the value 0
The full implications of these three rules are not particularly easy to understand. So, when teachingequals and
hashCode, I find it easier, to begin with, to advise students to provide the followinghashCode function:

public int hashCode()
{

return 0;
}

When this function is called, it always returns the same value, and so thishashCode function satisfies the first two
rules. What the third rule is saying is that we may get poor execution speeds by choosing thishashCode function.
However, there are some subtle points that need to be considered if you want to provide a more sophisticated form
of hashCode.

3.4 Providing other code for the hashCode function
For theDate example, another possibility for thehashCode function is:

public int hashCode()
{

return iMonth;
}

If we use thishashCode function, an integer in the range 1 to 12 is associated with each of the values of the class
Date. For example:

final Date tNoelDate = new Date(2000, 12, 25);
final int tValue = tNoelDate.hashCode();

will assign the value 12 totValue.

So, if we were to store values of the typeDate in a collection (such as aHashSet), the designer of the collection
class could arrange for the values of the collection to be stored in 12buckets: all the values of the collection that
have a hashcode of 1 would be stored in the first bucket; all those with a hashcode of 2 would be stored in the
second bucket; and so on. When we later call thecontains method to check whether a particularDate value is
in the collection, the code of thecontains method can find the hashcode of theDate value and then it need only
look at the values in the appropriate bucket.

For example, suppose we want to set up aHashSet containing the dates when various composers died:

Bach 1750-08-28
Beethoven 1827-03-26
Cage 1992-08-12
Chopin 1849-10-17
Copland 1990-12-02
Elgar 1934-02-23
Handel 1759-04-14
Mendelssohn 1847-11-04
Purcell 1695-11-21
Sibelius 1957-09-20
Stanford 1924-03-29
Tallis 1585-11-23
Tchaikovsky 1893-11-06
Vaughan-Williams 1958-08-26
Walton 1983-03-08

4

3.5 The reason for using a zero-returninghashCode

Suppose we add each of these dates to aHashSet, e.g. for Bach:

final Date tDeathOfBach = new Date(1750, 8, 28);
tHashSet.add(tDeathOfBach);

Theadd method could useDate’s hashCode function to store the values in 12 buckets:

1.

2. 1934-02-23

3. 1924-03-29, 1827-03-26, 1983-03-08

4. 1759-04-14

5.

6.

7.

8. 1750-08-28, 1992-08-12, 1958-08-26

9. 1957-09-20

10. 1849-10-17

11. 1847-11-04, 1695-11-21, 1893-11-06, 1585-11-23

12. 1990-12-02

Then, when later we ask the collection class whether it has the value1893-11-06 (the date when Tchaikovsky
died), thecontains method can callhashCode on this value and, because this produces the value 11, the
contains method need only check the values in the 11th bucket. The code of thecontains method usesequals
on each of these values in turn returning the valuetrue if and only if it finds the value (in this case, the value
1893-11-06).

Besides the above coding of thehashCode function, there are many other possibilities we could choose instead.
Here is another example:

public int hashCode()
{

return iYear+10000 + iMonth*100 + iDay;
}

If we were to use this function, each value of the classDate would have its own unique hashcode.

3.5 The reason for using a zero-returning hashCode

However, there is one problem which we have not yet considered. If a client chooses to change a value after it has
been put in a collection, the value will no longer be in the right bucket. So it will not be found if we later search
for it.

For example, contrary to what it says above, Bach actually died on 28th July 1750 rather than on 28th August
1750. So we might want to change this date:

tDeathOfBach.setMonth(7);

This would change the collection to:

1.

2. 1934-02-23

3. 1924-03-29, 1827-03-26, 1983-03-08

4. 1759-04-14

5.

6.

7.

5

Design of classes

8. 1750-07-28, 1992-08-12, 1958-08-26

9. 1957-09-20

10. 1849-10-17

11. 1847-11-04, 1695-11-21, 1893-11-06, 1585-11-23

12. 1990-12-02

Suppose we now usecontains to search for the value1750-07-28. Because, whenhashCode is applied to this
value it produces the value 7, thecontains method will look in the 7th bucket, which is empty. So the method
will not find the value as the appropriate value is in the wrong bucket.

Rule 1: Here is an important rule: ahashCode function should not be written in terms of fields that can be altered.

If the classDate providessetYear, setMonth andsetDay, we ought not to provide ahashCode function that is
written in terms of theiYear, iMonth and/oriDay fields. So this is the reason why we might want to use:

public int hashCode()
{

return 0;
}

If we use thishashCode function, a collection class will use one bucket for all the objects we put into the
collection. Although this means that a method likecontains will execute more slowly as all the values of
the collection are in one bucket, it does mean that we need not worry about values being changed after they have
been added to a collection.

3.6 It is not a problem for immutable classes
Of course, this problem will not occur if you are providing animmutable class, a class where the fields of each
object of the class cannot be altered once an object has been created. In such circumstances, you will be able to
choose ahashCode function that helps to speed up searching.

So if we removedsetYear, setMonth andsetDay from theDate class, its objects would now be immutable.
We could then use either of the twohashCode functions that were given above. This would speed up the searching
for dates when they have been stored in aHashtable, aHashSet or aHashMap.

3.7 Another rule
Rule 2: Here is another important rule: the same hashcode values must be produced for any two objects that are
equal (according to theequals method).

In practice, this means that ahashCode function must always return the same value (e.g., the value 0) or it must
(at least) be dependent on the values of the fields used in the definition ofequals.

3.8 What is the effect on performance?
The effect on performance was measured by timing the execution of a program. The program creates aHashSet
that contains 10000 elements that are objects of theDate class. The program times the execution of 10000 calls of
contains. The following results were obtained for different codings of thehashCode method of theDate class:

the code of thehashCode method time taken
return 0; 14826
return iMonth; 1235
return iYear*10000 + iMonth*100 + iDay; 36

The times are given in milliseconds. These results demonstrate how a carefully chosenhashCode method can
affect the performance of some programs.

4 Providing compareTo

4.1 The need to provide compareTo

If the class that you are providing is for a type where there is a natural order for the values of the type, the class
should also provide a means for finding out whether one value of the type is less than another value. In fact, there
are some parts of the Collections API (e.g.,TreeSet andTreeMap) that work better if your class implements the
Comparable interface from the packagejava.lang ([6]).

This interface is simply:

6

4.2 Using theComparator interface

public interface Comparable
{

public int compareTo(Object pObject);
}

ForDate to implementComparable, we need to change it to something like the following:

public class Date implements Comparable
{

...
public int compareTo(final Object pObject)
{

final Date tDate = (Date)pObject;
int tResult = iYear - tDate.iYear;
if (tResult==0)
{

tResult = iMonth - tDate.iMonth;
if (tResult==0)
{

tResult = iDay - tDate.iDay;
}

}
return tResult;

}
}

TheComparable interface became part of Java when the Java 2 platform was released in December 1998.

If a class implements theComparable interface, objects of this class can be stored in aTreeSet or aTreeMap.
For example:

final Set tOccurrences = new TreeSet():
tOccurrences.add(tDeathOfBach);

4.2 Using the Comparator interface
If a class such asDate fails to implement theComparable interface, or its implementation ofcompareTo provides
inappropriate code, a client class can still storeDate objects in aTreeSet or aTreeMap provided it creates the
TreeSet/TreeMap using a constructor that is passed an object that implements theComparator interface ([7]).
This interface requires the object to provide the method:

public int compare(Object pObject1, Object pObject2);

This method returns a negative integer, zero, or a positive integer depending on whether the value ofpObject1 is
less than, equal to, or greater than that ofpObject2.

If, bizarrely, we chose to compare dates only on the year field, we could provide:

public class MyDateComparator implements java.util.Comparator
{

public int compare(final Object pObject1, final Object pObject2)
{

return ((Date)pObject1).getYear() - ((Date)pObject2).getYear();
}

}

and then use:

MyDateComparator tMyDateComparator = new MyDateComparator();
final Set tOccurrences = new TreeSet(tMyDateComparator):
tOccurrences.add(tDeathOfBach);

5 Providing a clone

5.1 The need to provide a cloning operation
Few books explain that, when producing a class, it is desirable to provide a cloning operation. For example, when
creating aPerson object, we might let a client supply aDate object that is the person’s date-of-birth:

Date tBirthDate = new Date(2000, 1, 24);
Person tSomePerson = new Person("Joe", tBirthDate);

wherePerson is as follows:

7

Design of classes

public class Person
{

private String iName;
private Date iDateOfBirth;
public Person(final String pName, final Date pDateOfBirth)
{

iName = pName;
iDateOfBirth = pDateOfBirth; // share
...

If we do this, thePerson object is sharing theDate object supplied by the client. If theDate class provides
mutable objects, this may be undesirable.

Instead of sharing theDate object with the client, thePerson object may prefer to have its own copy. The classes
of Java’s Core APIs use two different ways of producing a copy of an object:

• a class sometimes provides a method calledclone that overridesjava.lang.Object’s clone;

• a class sometimes provides a suitable constructor.

So, if Date providedclone, thePerson constructor could use:

iDateOfBirth = (Date)pDateOfBirth.clone(); // clone

Or, if Date provided a cloning constructor, thePerson constructor could use:

iDateOfBirth = new Date(pDateOfBirth); // clone

It is best to provide a method calledclone as this can be used when inheritance is involved. However, getting the
code of aclone method completely right is difficult.

5.2 Providing a constructor for cloning
Because it is difficult to get right, it is also difficult to teach. So, to begin with, I cheat by teaching students to
provide a constructor that can be used for cloning:

public Date(final Date pDate)
{

iYear = pDate.iYear;
iMonth = pDate.iMonth;
iDay = pDate.iDay;

}

5.3 Providing a method called clone

The classjava.lang.Object provides a method calledclone. The header of this method is:

public Object clone();

When it is used on an object, it returns a new instance of the object which contains a copy of all the fields of the
object. If you want a class to support cloning, it is best to override this method.

To do this, your class needs to say that it implements theCloneable interface and itsclone method must catch
theCloneNotSupportedException exception. Both of these need only be done if your class is a direct subclass
of Object. For example, for theDate class, we may want to provide:

public class Date implements Cloneable
{

...
public Object clone()
{

try
{

return super.clone();
}
catch(final CloneNotSupportedException pCloneNotSupportedException)
{

throw new InternalError();
}

}
}

Object’s clone method only produces ashallow copy. So, if a class has one or more fields that are of a reference
type, we may want to provide adeep copyby cloning these fields. For example, for thePerson class, we may
want to provide:

8

5.4 Other information about cloning

public class Person implements Cloneable
{

...
public Object clone()
{

try
{

final Person tPerson = (Person)super.clone();
if (iDateOfBirth!=null)
{

tPerson.iDateOfBirth = (Date)iDateOfBirth.clone();
}
return tPerson;

}
catch(final CloneNotSupportedException pCloneNotSupportedException)
{

throw new InternalError();
}

}
}

5.4 Other information about cloning
For more information about how to clone objects, look at thecanonical objectarticle by Bill Venners ([11]).

6 References
1. Barry Cornelius, ‘Teaching a Course on Understanding Java’,

http://www.ics.ltsn.ac.uk/pub/Jicc4/

2. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, ‘The Java Language Specification, Second Edition’,
Addison-Wesley, 2000, 0-201-31008-2

3. Peter Haggar, ‘Practical Java’,
Addison-Wesley, 2000, 0-201-61646-7

4. Arthur Riel, ‘Object-Oriented Design Heuristics’,
Addison-Wesley, 1996, 0-201-63385-X

5. Mark Roulo, ‘How to avoid traps and correctly override methods fromjava.lang.Object’,
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html

6. Sun Microsystems, ‘java.lang.Comparable’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Comparable.html

7. Sun Microsystems, ‘java.util.Comparator’,
http://java.sun.com/j2se/1.3/docs/api/java/util/Comparator.html

8. Sun Microsystems, ‘java.lang.Object.equals’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#equals(java.lang.Object)

9. Sun Microsystems, ‘java.lang.Object.hashCode’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#hashCode()

10. Sun Microsystems, ‘java.util.Hashtable’,
http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html

11. Bill Venners, ‘The canonical object idiom’,
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-techniques.html

9

 http://www.ics.ltsn.ac.uk/pub/Jicc4/
 http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html
 http://java.sun.com/j2se/1.3/docs/api/java/lang/Comparable.html
 http://java.sun.com/j2se/1.3/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#hashCode()
 http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html
 http://www.javaworld.com/javaworld/jw-10-1998/jw-10-techniques.html

	minimal public interface
	 Providing equals
	 Providing hashCode
	 Providing compareTo
	 Providing a clone
	 References

