Getting started with Java

Barry Cornelius

Computing Services, University of Oxford
Date: last updated 5th June 2004; first created in 1996
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

(1__Introduction| 1
[2 Declarations, statements, input and output 3
[3 Handling strings| 13
|4 Using classes for data abstractign 16
[5 Another example of data abstraction: the clas®erson| 26
[6 Grouping classes into packagés 27
[/ Object-oriented programming 29
[8 Another example of OO programming: 2D shapels 31
[9 Exception handling 33
35
[11 Starting another thread 36
1 Introduction

1.1 Whatis Java?

1.2

Java is an object-oriented programming language developed by Sun Microsystems.
It has: garbage collection, multithreading and exception handling.

It does not have: architecture-dependent constructs, structs, unions, pointer arithmetic, operator-overloading
and multiple inheritance.

It is accompanied by maryackagegeach of which is a group of related classes). Each package forms an
Application Programming Interfacer API. One of the key packages is one for building GUIs (graphical
user interfaces).

The definition of the Java language and its accompanying APIs is known Zevhe Platform The current
version is Version 1.4.2.

How is it executed?

Unlike most programming languages, Java source code is hot compiled into native code. Instead, a Java
compiler translates Java source code into an architecturally-neutral intermediate form kriputecasie

Instructions in this bytecode are interpreted by a Java interpreter.

Sun provide a Software Development Kit for the Java 2 Platform (Java 2 SDK). This includes a compiler
and an interpreter. Previous versions of the SDK were known afatreeDevelopment K{tIDK).

The Java 2 SDK was first released in December 1998. The latest version is 1.4.2. However, some people
still use versions of the JDK such as JDK 1.1.x and JDK 1.0.2 (which dates back to 1996). Whereever
possible, new systems should be written using the latest version of the Java 2 SDK.

Sun provide implementations of the Java 2 SDK for Solaris 2.x, for Windows and for Linux. All of these
products can be downloaded (free of charge) from: http://java.sun.com/products/.

Other companies provide rival products to Sun’s SDK.
Programs written for an early version of Java can be compiled by a more recent compiler. Bytecodes

produced by an old compiler can be interpreted by a more recent interpreter.

What are Java applications?
A Java application is a conventional program. It must have a ‘method’ (i.e., a function) gafled

Suppose the fil@WTion. java contains the Java application:

http://java.sun.com/products/

1.4

0001: public class HWTion { /I HWTion.java
0002: public static void main(String[] args) {

0003: System.out.printin("Hello World!");

0004:

0005: }

Note: the line numbers should be ignored: they do not form part of the program.

The application can be compiled by using the Unix/MS-DOS command:

javac HWTion.java
This produces a file of bytecodes in the fil¢Tion. class.

The fileHWTion. class can be interpreted (i.e., executed) by using the command:
java HWTion

At the University of Durham, the commangdavac and java currently run the compiler and interpreter

of the Java 2 SDK v 1.4.1-01. All the commands of JDK 1.1.x can be accessed by following a command
name with a minus sign, and those of JDK 1.0.2 can be accessed by using two minus signs. Here are some
examples:

javac-- HWTion.java
Java-- HWTion

What are Java applets?

A Java applet is Java source code whose bytecodes will be executed as part of viewing a WWW page. The
applet’s author compiles the Java source code into bytecodes.

These bytecodes will be downloaded from their author’s site by a WWW browser when the WWW page is
visited. So, the browser needs a Java interpreter to interpret the bytecodes.

This is true for browsers that adava-aware e.g., Microsoft'sinternet Explorey Netscape'sNavigator

or Mozilla. The earlier versions of these browsers only understood JDK 1.0.2. Later versions of these
browsers understand JDK 1.1.x or Java 2 SDK bytecode files that use the facilities of JDK 1.1.x. Examples
are Version 4.0x (and later versions) of Netscape’s Navigator (which supports most aspects of JDK 1.1.x)
and Version 4.x (and later versions) of Microsoft’s Internet Explorer (which supports some aspects of JDK
1.1.x).

Some versions of WWW browsers support Java 2 Platform v 1.2 and later. For more details see ITS Guide
108 Advanced Java

Sun’s Java 2 SDK (and the earlier JDKs) also includegpietviewetthat can be used if you do not have a
Java-aware browser.

Suppose the filEWLet . java contains the Java applet:

0006: import java.applet.Applet; /I HWLet.java
0007: import java.awt.Graphics;

0008: public class HWLet extends Applet {

0009: public void paint(Graphics rGraphics) {

0010: rGraphics.drawString("Hello World!", 50, 25);

0011: }

0012: }

The applet can be compiled by using the Unix/MS-DOS command:

javac HWLet.java

This produces a file of bytecodes in the filélet . class.

When a browser reads the WWW page given below, it finds that it has to retrieve tH#lfde . class.
When the bytecodes in this file arrive, the browser can interpret them.

0013: <HTML>

0014: <HEAD>

0015: <TITLE> HWLet example </TITLE>
0016: </HEAD>

0017: <BODY>

0018: Before the output from the applet.
0019: <APPLET CODE="HWLet.class" WIDTH=150 HEIGHT=25>
0020: </APPLET>

0021: After the output from the applet.
0022: </BODY>

0023: </HTML>

You can access a WWW page containing the above HTML instructions by using the URL
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/HWLet.html.

http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/HWLet.html

1.5 APIs

e Related classes can be grouped together package Together the classes of a package form a way of
programming in a particular area: together they define what is callegglication programming interface
(anAPI).

e Java has a large number of APIs already defined. Examples include APIs:

— for file 1/0,

— for doing 2D and 3D graphics,

— communicating with database{JBC),

— for sending an e-mail message,

— for enabling access to WWW pages,

— for accessing objects of Java programs running on other computers,
— for supporting the writing of applets.

e Some of these APIs are considered to be crucial, calle@tine APIs

e There are WWW pages documenting the Core APIs: http://java.sun.com/j2se/1.4.2/docs/api. These WWW
pages can also be downloaded to filespace on your own computer.

e This Guide uses the notatiojavaapi:java/lang/String.html to refer to the WWW page
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

1.6 A digression: what is JavaScript?
e Here is a WWW page containing some source code that is writt@aiaScript

0024: <HTML> <HEAD> <TITLE> Square demo </TITLE> </HEAD>
0025: <BODY>

0026: <P> Start. </P>

0027: <SCRIPT LANGUAGE="JavaScript">

0028: <!-- hide this script from some browsers

0029: function mysquare(myarg) {

0030: document.write("<P> Hello once more </P>"),

0031: document.write("<P> <code>myarg</code> is: ", myarg, "</P>"),
0032: return myarg*myarg;

0033: } ;

0034: document.write("<P> Value returned is: ", mysquare(7), "</P>");
0035: // end of hide -->

0036: </SCRIPT>

0037: <P> Finish. </P>

0038: </BODY> </HTML>

JavaScript is another programming language.

You put JavaScript code in HTML documents witkGCRIPT> tag.

The JavaScript code is not compiled: instead, it is interpreted by a JavaScript-aware WWW browser. Unlike
Java, JavaScript is understood by all browsers, including most of the early versions of Microsoft’s Internet
Explorer and Netscape’s Navigator.

You can access a WWW page containing the above HTML instructions by using the URL
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/square.html.

JavaScript has most of Java’s expression syntax and basic control flow constructs, but it does not have Java’s
strong type checking and static typing. You cannot write your own classes.

So, JavaScript is not as powerful as Java. And it is confusingdeato be included as part of the name
JavaScript

2 Declarations, statements, input and output
2.1 A simple Java program

0039: import java.io.BufferedReader; /I Convert.java
0040: import java.io.InputStreamReader; import java.io.lOException;

0041: public class Convert { /* BJC 960603 */

0042: public static void main(String[] args) throws IOException {

0043: System.out.printin("type in the lowest Fahrenheit value");

0044: BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
0045: int lower = Integer.parselnt(input.readLine());

0046: System.out.printin("type in the number of lines: ");

0047: int numOfLines = Integer.parselnt(input.readLine());

http://java.sun.com/j2se/1.4.2/docs/api
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/square.html

0048: int upper = lower + numOfLines - 1;

0049: for (int fahrenheit = lower; fahrenheit <= upper; fahrenheit++) {
0050: float celsius = to_celsius(fahrenheit);

0051: System.out.printin(fahrenheit + " F is " + celsius + " C");
0052:

0053:

0054: /I function to convert a temperature from degrees Fahrenheit
0055: /I to degrees Celsius

0056: private static float to_celsius(float fahr) {

0057: return (fahr - 32.0F)*5.0F/9.0F;

0058:

0059: }

2.2 Primitive types

name purpose of the type default examples of literal values
value
boolean logical values false false, true
char Unicode characters \u0000 > >, ?A’, >\101’, >\u0041’, *\’*, ’\t”’
byte signed integers 0 usint literal values
short signed integers 0 usint literal values
int signed integers 0 0,42,2147483647
long signed integers 0 OL, 42L, 9223372036854775807L
float IEEE 754 floating 0.0 0.0F, 9.81F, 2.9979E8F, 6.6252e-34F
pt. values
double IEEE 754 floating 0.0 0.0,9.81,1.0e100, 0.5E-100
pt. values

Later we will see that théelds of aclass declaratiorare initially given thedefault valuegiven above, whereas
a variable declared in method declaratiorhas no default value. However, a Java compiler will generate a
compilation error for most attempts to use an uninitialized variable.

In Java, each of these types hasagethat is defined by the language. So the range does not change as you move
your Java source code from one platform to another. Here are the ranges:

name size smallest value of type largest value of type
(bits
boolean 1 N/A N/A
char 16 \u0000 \UFFFF
byte 8 —128 +127
short 16 —32768 +32767
int 32 —2147483648 +2147483647
long 64 —9223372036854775808 +9223372036854775807
float 32 —3.40282347E438 +3.40282347 F+38
double 64 —1.79769313486231570 4308 +1.79769313486231570£+308

Values of the typesloat anddouble that are small in magnitude are considered to be zero:

name smallest negative value smallest positive value
float —1.40239846 F—45 +1.40239846 E—45
double —4.94065645841246544 E—324 +4.94065645841246544 E—324

2.3 Declarations and initializers

In Java, docal variable declarations a form of statement, and so such declarations may appear at any point in a
block. Here is an example:

0060: char ch, separator, delimiter;

When a variable is declared, you can includeratializer that gives the variable its initial value. However, often
the initial value of a variable can only be established after the execution of a few statements. In these cases, it is
sometimes argued that less errors occur if the declaration is left until an appropriate initial value is known.

The initializer may be an expression that is calculated at runtime as is the case wviittw#te num0fLines and
upper variables in the progra@onvert given above.

If the value of a variable is never changed after it has been initialized, this can be (and should be) documented
by using thefinal keyword. In the programonvert, this change could be made for the declarationsnpfut,
lower, numOfLines, upper andcelsius, e.g.:

0061: final int upper = lower + numOfLines - 1;
Note that this particular use d@final was not permitted in JDK 1.0.x.

2.4 Expressions

Java’s operators are similar to those of C. For example, Java has the operatoss /, and?, for performing
arithmetic. Each of these has an associated assignment operator. For example, the statement:has the
same meaning as the statement= a + b;

The operator+ is a unary operator that is used to increment its operand which must be a variable. If it is used as

a prefix operator, the value of the expression is the value of the variable after it has been incremented, whereas if it
is used as a postfix operator, the value of the expression is the value of the variable before it has been incremented.
The operator behaves like the operate# except that the variable is decremented instead of incremented.

Java also has the relational operatess ! =, <, <=, >, >=. It has the two operatoi and | |, that can be used
to andandor boolean values. Like C, these two operators stwort-circuit evaluation Unlike C, full evaluation
can be performed by using the operatond | instead.

An expression that is preceded by the name of a type enclosed in parentheses isczaitexkpressiariThe value
of the expression is converted to a value of the type. Here are two examples:

0062: double speedOfLight = ...;

0063: int roughSpeedOfLight = (int)speedOfLight;
0064: int somelnt = ...;

0065: char someChar = (char)someilnt;

2.5 Statements

2.5.1 Blocks

There are many situations where the syntax of Java requires a single statement. A sequence of statements can be
considered to be a single statement if they are turned ibtock (which is called a&zompound statemeirt some

other languages). This is done by surrounding the sequence of statemenigiby Examples of this appear in

the following section.

2.5.2 Conditional statements

Java has 2 kinds of conditional statements. Here are some examplesfoftmtement:

0066: if (a < 0) if (@ > b) if @ > b) {

0067: a = -a larger = a; larger = a;

0068: else System.out.printin("a>b");
0069: larger = b; }

0070: else {

0071: larger = b;

0072: System.out.printin("a<=b");
0073: }

Although C (and C++) allow the condition after thé to have an arithmetic value, this is not permitted in Java:
the condition must be Boolean expression.

Here are two examples ofsaritch statement:

0074: switch (dayNumber) { switch (dayNumber) {
0075: case 2: case 3: case 4: case 1:

0076: case 5: case 6: readRatherHeavyNewspaper();
0077: gotoWork(); break;

0078: doWork(); case 7:

0079: goHome(); break;

0080: watchTV(); default:

0081: gotoPub(); gotoWork();
0082: break; doWork();
0083: case 7: goHome();
0084: break; watchTV();
0085: case 1: gotoPub();
0086: readRatherHeavyNewspaper(); }

0087: }

Following the symbokwitch, there should be an expression which is enclosed by parentheses. In the above
examples, this expression is on the line:

0074: switch (dayNumber) { switch (dayNumber) {

and it just consists of the variabfeyNumber. The expression should be of typear, byte, short, or int.

When theswitch statement is executed, the expression is evaluated and then control is passed to the statement
whose associatechse label has a value equal to that of the expression. If there is no such statement, then control

is passed to the statement associated withiffault label if there is one; otherwise, control is passed to the
statement following thewitch statement.

A break statement must be executed if you wish to leavestitietch statement before the last statement of the
switch statement. So, normally, there will bebaeak statement just before eachse label and before the
default label (if there is one).

2.5.3 Looping statements

Java has 3 kinds of looping statements. Here is an examplé®f statement:

0088: int numMonths = Integer.parselnt(input.readLine());
0089: int rainfallSum = 0;
0090: for (int monthNum = 0; monthNum < numMonths; monthNum++) {

0091: int figureForMonth = Integer.parselnt(input.readLine());
0092: rainfallSum += figureForMonth;
0093: }

0094: System.out.printin(rainfallSum);

The above example has the variahlenthNum declared in thefor statement itself. If you do this, then this
variable can only be used within tHer statement. If you leave out the type, then the variable must be declared
elsewhere and the variable is similar to any other variable of the block containitig:ittstatement.

Here is an example of @hile statement:
0095: int rainfallSum = 0;

0096: int figureForMonth = Integer.parselnt(input.readLine());
0097: while (figureForMonth >= 0) {

0098: rainfallSum += figureForMonth;
0099: figureForMonth = Integer.parselnt(input.readLine());
0100: }

0101: System.out.printin(rainfallSum);

Here is an example of & statement:

0102: int rainfallSum = O;

0103: do {

0104: int figureForMonth = Integer.parselnt(input.readLine());
0105: if (figureForMonth >= 0)

0106: rainfallSum += figureForMonth;

0107: } while (figureForMonth >= 0) ;
0108: System.out.printin(rainfallSum);

Although C (and C++) allow the condition ofwhile statement or @o Statement to have an arithmetic value,
this is not permitted in Java: the condition must bealean expression.

2.5.4 Other control statements

A break statement terminates the execution dfaa, do, while or switch statement, and transfers control to
the statement following that statement.bAeak statement may include a label, and this label indicates that it is
the statement with that label that is to be terminated.

A continue statement transfers control to end of the current iteration 3 do or while statement. A
continue Statement may include a label, and, if this is the case, control skips to the end of the loop that has this
label.

Java also hasry statementscatch clausesfinally clauses, andhrow statements. These are all used for
exception handlingand details about these will be given later.

2.6 Objects
2.6.1 Reference variables

Besides the primitive types that can be used for simple values, we often want to represent structured values. For
example, we might want to represent a date in history, a point in two-dimensional space, and so on. In Java, a
variable that is of aeference typés used taefer to a structured value.

For example, in order to represent a point in two-dimensional space, the pagkagewt provides a ‘class
declaration’ calledoint. Such a class declaration automatically provides a reference type Pailed, and we

can declare a variable callegtPoint to be of this reference type by the declaration:

0109: java.awt.Point myPoint;

To avoid having to repeat the package name every time we want fotise, we can use atimport declaration
at the start of the file containing the Java source code:

0110: import java.awt.Point;

Having done this, we can declare the varialyf@oint by:

0111: Point myPoint;

Such a declaration only introducegseference variablgea variable that can refer to an object that contains the
details about the point.

myPoint

In some ways, a reference variable is likpanter variablein Pascal, C or C++.

2.6.2 Creating an object

Having declared the reference variable, we ought to get it to referPtoiat object. This is done by using an
assignment statement where the RHS contaitiass instance creation expression

0112: myPoint = new Point(100,200);

The creation expressiarew Point (100,200) uses a ‘constructor’ for the claBsint to create an object of that

class with x and ¥ields of 100 and 200. We will see later that we can do this because this kind of constructor has
been provided by the designers of theva.awt package. Often a class provides several different constructors,

e.g., as well as a constructor that has two parameters which are the x and y coordinates, the designers of the class
Point could also have provided a constructor to constrigiint from aString:

0113: myPoint = new Point("100:200");

but they chose not to do this.
So we now have a variable callegiPoint that refers to a point that has the x and y coordinates 100 and 200.

myPoint X y

100 | 200 ‘

The above declaration effPoint together with the above assignment statement can be shortened to a declaration
that has an initializer:

0114: Point myPoint = new Point(100,200);

2.6.3 Referring to the fields of an object

We can use thdot notationto refer to the fields of an object, e.g., we can ngPoint.x andmyPoint.y. For
example, we could change the point being represented by 10 units in the x direction and 20 units in the y direction
by the assignment statements:

0115: myPoint.x += 10;
0116: myPointy += 20;

myPoint X y

110 220

Note that this is a little different to the languages Pascal, C and C++ where some extra syntax is used to say that
we are dereferencing a pointer.

2.6.4 Applying methods to an object

The designers of thgava.awt package have thought that we may want to move an existing point to a new point
in space, and so they have providesh@thodo do this. A method is what would be calledenctionor procedure

in other programming languages. The method that they have provided is talledlate. So, instead of the
above two assignment statements, we could write:

0117: myPoint.translate(10,20);

Note that the dot notation that we used above to refer to the two field®efret object is also used in the call
of a method. You should look at this call in the following way: ‘apply thenslate method with arguments 10
and 20 to thenyPoint object’. Note: you would have written something like:translate (myPoint,10,20)

in languages like Pascal and C.

2.6.5 Copying objects

Suppose we have:

0118: Point otherPoint;
0119: otherPoint = myPoint;

The assignment statement causekerPoint to refer to the same object thafgPoint refers to.

myPoint X y

110 220

otherPoint

So, the above assignment statement does not produce a clone. The classes of the Core APIs use two different ways
of enabling you to produce a clone of an object:

e aclass sometimes provides a method catleshe;
e aclass sometimes provides a suitable constructor.
AlthoughPoint does not provide alone method, it does provide a suitable constructor:

0120: Point clonePoint;
0121: clonePoint = new Point(myPoint);

myPaint X y
110 220
clonePoint X y
110 220

2.6.6 Comparing objects
The== operator in the following condition is asking whether the two reference variables refer to the same object:

0122: if (myPoint == otherPoint) { ... } else { ... }

myPoint X y
110 ‘ 220 ‘
otherPoint

If, instead, you want to ask whether the two objects referred to by two reference variables have the same value,
you can often use a method calleghals:

0123: if (myPoint.equals(clonePoint)) { ... } else { ... }

myPoint X y
110 220
clonePoint X y
110 220

2.6.7 The value null

If a reference variable has the valwel 1, then this means that the variable does not currently refer to any object.
An assignment statement can be used to indicate this:

0124: myPoint = null;

myPoint

null

And you can test whether a reference variable does not refer to an object:
0125: if (myPoint == null) { ... } else { ... }
Note: whilstnull appears to be a keyword of the language, it is technicallythiditeral.

2.6.8 Garbage collection

Pascal/C/C++ programs inadvertenlispose/free/delete objects which are still in use:

0126: var p, g:tinteger; int *p, *q; int *p, *q;

0127: new(p); p = malloc(sizeof(int)); p = new int;
0128: p™ = 27; *o = 27, *p = 27;
0129: q = p; q=p; q=p;
0130: dispose(p); free(p); delete p;
0131: writeln(g”); printf("%d\n", *q); cout << *q << endl;

And programs often cause memory leaksioyusingdispose/free/delete on unwanted objects.
In Java, you do not delete objects: instead, Javayhdsage collection The garbage collector detects objects no

longer in use, and reuses their space. Also, unlike C++, you do not have to provide destructors for classes.
2.7 Arrays
2.7.1 Introduction

In Java, ararray is a collection of values that are of the same primitive type or of the same reference type. Since
an array type is itself a reference type, arrays of arrays can be constructed.

2.7.2 An array of integers

The numbers of the days in a non-leap year on which each of the twelve months start are 1, 32, 60, 91, 121, 152,
182, 213, 244, 274, 305 and 335. For example, March 1st is the 60th day of the year. Suppose we want to provide
an array callechonthStarts that contains this information.

In Java, there are two syntaxes for an array declaration. To keep C programmers happy, an array declaration can
be written using the following syntax:

0132: int monthStarts[];

However, the following syntax is better:

0133: int[] monthStarts;

Note that the number of elements in the array is not included in this declaration. This is because this declaration
only declares a reference variable that can be used to refer to an array object.

monthStarts

In order to create the actual array object we need to use an assignment statement that coateagcegation
expressioron its RHS:

0134: monthStarts = new int[12];

So this has set uponthStarts to be a reference variable that refers to an array of 12 integers, with indexes from
0to 11.

monthStarts oo 1212 3 4 5 6 7 8 9 10 11

You can access each individual element using the usual notation:

0135: monthStarts[0]
0136: monthStarts[1]
0137: ...

0138: monthStarts[11] = 335;

1;
32;

monthStarts 60 12 3 4 5 6 7 8 9 10 11

1] 321 60 91 121 152 182 2113 244 274 BBG5

If an index is out of bounds, the exceptidprayIndexOut0fBoundsException will be thrown: details about
‘exception handling’ are given later.

As before, the creation expression can be used as an initializer:

0139: int[] monthStarts = new int[12];
0140: monthStarts[0] 1;
0141: monthStarts[1]
0142: ..
0143: monthStarts[11] = 335;

3'2;

This code can be abbreviated to:

0144: int[] monthStarts = { 1,32,60,91,121,152,182,213,244,274,305,335 };

2.7.3 An array of points

Suppose we want an array where each element is an object ofjelassawt .Point. Perhaps we want an array
to represent the four vertices of the rectangle (100,100), (300,100), (300,400) and (100,400). We can do this as
follows:

0145: Point[] vertices = new Point[4];
0146: vertices[0] new Point(100,100);
0147: vertices[1] new Point(300,100);
0148: vertices[2] new Point(300,400);
0149: vertices|[3] new Point(100,400);

vertices 0o 1 2 3

100 | 100 300 100 300 400 100 4Q0

Once again, this code can be abbreviated:

0150: Point[] vertices = { new Point(100,100), new Point(300,100),
0151: new Point(300,400), new Point(100,400) };

2.7.4 Flexible arrays

Within the square brackets of an array creation expression, there needs to be an expression indicating the number
of elements that are required in the array object. This expression may be one whose value is not known until
runtime. For example:

0152: BufferedReader input = ... ;
0153: int size = Integer.parselnt(input.readLine());
0154: int[] monthStarts = new Int[size];

2.7.5 Even more flexible arrays

Having created an array object, the size of the array object is fixed. Suppose you are storing details about a
collection of people, and suppose the size of the collection changes during the course of the execution of a program.
It may be that you have no idea what the maximum size of the collection will be. Although you could arbitrarily
choose a large value, this is wasteful of space, and no matter what value you choose, your program will fail if the
value you choose is too small. In such situations, it is probably better to Lisetaa Set or aMap. These are
facilities that are provided by the Collections API of the Java 2 Platform. For more details, see ITS Guide 108
Advanced Java

10

2.8 Methods

In Java, the wordnethodis used instead diinction procedureor subroutine The argument tprint1ln in:

0155: System.out.printin(convertToCelsius(82.0));

is convertToCelsius(82.0). This is an example of a call of a method such as:

0156: private static double convertToCelsius(double fahr) {
0157: return (fahr - 32.0)*5.0/9.0;
0158: }

Unlike C and C++, there is no default return type: you must specify it. If the method does not return aredisult,
should be used as the return type.

In Java, a parameter of a method behaves like a local variable of the method. It gets its initial value from the
argument passed in the call. Any assignment to the parameter within the method only affects the value of the local
variable. If a method does not assign a value to the parameter, this can be (and should be) documented by using
thefinal keyword. However, note that this usefifnal was not permitted in JDK 1.0.x. Here is an example:

0159: private static double convertToCelsius(final double fahr) {
0160: return (fahr - 32.0)*5.0/9.0;
0161: }

Unlike other languages, a method cannot change the value of the variable that is passed as an argument. So given:

0162: private static void silly(double p) {
0163: p=p+ 4.2

0164: System.out. prlntln(p)

0165: }

the following code will not alter the value of the variakle
0166: a = 2.7;

0167: silly(a);
0168: System.out.printin(a);

If a method has no parameters, then it is declared with an empty parameter list:

0169: private static void m() { ... }

and a call has an empty argument list:

0170: m();

It is possible to declare several methods having the same name provided that they can be distinguished by the
types of their parameters. This is calle@thod overloadingHere is an example where the namie is declared
twice:

0171: private static long min(long a, long b) { return a<b ? a : b; }
0172: private static Date min(Date a, Date b) { return a.before(b) ? a : b; }

At a call ofmin, the compiler can look at the arguments to see whiiahis required.
Note: the modifierprivate andstatic will be discussed later.

2.9 Output and input
2.9.1 Attaching an output stream

To write values to a file calledesults, you can use a variable of the typeintWriter. Suppose you want to
use a variable calletlilout:

0173: PrintWriter filout =
0174: new PrintWriter(new BufferedWriter(new FileWriter("results")));

This declaration assumes that the following imports appear at the start of the file of source code:

0175: import java.io.BufferedWriter;
0176: import java.io.FileWriter;
0177: import java.io.PrintWriter;

If you want some output to be sent to tstandard outpytwhich is usually the screen, you can @g@tem.out as

an output stream. The varialdet is a variable (of the typgava.io.PrintStream) that is a ‘class variable’ of
the classSystem which is defined in the packageva. lang. Any class of this package is automatically available
to a program without the need for amyiport declaration.

11

2.9.2 Outputting values to the output stream

In order to output a textual representation of a valuepthimt method should be applied to an object of the class
PrintWriter or PrintStream. Here are two examples:

0178: filout.print("Hello World!");
0179: System.out.print("Hello World!");

Theprint method can be passed:

e an argument of any primitive type;
e an argument of any reference type for which the mettegtring is defined;
e an expression that uses tsteing concatenation operatpe.g.:

0180: int first = 42;
0181: System.out.print("first has the value " + first);

If you want the output to move on to the next line after the value has been printegk;irseln instead ofprint.

2.9.3 Closing a file

As output to aBufferedWriter stream is buffered, the stream will need todbesed when you have finished
using it:

0182: filout.close();

2.9.4 Attaching an input stream

To read values, you will need a variable of the tyjugf feredReader that is in the packaggava.io. To read
from thestandard inputwhich is normally the keyboard, you can u&estem. in as an input stream. So, if you
want to use a variable calleidiput for this input stream, you can use the following declaration:

0183: BufferedReader input =
0184: new BufferedReader(new InputStreamReader(System.in));

This declaration assumes that the following imports appear at the start of the file of source code:

0185: import java.io.BufferedReader;
0186: import java.io.InputStreamReader;

If, instead, you want to read values from a file caldedta, you can use:

0187: BufferedReader filin = new BufferedReader(new FileReader("data™));

This declaration assumes that the following imports appear at the start of the file of source code:

0188: import java.io.BufferedReader;
0189: import java.io.FileReader;

2.9.5 Reading a line of characters

The methodreadLine can be used to read in a line of characters from an input stream. It returns a value of type
String. Here are two examples:

0190: String inputLine = input.readLine();
0191: String filinLine = filin.readLine();

The classString is defined in the packaggva.lang, and so it can be used in a program without the need for
an import declaration.

2.9.6 Reading a value

If you would like to read a value into a variable whose type is one of the primitive types, you first need to call
readLine to read in a line of characters and then call an appropriate method to parse the string. Here is an
example where a value of tyget is obtained from the keyboard:

0192: String line = input.readLine();
0193: int intVal = Integer.parselnt(line);

This can be abbreviated to:

12

0194: int intVal = Integer.parselnt(input.readLine());

Given a variable calletline containing &8tring:

0195: String line = input.readLine();

values of the other primitive types can be obtained using the following statements:

0196: long longVal = Long.parseLong(line);

0197: float floatvVal = Float.parseFloat(line);

0198: double doubleVal = Double.parseDouble(line);

0199: boolean booleanVal = new Boolean(line).booleanValue();

Note that the methodsarseFloat andparseDouble were introduced into Java when the Java 2 Platform was
released, and so, if you are using JDK 1.0.2 or JDK 1.1.x, you will have to use methodsfdaltedialue or
doubleValue instead (in a similar way in whichooleanValue is used above).

The classednteger, Long, Float, Double andBoolean are defined in the packageva.lang, and so they
can be used in a program without the need for any import declarations.

2.9.7 Handling more than one data item per line

You can use the clasfva.util.StringTokenizer if you want more than one data item per line. Suppose a
line contains arint, followed by afloat, followed by anothetint. You could use:

0200: String line = input.readLine();

0201: StringTokenizer tokens = new StringTokenizer(line);
0202: String token = tokens.nextToken();

0203: int firstint = Integer.parselnt(token);

0204: token = tokens.nextToken();

0205: float theFloatVal = Float.parseFloat(token);

0206: token = tokens.nextToken();

0207: int secondint = Integer.parselnt(token);

2.9.8 Flushing the output
If you want the user to type on the same line as a prompt, you will nefidsiathe output stream after outputting

the prompt:

0208: BufferedReader input =

0209: new BufferedReader(new InputStreamReader(System.in));
0210: System.out.print("Type in an integer: ");

0211: System.out.flush();

0212: String line = input.readLine();

0213: int value = Integer.parselnt(line);

2.9.9 Dealing with java.io.I0Exception

If you are going to use the classes and methods fronjhe.io package, you will find that you are unable to
compile your program unless it indicates what you want to happendkeeptiorcalledjava. io.I0Exception

occurs. Details about ‘exception handling’ are given later. So, to begin with, you may be happy for your program
to crash if an 10 exception occurs. This can be done by adding the dlanses I0Exception to the heading

of any method that does 10. For example:

0214: public static void main(String[] args) throws IOException { ... }

This code assumes that the following import appears at the start of the file of source code:

0215: import java.io.lOException;

2.9.10 JDK Version 1.0.x

Many of the classes given above are not available if you use Version 1.0.x of the JDK. And the input-output
facilities provided by Version 1.0.x can only handiigte streamsThose of JDK Version 1.1.x (and later) include
support forcharacter streams.e., streams containing 16-bit Unicode characters rather than just 8-bit bytes.

3 Handling strings

3.1 Creating an object of the class String
Although:

String tName = new String("James Gosling");

13

is the obvious way of creating a string object and makifigme point to it, for strings there is an alter-
native syntax for theclass instance creation expressiorYou can use'"James Gosling" instead of using
new String("James Gosling") asin:

String tName = "James Gosling";

So you have a choice here: both forms of syntax can be used to create new string objects.

A string literal can include characters that amn-graphic charactes. This is done by using ascape sequence
An escape sequence is also necessary for putting a single quote, a double quote or a backslash in a string:

System.out.printin("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

We will sometimes need to represent a string that has no characters. The string'literathe expression
new String("") can be used. Such a string is called ¢émepty string

3.2 Applying methods to a String object

The classjava.lang.String comes with a large number of methods for manipulating strings. A list of these
methods is documented in thethod Detailsection ofjavaapi: java/lang/String.html.

For example, if you want to access an individual character of a string, you can use a methodiealled The

value that is returned is of typghar. You use an argument that is ant value to indicate the position of the
character which you want to be returned. However, its value needs to be one less than the position of the character.
So if you want the first character of the string to be returned, you need an argument with the value 0:

String tName = new String("James Gosling");
char tFirstChar = tName.charAt(0);
System.out.printin("The first character of the name is: " + tFirstChar);

Theprintln statement will output the line:

The first character of the name is: J

There is also a method that can be used to find out how many characters there are in a string:

String tName = new String("James Gosling");

int tNamelLength = tName.length();

char tLastChar = tName.charAt(tNameLength - 1);
System.out.printin(*The last character of the name is: " + tLastChar);

This will output:

The last character of the name is: g

3.3 The exception StringIndexOutO0fBoundsException

Many of the methods of the classring have an argument that is an integer that is the position of a character
within a string. If you pass an argument that is invalid, the method will signify that it cannot handle this situation,
by throwing anexceptioncalled StringIndex0Out0fBoundsException. An exceptionis an occurrence of an
exceptional circumstance, a situation that does not normally occur.

For example, if you caktharAt with the values when a string has 5 characters, your program will crash displaying
lines like:

java.lang.StringindexOutOfBoundsException: String index out of range: 5
at java.lang.String.charAt(String.java)
at StringIndexTest.main(StringlndexTest.java:6)

Instead of letting the program crash like this, we can include code in our program that will be executed when an
exception occurs. Java has a statement caltegstatementhat is used tdhandle exceptiongand we will look at
try statemersg later.

Java divides exceptions into two categorieschecked exceptien and unchecked exceptisn A
StringIndexOut0fBoundsException iS an unchecked exception, and Java says that a program does not
have to say what it wants to happen when an unchecked exception occurs.

14

3.4 Changing a String object

The clasgjava.lang.String is rather unusual: none of its methods alter the object to which the method is being
applied. The objects of the class are said tinb@utable

Instead of a method altering the value of a string object, it will produce a new string object. For example, consider:

String tToday = new String("1999-07-11");
tToday = tToday.replace(’-’, ");
System.out.printin(tToday);

First, a string object containing the string999-07-11" is created andToday is made to point to it. Then the
methodreplace is applied to the string object that is pointed to#i§oday. This does not change that string
object, but instead creates a new string object in which any occurrences of tteharacter are replaced by a

. character. Then the value efoday is changed. It is currently pointing to the first string object, and it is
now altered to point to the new string object. There is now no variable pointing to the first string object: it is lost.
Finally, the string thatToday points to is output by the call of therint1n method:

1999:07:11

3.5 Copying String objects

As was shown with the claspva.awt.Point, you can make another variable refer to the same string by an
assignment statement:

String tName = new String("James Gosling");
String tSameName = tName;

Both reference variables refer to the same object.

Earlier, when we used tl&tring constructor, we passed a string literal as an argument. If you want a clone of a
String object, then you can pass tiiiring object as the argument ofSaring constructor:

String tName = new String("James Gosling");
String cloneName = new String(tName);

3.6 String concatenation

The classjava.lang.String is unusual because an operator is defined in the language specifically for the
concatenation of the values of two objects of this class:

String tFirstName = new String("James");
String tSurname = new String("Gosling");
String tName = tFirstName + tSurname;

The variablectName now points to a string object containing the strintamesGosling". Perhaps that is not what
we were after. So use this instead:

String tName = tFirstName + " " + tSurname;

The string concatenation operator is very flexible in that it will convert any operand (that is permitted) into a string.
Here is an example:

Point tFirstPoint = new Point(100, 200);
String tLine = "The point has the value " + tFirstPoint;
System.out.printin(tLine);

This will output:

The point has the value java.awt.Point[x=100,y=200]

If you have a long string literal, the string concatenation operator can be used to help in the layout of the text. For
example, the statement:

System.out.printin("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

can instead be written as:

System.out.printin("Lister glared at Rimmer." +
" \"You really are a smeghead\", he said.");

15

3.7 A program that uses these ideas about Strings

Suppose we want a program that takes a person’s hame arran§@dtiiame Surnamand outputs it in the
formatSurname, Initialvherelnitial is the first letter of théirstName We will also suppose that the output must
be displayed iupper-caseHere is a program that does this for the nafiemes Gosling":

0216: public class SimpleString { /I SimpleString.java
0217: public static void main(final String[] pArgs) {

0218: final String tName = new String("James Gosling");

0219: System.out.printin(tName);

0220: final char tFirstChar = tName.charAt(0);

0221: final int tPositionOfSpace = tName.indexOf("

0222: final String tSurname = tName. substrlng(tPosmonOfSpace + 1);
0223: String tLabel = tSurname + ", " + tFirstChar;

0224 tLabel = tLabel.toUpperCase();

0225: System.out.printin(tLabel);

0226:

0227: }

The twoprintlns of this program produce the following output:

James Gosling
GOSLING, J

3.8 Theclass StringBuffer

Besides the clasdtring, there is another class call8dringBuffer (which is also in thgava.lang package).
When you wish to build up a string gradually by performing a lot of string manipulation, it is more efficient
to use aStringBuffer rather than create a lot (ftring objects. If you have &tringBuffer variable
called tStringBuffer, you can applytoString method to the variable in order to createSering from
tStringBuffer:

0228: public static String reverse(String source) {

0229: int charNum;

0230: int numChars = source.length();

0231: StringBuffer temp = new StringBuffer(hnumChars);

0232: for (charNum = numChars-1; charNum>=0; charNum--) {
0233: temp.append(source.charAt(charNum));

0234:

0235: return temp.toString();

0236: }

4 Using classes for data abstraction
4.1 Introduction

Typically a program has to maintain several data structures each of which is manipulated in many different ways.
It is best for the pieces of code that manipulate a particular data structure to be located in a small number of
functions. And it would be desirable if the program could be written so that each data structure can only be

accessed from its associated functions, i.e., it is not directly accessible to the rest of the program. In this way,
we would then prevent a data structure from accidentally being misused. What we want is a way of building a

wall around a data structure and the functions that manipulate it, and only allowing some of these functions to be
accessible from outside the wall. Modern programming languages have a construct to do this: for example, Ada
has packages, Fortran90 and Modula-2 both have modules, and C++ and Java both have classes.

In this section, we look at how to write our own class declarations.

4.2 Using a class declaration to define your own type

There are two main characteristics ttype

e atype has a set of values associated with it;

e atype has a set of operations that are permitted on these values.

For example, the typént refers to the set of integer values from some large negative value to some large positive
value, together with operations such as addition and subtraction (denoteailol).

One approach to writing a program is to identify the objects of the problem that you need to represent in the
program. Each object can be in a number of states (i.e., may possess one of a number of different values) and has
a set of operations that can be performed on it.

Although some of these objects can be realised in your program by a variable of a type that is pre-defined in the
programming language you are using, it would be useful to be able to define your own types to represent the other
objects. The process of identifying the types needed for these objects is referrathta abstraction

16

4.3 Aclass called Date

In Java, it is possible to usectass declaratiorto define your own type. For example, suppose that it is necessary

to manipulate some dates in a program. We can think of dates as being composed of three parts, the day, month
and year. Operations that are performed on dates include constructing dates, copying dates, comparing two dates,
getting the day, month and year parts of a date, and performing input-output for values that are dates.

4.4 Stage A: providing a primitive version of the class Date
To begin with, we will produce a class declaration that is just able to represent values that are dates: it provides no
operations, and so there will be little that we can do with these date values.

Within each object of this class, threats will be used to represent the year, month and day parts of a date. Here
is the class declaration:

0237: /I A class for representing values that are dates. /I Date.java
0238: public class Date

0239: {

0240: public int year;

0241: public int month;

0242: public int day;

0243: }

This class declaration for the claBste needs to be stored in the fibate. java.

Here is a program that uses the classe. It is calledNoelProg, and so these lines need to be stored in the file
NoelProg. java:

0244: /I This program creates an object of the class Date /I NoelProg.java
0245: /I and then sets its fields to represent Christmas Day 1999.
0246: public class NoelProg

0247: {

0248: ?ublic static void main(final String[] pArgs)
0249:

0250: final Date tNoelDate = new Date();
0251: tNoelDate.year = 1999;

0252: tNoelDate.month = 12;

0253: tNoelDate.day = 25;

0254: System.out.printin(tNoelDate.year + "-" +
0255: tNoelDate.month + "-" + tNoelDate.day);
0256:

0257: }

When we want to execute thieelProg program, we first have to compile the two pieces of Java source code:

javac Date.java
Javac NoelProg.java

This produces the fileBate.class andNoelProg. class. Since it is the fildloelProg. java that contains the
main method, we can execute the program by typing:

java NoelProg

What does th@oelProg program do? The first statement:

final Date tNoelDate = new Date();

is a declaration. The left-hand side establishes a reference variable €dfletbate. The initializer on the
right-hand side is alass instance creation expression

new Date()

This creates an object that is just big enough to hold the fields of the class, i.e., the three fieldsceallednth
andday.

Each field will be initialized to a value which depends on the type of the field. The default values for fields were
given earlier. As the three fields of the cl@es e have the typent, they will be initialized to zero. The initializer
causegNoelDate to be assigned a value that points to this object.

Following the declaration ofNoelDate, there are three assignment statements that assign values to each of these
three fields. For example:

tNoelDate.year = 1999;

17

puts a value in thgear field of tNoelDate. Here thedot notationintroduced earlier is being used. Although
it is possible to assign values to the year, month and day fields that do not represent a date, we will ignore this
deficiency.

The last statement of the program outputs the line:

1999-12-25

Here is some jargon: a piece of code that uses another class is said tidret af the class. So the program
NoelProg is aclientof the clasdate.

Although this is exciting because we have declared this class ourselves, there is nothing new about the way in
which we are using the class. It is much like what we did with the dasat earlier.

4.5 Stage B: adding a constructor and a method declaration
45.1 Stage B1: adding a constructor declaration

The three assignment statements in NleelProg program (given above) ensure that thete object has the
values that we want it to have. When we create an object, we will frequently want to assign values to all of the
fields of the object. For this reason, Java allows class declarations tctastuctos.

With a class to represent dates, an obvious constructor is one that creates a date object from three integers:

final Date tNoelDate = new Date(1999, 12, 25);

Here theclass instance creation expressioses a constructor that has thieg arguments. This is only possible
if the class declaration farate has aconstructor declaratiothat has threent arguments:

public Date(final int pYear, final int pMonth, final int pDay)
year = pYear;

month = pMonth;
day = pDay;

In many ways, a constructor looks like a method declaration. However, there are two differences: there is no result
type and the declaration has the same name as the class.

So, when the declaration:

final Date tNoelDate = new Date(1999, 12, 25);

is executed, first the object is constructed with default initial values, and then the constructor is executed. So, the
values 1999, 12, 25 are assignect@ar, pMonth andpDay, and then the block of the constructor leads to the
following statements being executed:

year = 1999;
month = 12;
day = 25;

A constructor can refer to the fields of the object being initialized by using the names of the fields. So these
statements result in the fields of the object having their values changed. The final act of the declaration is to make
tNoelDate refer to the object that has just been created bytags instance creation expression

After this declaration, th&oelProg program executes:

tNoelDate.day++;

This statement increases the value ofdhg field of this object by 1.

45.2 Stage B2: using a method to display the value of an object

TheNoelProg program that was given earlier outputs the value Dé#&e object by using:

System.out.printin(tNoelDate.year + "-" +
tNoelDate.month + "-" + tNoelDate.day);

Displaying the value of an object is a common task and:

¢ to save us from writing the above code each time we want to output a date;

e to ensure that we get consistent output;

18

it is useful to put the code for outputting a date into a method.
The following class declaration f@ate includes a method declaration for a method callégplay:

0258: /I A class for representing values that are dates. /I Date.java
0259: public class Date

0260: {

0261: public int year;

0262: public int month;

0263: public int day;

0264: ?ublic Date(final int pYear, final int pMonth, final int pDay)

0265:

0266: year = pYear,

0267: month = pMonth;

0268: day = pDay;

0269: }

0270: public void display()

0271: {

0272: System.out.printin(year + "-" + month/10 + month%10 +
0273: "-" + day/10 + day%l10);
0274:

0275: }

Its use is illustrated by this version of tNee1Prog program:

0276: /I This program creates an object of class Date /I NoelProg.java
0277: /I representing Christmas Day 1999, then moves

0278: /I the day field on by 1, and then outputs the new date.

0279: public class NoelProg

0280: {

0281: ?ublic static void main(final String[] pArgs)

0282:

0283: final Date tNoelDate = new Date(1999, 12, 25);
0284: tNoelDate.day++;

0285: tNoelDate.display();

0286: }

0287: }

When theNloelProg program executes the statement:

tNoelDate.display();

the method callediisplay will get called, and it will be applied to the object pointed to by #¥»elDate
variable. When the block afisplay is executed, i.e., when the statement:

System.out.printin(year + "-" + month/10 + month%10 + "-" + day/10 + day%10);

is executed, the references jear, month and day are references to thgear, month and day fields of
tNoelDate. The uses of 10 and%10 ensure that two digits are always output for the month and day values.

The call of this method will output the line:

1999-12-26

4.6 Grouping fields and methods together to implement a type

The above class declaration fiite not only has the declaration of three fielge4r, month andday): it also

has the declaration of a methodliéplay). Earlier, it was suggested that the two main characteristics of a type

are a set of values and some operations to perform on those values. So, one of the major attractions of a class
declaration is that it allows us to group together:

e fields to implement the values of a type;

e methods to implement the operations of a type.
The fields and methods are sometimes referred to anémebes of the class.

4.7 Stage C: hiding fields, providing access methods and toString
4.7.1 Stage C1: hiding the fields and accessing them using methods

With the previous class declaration for a date, the fields of an object are directly accessible from a client,
i.e., a program likeNoelProg can refer to theday field of the object pointed to bgNoelDate by using
tNoelDate.day. It can do this because, in the class declaration, the fields hawela c modifier, e.g.:

public int day;

19

Back in the real world, when you want to get off a bus, you usually indicate this by signalling to the bus driver in
some way, e.g., by pressing a button that rings a bell. Giving everyone a brake pedal would not be a good idea! In
the same way, it is unusual to expose the fields of an object to a client. Instead of makingratield, we will

make itprivate and usually we will provide some methods to allow access to the field. Such methods are called
access methad

So in the following class declaration foate the three fields for year, month and day have been madeate:

private int iYear;
private int iMonth;
private int iDay;

At the same time, the names of these fields have been changed. In this Guidprefig will be used for entities
that areinternalto a class. You can also remember the meaninglmcause it is also a letter of the worddden
and pivate.

0288: /I A class for representing values that are dates. /I Date.java
0289: public class Date

0290: {

0291: private int iYear;

0292: private int iMonth;

0293: private int iDay;

0294 ?ublic Date(final int pYear, final int pMonth, final int pDay)
0295:

0296: iYear = pYear;

0297: iMonth = pMonth;

0298: iDay = pDay;

0299:

0300: public int getYear()

0301:

0302: return iYear;

0303: }

0304: public int getMonth()

0305:

0306: return iMonth;

0307: }

0308: public int getDay()

0309:

0310: return iDay;

0311: }

0312: public void setYear(final int pYear)
0313: {

0314: iYear = pYear;

0315: }

0316: public void setMonth(final int pMonth)
0317: {

0318: iMonth = pMonth;

0319: }

0320: public void setDay(final int pDay)
0321: {

0322: iDay = pDay;

0323:

0324: public String toString()

0325:

{
0326: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0327:
0328: }

The above class declaration also provides six access methods gatleear, getMonth, getDay, setYear,
setMonth andsetDay. Two of these are used by the following version of ke 1Prog program:

0329: /I This program creates an object of class Date /I NoelProg.java
0330: // representing Christmas Day 1999, then moves the

0331: // day component on by 1, and then outputs the new date.

0332: public class NoelProg

0333: {

0334: ?ublic static void main(final String[] pArgs)
0335:

0336: final Date tNoelDate = new Date(1999, 12, 25);
0337: final int tDay = tNoelDate.getDay();
0338: tNoelDate.setDay(tDay + 1);

0339: System.out.printin(tNoelDate.toString());
0340: System.out.printin(tNoelDate);

0341: }

0342: }

0343:

When the program callgetDay as intNoelDate.getDay (), the block ofgetDay will execute the statement:

return iDay;

20

So the value of theDay field of the object that is the target of the method invocation is returned. In the case of
theNoelProg program,getDay is being applied to the object pointed to tijoelDate, and the method returns
the value of itsiDay field. So, 25 gets returned.

In the next statement, the program executes:

tNoelDate.setDay(tDay + 1);

SopDay (the parameter ofetDay) is assigned the value 26 and this value is used in the blodetay to
changeiDay to 26. Once again, the object pointed to toelDate is the target of this call and so it is this
object’'siDay field that is changed to 26.

The technique of hiding fields behind access methods is an important one. It is daféedncapsulatiorfor
information hiding. If you look at the WWW pages for the Core APIs you will find very few classes that have
public fields. Possibly the only ones are in the clagee® . awt .Point andjava.awt.Rectangle.

4.7.2 Stage C2: using toString instead of display

Although in Stage B2, we found it useful to introduce a methakplay) which usesprintln to display the
value of aDate object, in Java it is more usual:

¢ for a class to declare a method (callesbtring) that returns a string that is some textual representation of
the value;

o for a client to do whatever it wants with the string, e.g., one possibility being tgpeafit or println to
output the string.

So, instead of having a method calletisplay that callsprintln, the version of the clas3ate given above
declares a method calle@dString that just returns a string thiibe1Prog passes as an argumentpiointlin:

System.out.printin(tNoelDate.toString());

WhentoString gets called, it just executes:

return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;

You can see that the result typetwafString is the typeString. So the execution of this return statement forms
a string consisting of the concatenation of thear field of tNoelDate, a hyphen, the two digits of thi2¢lonth
field of tNoelDate, another hyphen, and then the two digits of tbey field of tNoelDate, e.9.,"1999-12-25",
This is the string thalloe1Prog passes as an argumenipiointln.

It is usual to call this methotoString. The reason for this is that the statement:

System.out.printin(tNoelDate.toString());

can be abbreviated to:

System.out.printin(tNoelDate);

This is because botprint andprintln are defined so that if a variable of a reference type is passed as an
argument then that typetoString method is called.

4.8 Using the default version of toString

If you provide a class declaration but fail to providesstring method, it is still possible for a program to apply
thetoString method to an object of the class. For example, iftbgtring declaration obate’s declaration is
removed, théloelProg program is still a valid program. When it is run, the program will executectf$gring
method of a class calldtbject. The two calls oprint1ln would then produce output that is something like:

Date@80chb419
Date@80cb419

This is the name of the class, followed by @rfollowed by thehashcodef the object (given in the hexadecimal
notation).

One of the key aspects of an object-oriented programming language such as fhweritance This is a
topic which will be described later. What we need to know at this stage is that a cldsgvied by default,
from a class calledbject (belonging to the packaggava.lang). It is said to be asubclassof the class
Object. This means that, if a program applies a method to an object, and the class of the object does not
provide the method, but it is provided by the cl@gect, thenObject’s method will be called. The WWW

21

pagejavaapi: java/lang/0Object.html contains a list of the methods provided by the clasgect: they are

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString andwait.

On the WWW pagejavaapi: java/lang/0Object.html#toString(), it says: ‘ In general, theoString

method returns a string thagxtually representshis object. The result should be a concise but informative
representation that is easy for a person to read. It is recommended that all subclasses override this method.
" And this is exactly what is happening above: the definitionte§tring given in the class declaration for

Date overridesthe one given ifibject.

4.9 Stage D: providing class variables, class methods and class constants

If a class declaration includes a field, then every object that is of this class will include this field. Such a field is
called aninstance variablelt is also possible to have a field that is associated with the class rather than with each
object of the class. Such a field is calledlass variableand it is indicated by using static modifier.

A superficial example would be a class declaration that has a field that is used to count how many times methods
of the class have been called:

private static int tNumberOfCalls = 0;

In order for this to work, we would need to add the statement:

tNumberOfCalls++:

to each of the methods of the class. Here is such a class declaration:

0344: /I A class for representing values that are dates.
0345: /I Barry Cornelius, 20th September 1999

0346: import java.util. StringTokenizer;

0347: public class Date

0348: {

0349: private static int iNumberOfCalls = 0;
0350: private int iYear;

0351: private int iMonth;

0352: private int iDay;

0353: public static int getNumberOfCalls()
0354: {

0355: return iNumberOfCalls;

0356: }

0357: public Date(final int pYear, final int pMonth, final int pDay)
0358: {

0359: iNumberOfCalls++;

0360: iYear = pYear;

0361: iMonth = pMonth;

0362: iDay = pDay;

0363: }

0364: public int getYear()

0365:

0366: iNumberOfCalls++;

0367: return iYear;

0368:

0369:

0370: public void setYear(final int pYear)
0371:

{
0372: iNumberOfCalls++;
0373: iYear = pYear;
0374: }
0375:
0376: public String toString()
0377: {
0378: iNumberOfCalls++;
0379: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0380:
0381: }

A method that can be applied to any object of its class is callddsiance methadt is also possible for a class
to have standalone methods: such a method is calbtasa method

So we could add to theate declaration a method that returns the value of the class varifibtgber0fCalls,
i.e., that returns the number of times methods of the class have been called. Such a method declaration appears in
the above class declaration. Note that it is easy to detect a class method because its declaratios taclices

A class method is called by putting the name of the class on the left of the dot. An example of the call of
getNumber0fCalls () is shown in the following version of thoelProg program. It outputs the value 7:

0382: /I This program creates objects of the version of the /I NoelProg.java
0383: /I class Date that keeps track of the number of calls of its methods.

0384: public class NoelProg

0385: {

22

0386: public static void main(final String[] pArgs)
{

0387:

0388: final Date tNoelDate = new Date(1999, 12, 25); II1
0389: final int tDay = tNoelDate.getDay(); 12
0390: tNoelDate.setDay(tDay + 1); /I3
0391: System.out.printin(tNoelDate.toString()); 14

0392: System.out.printin(tNoelDate); II'5
0393: final Date tAnotherDate = new Date(2000, 12, 25); Il 6
0394: System.out.printin(tAnotherDate); 7
0395:) System.out.printin("number of calls is: " + Date.getNumberOfCalls());
0396:

0397: }

0398:

As a class method is not applied to an instance of a class, it does not make sense to refer to non-static members
(e.g.,iDay andtoString) in the block of the method of a class method (ezg;Number0fCalls). Any attempt
to do this produces a compilation error li€an't make a static reference to nonstatic variable iDay in class Date

If it is appropriate for a class to have a constant associated with it, then you can use a class variable whose
declaration includes theinal modifier. For example, the clagava.lang.Math includes:

public static final double Pl = 3.14159265358979323846;

4.10 Stage E: the final version of the Date class
4,10.1 Stage E1: the text of the final version of the Date class

The final version of the class declaration fate is given below. It contains a number of new features.

0399: /I A class for representing values that are dates. /I Date.java
0400: import java.util. StringTokenizer;
0401: public class Date

0402: {
0403: private int iYear;
0404: private int iMonth;

0405: private int iDay;
0406: public Date()

0407: {

0408: this(0, 0, 0);

0409:

0410: public Date(final Date pDate)

0411:

0412: this(pDate.iYear, pDate.iMonth, pDate.iDay);

0413:

0414: public Date(final int pYear, final int pMonth, final int pDay)
0415:

0416: iYear = pYear; iMonth = pMonth; iDay = pDay;
0417: }

0418: public Date(final String pDateString)

0419: {

0420: try

0421: {

0422: final StringTokenizer tTokens = new StringTokenizer(pDateString, "-");
0423: final String tYearString = tTokens.nextToken();
0424: iYear = Integer.parselnt(tYearString);

0425: final String tMonthString = tTokens.nextToken();
0426: iMonth = Integer.parselnt(tMonthString);

0427: final String tDayString = tTokens.nextToken();
0428: iDay = Integer.parselnt(tDayString);

0429: }

0430: catch(Exception pException)

0431: {

0432: iYear = 0; iMonth = 0; iDay = O;

0433:

0434:

0435: public int getYear()

0436:

0437: return iYear;

0438: }

0439: public int getMonth()

0440:

0441: return iMonth;

0442: }

0443: public int getDay()

0444:

0445: return iDay;

0446: }

0447: public void setYear(final int pYear)

0448: {

0449: iYear = pYear;

0450:

0451: public void setMonth(final int pMonth)

0452:

{
0453: iMonth = pMonth;

23

0454: }

0455: public void setDay(final int pDay)

0456: {

0457: iDay = pDay;

0458:

0459: {public boolean equals(final Object pObject)
0460:

0461: if (! (pObject instanceof Date))
0462:

0463: return false;

0464: }

0465: return iYear==((Date)pObiject).iYear &&
0466: iMonth==((Date)pObject).iMonth &&
0467: iDay==((Date)pObiject).iDay;
0468: }

0469: public int hashCode()

0470: {

0471: return iYear*416 + iMonth*32 + iDay;
0472: }

0473: public String toString()

0474:

0475: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0476:

0477: }

4.10.2 Stage E2: providing other constructors

Earlier, we saw that a class declaration can have several method declarations each having the same name provided
the types of the parameters of each declaration are differeethpd overloading In the same way, a class
declaration can provide several constructors so long as the types of the parameters of each constructor are different.

Although we have a means of outputting the value of a date object, we currently have no means of reading a textual
representation of a date from the keyboard or from a file. Obviously, we couldeasi®.ine to read a textual
representation of a date and store it in a string. What we then need is a way of parsing the string and forming an
appropriateDate object. The above class declaration contains a constructor that can be used to initialize a new
Date object from a string (as well as one for initializing a date from three integers). It could be used as follows:

Date tTodaysDate = new Date("1999-09-26");

The above class declaration fite also contains the constructor:

public Date()
this(0, 0, 0);

This constructor is one which has no parameters, and so it would get used for the following declaration:

Date tDate = new Date();

The body of this constructor contains some magic: thés means ‘use the constructor that you will find
elsewhere in this class declaration that matches the arguments followingihe So since thed, 0, 0 are
threeints then thechis (0, 0, 0) leads to using the constructor that has thiees as parameters. If you use
this in this way, thethis statement must appear as the first statement of the constructor.

By this means, you can provide a constructor that has no arguments in order to generate an object with default
values (that you can choose).

Earlier it was mentioned that the classes of the Core APIs use two different ways of producing a copy of an object:

e aclass sometimes provides a method catleshe;

e aclass sometimes provides a suitable constructor.

Getting the code of @alone method completely right is difficult: instead, the above class declaration provides
Date with a constructor that can be used for cloning.

Here is an example of how this constructor can be used. If we first do something like:

final Date tNoelDate = new Date(1999, 12, 25);

we can later pass this reference variable as an argument to the new constructor:

final Date tHappyDate = new Date(tNoelDate);

We finish up with two reference variables pointing to two different objects that have the same value.

24

4.10.3 Stage E3: defining a method called equals

If a client useDate variables, then using= on these variables only determines whether they are pointing to
the same object. However, if a class declares an appropriate methodezpitelds, then a client can determine
whether the dates are the same. So, when you declare a class, it is important to declare a methaghealied
This is done in the class declaration farte that is given above.

If we declare a class and fail to declare a method callpchls, thenequals can still be applied to an object of
the class because the clggsra.lang.0bject has a method calleéquals. However,0bject’s equals will
just tell you whether the target and the argument point to the same objects (i.e., it does the samit adl not
compare the values of the two objects.

The above declaration equals has the following header:

public boolean equals(final Object pObject);

rather than:

public boolean equals(final Date pDate);

So why would you want to work with a parameter of tyjigject? Well, one important reason will occur when we

look at forming collections of data: for example, we may be wanting to represent a collection of dates, a collection

of strings, a collection of points, and so on. Java has a number of useful classes that can be used to manipulate
collections. So as to make these classes generally useful the methods of these classes are written in terms of the
typeObject. For example:

public boolean add(Object pObiject);

public void add(int pindex, Object pObject);
public boolean contains(Object pObiject);

public Object get(int pindex);

public boolean remove(Object pObject);

public Object remove(int pindex);

are methods that can be used to perform operations on one kind of collecligt). (Bhese collection classes are
discussed in ITS Guide 108dvanced Java

These collection classes are wonderful because they allow us to create dynamically growing collections of objects.
But the person who wrote the code of the methods of these collection classes was not in a position to know what
sort of objects you would be storing in a collection. When you call a method tkeains (that finds out whether

an object is in the collection), behind the scenestains will call a method with the header:

public boolean equals(Object pObject);

Now, if you are storin@ates in the collection, and if in the cladate you have declareequals with a parameter
of typeDate:

public boolean equals(final Date pDate);

then thisequals will not be called (because the type of the parameter is different). Instead, the method called
equals from the clas®bject will be called: as explained earlier this returns true if and only if the target and the
argument point to the same object (and not if the two objects have the same values). This would be an inappropriate
method to be used byontains. So instead we declaegjuals with a parameter of typ@bject.

Such a method declarati@verridesthe public boolean equals(Object pObject) that is declared in the
classjava.lang.0Object.

4.10.4 Stage E4: adding hashCode (to help with using collections)

You can imagine that when checking whether a collection contains a particular object it can be quite time-
consuming to usequals on each of the objects of the collection in turn. Instead, clever techniques are used

to reduce the number of items of the collection that need to be checked. Some of these techniques require there to
be an integer (called bashcodgassociated with each of the possible values that can be stored in the collection.
And to speed up the execution of methods ldetains, the objects in the collection are arranged so that the
ones that have the same hashcode are kept together.

In order to support this, the clagava.lang.0bject has a method calletashCode:

public int hashCode();

The integer that is returned is one that is unique for that object.

However, this method is inappropriate when a class declares a methodealkers. What we need to do is to
provide our own version dfashCode thatoverrides the one ofjava.lang.0bject.

25

The WWW page that documernitashCode says: ‘If two objects are equal according to thguals(0bject)

method, then calling theashCode method on each of the two objects must produce the same integer result. It is
not required that if two objects are unequal according tethels (0bject) method, then calling theashCode

method on each of the two objects must produce distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may improve the performance of hashtables.’

The above class declaration gives one possibilityiigshCode. However, there are many other possibilities.
Instead, you could géiashCode to return the value oiYear*10000 + iMonth*100 + iDay. Although it
would still work if you got it to return the value dffear + iMonth + iDay, or the valueiDay, or the valuet2,
these will lead to poorer performance as the same integer value is being produced for unequal objects.

4.10.5 Stage E5: using the new version of the Date class

The following program uses some of the facilities of the new class declaratidater

0478: /I This program makes tNoelDate, a variable of /I NoelProg.java
0479: /I the class type Date, refer to an object of class Date

0480: /I representing Christmas Day 1999.

0481: /[It then makes tOtherDate refer to another Date object,

0482: /I and then uses both == and equals to compare the two variables.

0483: import java.io. BufferedReader;

0484: import java.io. InputStreamReader;

0485: import java.io. IOException;

0486: public class NoelProg

0487: {

0488: public static void main(final String[] pArgs) throws IOException

0489:

0490: final Date tNoelDate = new Date(1999, 12, 25);

0491: System.out.printin("tNoelDate is: " + tNoelDate);

0492: final BufferedReader tKeyboard =

0493: new BufferedReader(new InputStreamReader(System.in));
0494: System.out.print("Type in the date, e.g., 1999-12-25: ");

0495: System.out.flush();

0496: final String tOtherDateString = tKeyboard.readLine();

0497: final Date tOtherDate = new Date(tOtherDateString);

0498: System.out.printin("tOtherDate is: " + tOtherDate);

0499: System.out.printin("tUsingOperator: " + (tNoelDate==tOtherDate));
0500: System.out.printin("tNoelDate.equals: " + tNoelDate.equals(tOtherDate));
0501: System.out.printin("tOtherDate.equals: " + tOtherDate.equals(tNoelDate));
0502: System.out.printin("tNoelDate.ilsLeap: " + ilsLeap(tNoelDate));

0503: System.out.printin("tOtherDate.ilsLeap: " + ilsLeap(tOtherDate));

0504:

0505: ?rivate static boolean ilsLeap(final Date pDate)

0506:

0507: int tYear = pDate.getYear();

0508: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);

0509:

0510: }

4.11 The role of a class

You should view a class declaration as being split into two sections. The text of the headings of the public methods
(together with the names of any public fields) gives information aghat services are offered by the class. The

text of the bodies of the public members together with the text of the private members give the détaigiod
services are to be provided.

The class declaration f@ate hides threeints and provides four constructors to create a date and a rather formal
way of accessing the fields of a date by means of the three access mgthvdsr, getMonth andgetDay. This
idea of hiding fields behind access methods is often tefimfedmation hidingor encapsulation

It may seem like a complicated way of providing an object and accessing it. However, you should view the class
declaration as documenting a design decision. At the moment we have chosen to represent a datednsthree

At a later stage, we may feel that that is wrong: for example, we might choosedliwees, threebytes, or a
singleint giving the number of days since a particular date. Since we have retained control over the access to the
fields of the class by providing access methods, we can make changes like this with only minimal impact to the
code of the program: we know that the only code that needs to be changed is located in the methods of the class.

5 Another example of data abstraction: the class Person
5.1 Aclass called Person

Here is a class declaration for a class calledson. It is rather basic as it can be used to store only a name, a date
of birth and a height:

0511: import java.util.StringTokenizer; /I Person.java
0512: public class Person {

0513: public Person() { this("™", 0.0F, new Date()); }

0514: public Person(String pString) {

0515: StringTokenizer tTokens = new StringTokenizer(pString, "%");

26

0516: oName = tTokens.nextToken();

0517: iHeight = Float.valueOf(tTokens.nextToken()).floatValue();
0518: oDateOfBirth = new Date(tTokens.nextToken());

0519: }

0520: public Person(String pName, float pHeight, Date pDate) {
0521: oName = pName; iHeight = pHeight; oDateOfBirth = pDate;
0522:

}
0523: public String getName() { return oName; }
0524: public boolean equals(Object pObiject)

0525: return oName.equals(((Person) pObject).oName);

0526: }

0527: public String toString() {

0528: return oName + "%" + iHeight + "%" + oDateOfBirth;
0529: }

0530: protected String oName;

0531: private float iHeight;

0532: protected Date oDateOfBirth;

0533: }

Although this class declaration hasotected fields, for the time being treat therotected fields as if they
wereprivate fields. The distinction between the two will be discussed later.

5.2 Using the class Person

And here is a Java application that tests some aspects of theelasm:

0534: import java.io.BufferedReader; /I UsePerson.java
0535: import java.io.lnputStreamReader;

0536: import java.io.IOException;

0537: public class UsePerson {

0538: public static void main(String[] args) throws IOException {

0539: BufferedReader input =

0540: new BufferedReader(new InputStreamReader(System.in));
0541: Person tGirlfriend =

0542: new Person("Smith", 5.5F, new Date(1973, 2, 27));
0543: System.out.print("Girlfriend> "); System.out.printin(tGirlfriend);
0544: Person tWife = new Person();

0545: System.out.print("Wife> "); System.out.printin(tWife);

0546: Person tBaby;

0547: tWife = tGirlfriend;

0548: System.out.print("Wife> "); System.out.printin(tWife);

0549: tBaby = new Person(input.readLine());

0550: System.out.print("Baby> "); System.out.printin(tBaby);

0551: System.out.printin(tWife.getName().equals(tBaby.getName()));
0552:

0553: }

When this program is executed, it produces output like:

Girlfriend> Smith%5.5%1973-02-27
Wife> 9%0.0%0-00-00

Wife> Smith%5.5%1973-02-27
Smith%1.5%1990-4-9

Baby> Smith%1.5%1990-04-09
true

6 Grouping classes into packages

6.1 Package declarations

By default, a class/interface declaration belongs taléfault packageAnd . class files are stored in the current
directory.
It is useful to be able to group related classes/interfaces together. And for this, Java has the conpegitaia

You can use package declaratioto indicate that a class/interface belongs to a particular package. For example,
suppose you have a file containing the text of a class ceiied and that you want it to belong to a package called
dateutils. You just need to insert a package declaration at the start of the file:

package dateutils;
Any class/interface declaration that contains this line belongs to this package .cTées files associated with

these files of source code must appear in a directory caledutils. And any client that wishes to use this
class could use amport declaration such as:

import dateutils.Date;

If instead some class/interface declarations each have a package declaration that takes the form:

27

package utils.dateutils;

then the. class files should be in a subdirectory call@dteutils that is itself in a directory calledtils. Any
client that wishes to use the class calbed e belonging to this package could use the import declaration:

import utils.dateutils.Date;

6.2 Setting the CLASSPATH

When the Java compiler/interpreter is executed, it looks for any packages in the directories that are mentioned in
the CLASSPATHBY default, the CLASSPATH is empty, and if this is the case it will instead look for packages in
the current directory.

So, if you have put some class/interface declarations into a package aalied.dateutils, the utils
directory must be a subdirectory of the current directory.

Although the use of a subdirectory of the current directory is a useful place to hide the files of a package, this
mechanism can be too restrictive. For example, if you build a number of useful classes and store them in one or
more packages, it would be useful to put these in a standard place. The Java compiler/interpreter allows you to
specify other directories in which it can find packages by setting the CLASSPATH.

The way in which this is done depends on whether you are using a Unix or an MS-DOS command line. When
using Unix, then for csh/tcsh, an example is:

setenv CLASSPATH .:/users/dclObjc/classes:/users/dxy3abc/public_html

or, if you are using sh, ksh or bash, this would be:

CLASSPATH=.:/users/dclObjc/classes:/users/dxy3abc/public_html
export CLASSPATH

At an MS-DOS prompt, you could type something like:
set CLASSPATH=.;C:\project\classes;D:\myjava
Note that for Unix, items in the list of directories are separated by a colon, whereas the semicolon is used at

an MS-DOS prompt. If you also want the compiler/interpreter to look in the current directory, then it must be
included in the CLASSPATH: a dot can be used in the CLASSPATH in order to refer to this directory.

The Java compiler/interpreter knows how to find the packages that form part of Java’s Development Kit, and so
there is no need to include anything in the CLASSPATH to help the compiler/interpreter find these packages.
Note: this was not the case with earlier versions of the Development Kit.

6.3 It's a small world: how can unique names be generated?

Java specifies a convention for generating globally unique names for classes/interfaces. The convention is that a
package name starts with the components of the author’s Internet address (in reverse order). Examples are:

organization domain name an example of a class/interface name
Sun Microsystems sun.com COM.SUN.XXX.YYYYY

IBM ibm.com com.ibm.wwww.vvv.uuuuu
University of Durham dur.ac.uk uk.ac.dur.aaaaa.bbb.ccc.dddd

If the University of Durham wanted to establish a convention for the uniqueness of the names of classes/interfaces,
it could utilise a person’s username. So | might prefer to pubtite class mentioned earlier into the package:

package uk.ac.dur.dclObjc.utils.dateutils;

And if | wanted this package to be accessible from the WWW (see below), then it would be sensible to put the
files of this package into the directory:

/users/dclObjc/public_html/uk/ac/dur/dclObjc/utils/dateutils

Having done this, if you needed to use this package in a Java application, you would need something like:

import uk.ac.dur.dclObjc.utils.dateutils.Date;

and you would need to set the CLASSPATH:
setenv CLASSPATH .:/users/dclObjc/public_html

in order for the Java compiler/interpreter to find thd ass files.

The reason for putting theselass files in a directory that is below a usepablic_html directory is that they

can then be accessed by a Java applet running on a WWW browser elsewhere in the world. You can use the
CODEBASE attribute of anAPPLET/0BJECT/EMBED tag if you want to indicate that an applet'slass files are all

stored in a particular place, e.g.:

CODEBASE=http://www.dur.ac.uk/barry,cornelius/

28

6.4 Compiling from a private directory into one that is visible from the WWW

Although it may be useful to put yourclass files into a publically accessible place, you may want to hide the
source files. So, if the current directory contains some Java source code and the current directory is inaccessible
from the WWW, you can easily arrange for the Java compiler to put theass files into a different directory (a
directory that is accessible from the WWW) by using éheption of thejavac command, e.g.:

setenv CLASSPATH .:/users/dclObjc/public_html
javac -d /users/dclObjc/public_html Date.java

If the file Date . java contains the line:

package uk.ac.dur.dclObjc.utils.dateutils;

then the directoryusers/dcl0bjc/public_html/uk/ac/dur/dclObjc/utils/dateutils will be used by
the compiler to store theate. class file. If need be, it will automatically create any directories that do not exist.

7 Object-oriented programming
7.1 Introduction

We have seen that classes can be used to describe objects existing in the problems that you wish to solve. Although
the programs we have written have used objects, many people view this abjptbased programmingou

need to use botmheritanceanddynamic bindingoefore you are doingbject-oriented programmingrhese two

topics form the main thrust of this section.

7.2 Using inheritance to form a subclass

So far, the classes we have produced have been for objects that are distinct from one another: a date is nothing like
a person, and vice-versa. However, there will be occasions when a new class is in fact a more specialized form of
another class.

For example, if we now have to produce a program that manipulates data about students, we will need a class to
represent a student. Such a class will have a lot in common with the class representing a person which we have
already produced. Instead of producing a completely new class for a student, we can desivedthe: class

from thePerson class:

0554: public class Student extends Person {
0555:
0556: }

This is calledinheritance the classStudent is said toinherit from the clas®erson: the classStudent is the
subclassand the clasBerson is thesuperclass

Note: you cannot derive a subclass from a class that has the mddifiet, for example:

0557: public final class String { ... }

Note: unlike C++, in Java, you cannot derive a class from more than one class, i.e., Java does mufltiaiee
inheritance
7.3 Aclass called Student

Here is a class declaration for the cl@ssdent:

0558: import java.util.StringTokenizer; /I Student.java
0559: public class Student extends Person {
0560: public Student(String pName, float pHeight, Date pDateOfBirth,

0561: String pCourseName, int pStudentNumber) {
0562: super(pName, pHeight, pDateOfBirth);

0563:) iCourseName = pCourseName; iStudentNumber = pStudentNumber;
0564:

0565: public int getStudentNumber() { return iStudentNumber; }

0566: public boolean equals(Object pObject) {

0567:) return oName.equals(((Student) pObject).oName);

0568:

0569: public String toString() {

0570: return oName + "=" + oDateOfBirth

0571: + "=" + iCourseName + "=" + iStudentNumber;
0572: }

0573: private String iCourseName;

0574: private int iStudentNumber;

0575: }

Suppose you declare an object to be of the subclass:

29

0576: Student tStudent = new Student(...);

As well as having the members of the subclass, the object has all the members of the superclass. So, the object
tStudent has the members:

e Student, getStudentNumber, equals, toString,
iCourseName, iStudentNumber

from the clas$tudent and the following members:

e Person, Person, Person, getName, equals, toString,
oName, iHeight, oDate0OfBirth

from the clas®erson.

So an object of the clasgudent has five fields that are calledlame, iHeight, oDate0fBirth, iCourseName
andiStudentNumber. The constructor for the classudent has arguments that are used to initialize not only
the fields of the clas3tudent but also the fields from the claBerson. In the body of the constructor, a special
method calledsuper is used to initialize the fields of the superclaBsxson).

Because each of these five fields is declared tptierate or protected, they are inaccessible to a client of
the classStudent. However, a client can use any public members of the class or any public members of the
superclass. Examples are:

0577: System.out.printin(tStudent.getName());
0578: System.out.printin(tStudent.getStudentNumber());

7.4 Package members and protected members

Previously, we have declared members of classes to be githet c or private. We look now at what it means
for a member to have protected modifier or to have no modifier at all.

If a member of a class has no modifier at all, it can be accessed by the code of any class within the same package.
Such a member is sometimes callepaekage member

If a member of a class hasparotected modifier, it can be accessed by the code of any class within the same
package or by the code of any subclass (whether or not it is in the same package).

So, the code of any method of a subclass may accespwyic andprotected members of a superclass.
Consider the clasBerson again. If we want some members of the cl@sgson to be accessible iRerson
and in any subclass ®krson but generally to be inaccessible, then those members candaected members
of the clasPerson. However, if we want a member of the cla&srson to be inaccessible in the code of the
subclass, then it needs to bemivate member of the clasBerson.

The class declaration fGrerson hasoName andoDate0fBirth asprotected fields andiHeight as aprivate
field. So the code of a method of the cl&ssident is able to access the field§¥ame andoDate0fBirth but is
unable to accesHeight.

Some people argue that it is inappropriate for a subclass to be able to access fields of its superclass: they would
argue that it is better for these fields toeivate and for the superclass to provigeblic methods to access
them.

7.5 Method overriding

You can give a method of a subclass the same name as a method of the superclass. This often occurs when more
appropriate code can be devised for the method of the subclass. This is called methading Note: you
cannot override a method that has the modifiatal (or static or private) in the superclass.

There are two examples of this with therson andStudent classes: the methodguals andtoString appear
in both the superclagerson and the subclasitudent.

Methodoverridingshould not be confused with methoderloadingwhich was introduced earlier.

7.6 Using the class Student
Here is a Java application that tests some aspects of theselasent:

0579: public class UseStudent { /I UseStudent.java
0580: public static void main(String[] args) {

0581: Person tPerson = new Person("Jones", 1.6F, new Date(1969,12,25));
0582: System.out.printin(tPerson);

0583: Student tStudent =

0584: new Student("Smith", 1.85F, new Date(1970,6,12), "Computing", 27);
0585: System.out.printin(tStudent);

0586: tPerson = tStudent;

0587: System.out.printin(tPerson);

0588:

0589: }

30

7.7 Dynamic binding

So far, a reference variable of the typerson has been given values that causes it to referkemson object.
However, a reference variable can be given a value that causes it to refer to an object of its atgssuticlass
of that class For example, in th&@seStudent program, the variablePerson is first made to refer to an object
of classPerson, but, at the end of the program, it is made to refer to an object of stastent.

So, suppose you have written a method:

0590: public void task(Person pPerson) {
0591:
0592: }

The code of the methoehsk is written in terms of the variablgPerson. We can pass as an argument#gk an

object that is of clasBerson or an object that is of any subclassPefrson. If the code oftask calls a method and

this method is one that has been overridden in the subclass, then the actual method that is called will depend on
what kind of object has been passed#zk. For example, itask callsequals thenPerson's equals method

will be called if the object passed as an argument is of dasson, whereastudent’s equals method will be

called if the object passed as an argument is of @asgent. So the actual version of theyuals method that

will be called is unknown until runtime: it depends on what kind of objgirson refers to. This is known as
dynamic binding

The code of the methotlask will also continue to work if, later, another subclassPefrson is produced: the

code oftask does not have to be modified every time a new subclaBsafon is produced.

7.8 Inheritance should be used for is-a relationships

Earlier, we used the cla$mte when constructing the cla®rson, and we have now used the cldssrson
when constructing the classudent. We used inheritance to produce the clasgdent from the clas®erson,
whereas the claserson contains a field (calledDate0fBirth) of typeDate. This is calledcomposition(or
layering): the clas®erson is composedf a field of typeDate.

Earlier, we said we used inheritance because the new class ‘is a more specialized form of another class’. It is best
to use inheritance for is-a relationships and composition for has-a relationships. So, one test for deciding whether
to use inheritance or composition is to see whether it makes sense to use thésveood$ias a For example,

‘every person is a date’ is nonsense whereas ‘every person has a date for his/her date of birth’ makes sense.

8 Another example of OO programming: 2D shapes
8.1 The class Shape

We can use the following class for objects that are two-dimensional geometrical figures. The class includes a
constructor to create an object representing a shape at some position in two-dimensional space. It also includes a
method calledranslate that moves a shape to a new position relative to its current position.

0593: public class Shape { /I Shape.java
0594 public Shape(int vX, int vY) {

0595: iX = vX; iY = vY;

0596:

}
0597: public Shape() { this(0, 0); }
0598: public int getX() { return iX; }
0599: public int getY() { return iY; }
0600: public void translate(int vX, int vY) { iX += vX; iY += vY; }
0601: public boolean equals(Object rObject) {
0602:) return iX == ((Shape) rObject).iX && iY == ((Shape) rObject).iY;
0603:
0604: public String toString() { return iX + ™" + iY; }
0605: private int iX, iY;
0606: }

8.2 Theclass Circle

Suppose we now want a cladsrcle to represent shapes that are circles. We can create this class by inheritance
from the classShape as follows:

0607: public class Circle extends Shape { /I Circle.java
0608: public Circle(int vRadius, int vX, int vY) {

0609: super(vX, vY); iRadius = vRadius;

0610: }

0611: public Circle() { this(0, 0, 0); }

0612: public int getRadius() { return iRadius; }

0613: public boolean equals(Object rObject) {

0614:) return super.equals(rObject) && iRadius == ((Circle)rObject).iRadius;
0615:

0616: public String toString() { return super.toString() + ™" + iRadius; }
0617: private int iRadius;

0618: }

31

Obijects of this class have three fieltls, iY andiRadius. Once again, the constructor for this class uses the
special method calleguper:

0619: super(vX, VvY);

in order to initialize theiX andiY fields (with the values that are passed througjlandvy).

The bodies of theequals and thetoString methods show a different use of teeper keyword. In these
methods, it appears asiper.methodname. ..). This notation means: ‘apply the methatkthodnames
defined in the superclass to the current object’.

In this example, instead of usirgiper . methodname. . .), thegetX andgetY methods of the superclass could
be used. For examplepString could be declared as:

0620: public String toString() { return getX() + ™" + getY() + ™" + iRadius; }
Note that:
0621: public String toString() { return iX + ™" + iY + ™" + iRadius; }

would not be possible unless th& and iY fields of the classShape were changed fromprivate fields to
protected fields.

8.3 The class Rectangle

In a similar way, the clasBectangle can also be built from the clasaape:

0622: public class Rectangle extends Shape { /I Rectangle.java
0623: public Rectangle(int vWidth, int vHeight, int vX, int vY) {

0624: super(vX, vY); iWidth = vWidth; iHeight = vHeight;

0625:

0626: public Rectangle() { this(0, 0, 0, 0); }

0627: public int getWidth() { return iWidth; }

0628: public int getHeight() { return iHeight; }
0629: public boolean equals(Object rObject) {

0630: return super.equals(rObject)

0631: && iWidth == ((Rectangle) rObject).iWidth

0632:) && iHeight == ((Rectangle) rObject).iHeight;

0633:

0634: public String toString() { return super.toString()

0635: + "' + iWidth + ™" + iHeight; }
0636: private int iWidth;

0637: private int iHeight;

0638: }

8.4 Using the class Shape and its subclasses

The following program uses the classimpe, Circle andRectangle. It reads some data describing some
shapes from a file calledata. The file could contain the values: 4, 2, 100, 200, 30, 50, 1, 150, 200, 30, 2,
200, 200, 50, 80, 1, 250, 200 and 40 (where each value is on a separate line of the file). This data is meant to be
interpreted as follows: there are four shapes; the first one is a rectangle with an x-coordinate of 100, a y-coordinate
of 200, a width of 30, a height of 50; the second shape is a circle with an x-coordinate of 150, a y-coordinate of
200, a radius of 30; and so on.

0639: import java.io.BufferedReader; /I FileToScreen.java
0640: import java.io.FileReader;

0641: import java.io.lOException;

0642: public class FileToScreen {

0643: public static void main(String[] args) throws IOException {
0644: BufferedReader input =

0645: new BufferedReader(new FileReader("data"));

0646: String line = input.readLine();

0647: int numShapes = Integer.parselnt(line);

0648: Shape[] shapes = new Shape[numShapes];

0649: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
0650: line = input.readLine(); int shape = Integer.parselnt(line);
0651: line = input.readLine(); int x = Integer.parselnt(line);
0652: line = inputoreadLine(); int y = Integer.parselnt(line);
0653: switch (shape) {

0654: case 1:

0655: line = input.readLine();

0656: int radius = Integer.parselnt(line);

0657: shapes[shapeNumber] = new Circle(radius, X, Y);
0658: break;

0659: case 2:

0660: line = input.readLine();

0661: int width = Integer.parselnt(line);

0662: line = input.readLine();

32

0663: int height = Integer.parselnt(line);

0664: shapes[shapeNumber] = new Rectangle(width, height, x, y);
0665: break;

0666: }

0667:

0668: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
0669: Shape tShape = shapes[shapeNumber];

0670: tShape.translate(1, 2);

0671: System.out.printin(tShape);

0672: }

0673:

0674: }

The program stores the details about the shapes in an array shilpés:

0648: Shape[] shapes = new Shape[numShapes];

and uses the following two statements to put values into the array:
0657: shapes[shapeNumber] = new Circle(radius, X, Y);

0664: shapes[shapeNumber] = new Rectangle(width, height, X, y);

So the program does not use the array to store any references to objects of tsaapasinstead, each element
is either a reference toGircle object or a reference tokectangle object.

At the end of the program, there istar statement whose aim is to output the details about the shapes that have
been stored. It repeatedly executes the following three statements:

0669: Shape tShape = shapes[shapeNumber];
0670: tShape.translate(1, 2);
0671: System.out.printin(tShape);

In the first of these, the variabteShape is made to refer to either@ircle object or aRectangle object. Then
thetranslate method is applied to the object. Because neithiafcle nor Rectangle declare acranslate
method, it will be thetranslate method of the superclasShape) that will be used. Finally, therintln
statement will use eithetircle’s or Rectangle’s toString method in order to print the shape referred to by
tShape. This is another example of dynamic binding.

When the program is executed with the above data fitisstatement produces the following output:

101:202:30:50

151:202:30
201:202:50:80
251:202:40
shapes o 1 2 3
L ~
101 | 202] 30 50 151 202 30 20 202 50 80 251 402 40

9 Exception handling
9.1 What is exception handling?

A method often detects situations which it knows it cannot handle. It may be that the arguments for the method
were inappropriate; it may be that a series of calculations has led to a situation that should not occur; it may be
that its attempt to allocate space usitgy has failed; and so on. What should the programmer of this method do
when such untoward even&xceptionsarise?

The method could output an error message and then terminate execution. However, the user of the method might be
extremely unhappy if this happens: he/she might want to do some ‘cleanup’ code before the program terminates.

Instead, the programmer of the method could return some value that signifies that an error has occurred. However,
returning an error value may be inconvenient to the user of the method as the point of call of the method may not
be the best place to handle the error. So his/her code has to be littered with error-handling code.

Some programming languages allow the code of the method to signify that an exception has occurred and this is
then handled by some code that occurs elsewhere in the program. In Jigvatedementonsists of ary block

together with zero or morexception handler (each introduced by the keywoedtch) and an optionafinally

clause

33

0675 try {
0676:

0677: }

0678: catch(...) {
0679:

0680: }

0681: catch(...) {
0682:

0683: }

0684: finally {
0685:

0686: }

A try statement can be used to indicate that a piece of code wishes to handle exceptions. In the code executed
by the try block, ahrow statemenis used to signify that an exception has occurred. When a throw statement is
executed, control is transferred to the exception handler of the most recently entered try statement containing an
appropriate exception handler. It is possible to write an exception handler that handles all exceptions, and to write
one that re-throws an exception.

How does a try statement end? If an exception occurs, the last-statement-to-be-executed will be in an exception
handler; otherwise, it will be in the try block. The last-statement-to-be-executed may be a statement that causes a
transfer of control (such asr@turn, continue or abreak statement) or it may the statement that appears at the

end of the exception handler or the try block. If a try statement has a finally clause, the statements of the finally
clause will then be executed. If the last-statement-to-be-executed is one that causes a transfer of control, the finally
clause will be executed before control is actually transferred to its new destination. So, if a try statement has a
finally clause, it will always be executed.

Because a finally clause provides a way of guaranteeing that some code will be executed before a block is left, it
is sometimes useful to write try statements that have a finally clause but do not have any exception handlers.

9.2 Altering Date to deal with invalid dates

TheDate class given earlier can be modified to deal with invalid dates in the following way:

0687: /I A class for representing values that are dates.
0688: /I Barry Cornelius, 20th September 1999

0689: import java.util. StringTokenizer;

0690: public class Date

0691: {

0692: private int iYear;

0693: private int iMonth;

0694: private int iDay;

0695:

0696: public Date(final int pYear, final int pMonth, final int pDay)
0697: throws InvalidDateException

0698:

{
0699: iYear = pYear; iMonth = pMonth; iDay = pDay;
0700: iCheckDate();
0701: }
0702:
0703: public int getYear()
0704:
0705: return iYear;
0706:
0707:
0708: public void setYear(final int pYear)
0709: throws InvalidDateException
0710: {
0711: iYear = pYear;
0712: iCheckDate();
0713: }
0714:
0715: private void iCheckDate()
0716: throws InvalidDateException
0717: {
0718: if (iYear<1900 || iYear>2100 ||
0719: iMonth>12 || iDay>31)
0720:
0721: throw new InvalidDateException();
0722: }
0723:
0724: }

TheDate class requires a file containing the following supporting class:

0725: /I /I InvalidDateException.java
0726: public class InvalidDateException extends Exception {

0727: public InvalidDateException() {

0728: super();

0729: }

0730: }

34

The following version of theloelProg program contains some code that catches the exceptions caused by
inappropriate uses of the constructors and methods of this new versionDeftbelass:

0731: ...

0732: public class NoelProg

0733: {

0734: public static void main(final String[] pArgs)

0735: ‘ throws InvalidDateException,|OException

0736:

0737: final Date tNoelDate = new Date(1999, 12, 25);

0738: System.out.printin("tNoelDate is: " + tNoelDate);

0739: final BufferedReader tKeyboard =

0740: new BufferedReader(new InputStreamReader(System.in));
0741: Date tOtherDate = new Date();

0742: while (true)

0743: {

0744: System.out.printin("Type in the date, e.g., 1999-12-25");
0745: final String tOtherDateString = tKeyboard.readLine();
0746: try {

0747: tOtherDate = new Date(tOtherDateString);

0748: break;

0749: }

0750: catch(InvalidDateException plnvalidDateException) {
0751: System.out.printin("Invalid date");

0752:

0753:

0754: System.out.printin("tOtherDate is: " + tOtherDate);
0755:

0756:

0757: }

10 Interfaces
10.1 What is an interface?

Earlier, inThe role of a classit was suggested that, when looking at a class declaration, you should distinguish
between the text that describgbatservices are offered and the text that descritzegthese services are provided.
Thewhatdescribes the interface whereas kievdescribes the implementation. Java allows us to document the
whatby means of a construct called enterface

So, in Java, an interface is a construct that gives a list of related methods (and/or constants). Here is an example
that lists a set of methods for manipulating a date:

0758: public interface DatelF {

0759: public int getYear();

0760: public int getMonth();

0761: public int getDay();

0762: public void setYear(int pYear);
0763: public void setMonth(int pMonth);
0764: public void setDay(int pDay);
0765: public boolean equals(Object pObiject);
0766: public int hashCode();

0767: public String toString();

0768: }

With a class, we useew and a constructor (i.e., a class instance creation expression) to create an object, an
instance of the class. It does not make sense to create an instance of an interface (and for this reason an interface
does not have a constructor).

10.2 Producing classes that conform to an interface

Instead, the purpose of Javasterface construct is to describe the interface to which a set of classes conform,
i.e., each class implements the interface.

For example, there are several ways of providing a class for representing a date each of which stores the details of
a date in a different way: we could use thtees representing a year, a month and a dayh@t and twobytes
representing a year, a month and a day; omethat stores the number of days sinceltleginning of timgand so

on. So we could provide several classes, each one of which conformsitat&eF interface.

We should document that a class implements an interface. This is done by mearisipi afients clause:

0769: import java.util. StringTokenizer;

0770: public class Date implements DatelF

0771: {

0772: private int iYear;

0773:

0774: public String toString()

0775:

0776: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0777:

0778: }

35

If Date says that itimplements DatelF, thenDate must at least include declarations for each method that is
defined inDateIF.

10.3 Using interfaces
Suppose that, besidbste we have also created other classes that implememiabelF interface, e.g.:

0779: public class DateA implements DatelF { ... }
0780: public class DateB implements DatelF { ... }

If the code of some client needs to refer to a class (e.g., a parameter of some method is a date), then it should use
the name of the interface (e.@ateIF) rather than the name of a class (eDg.te). For example:

0781: private static boolean ilsLeap(final DatelF pDatelF) {

0782: final int tYear = pDatelF.getYear();

0783: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);
0784: }

The only time when the code of a client needs to refer to one of the classes is when it wants to create a date. Then
it has to choose which implementation to use, e.g., to choose between one of the following statements:

0785: DatelF tDatelF
0786: DatelF tDatelF
0787: DatelF tDatelF

new Date();
new DateA();
new DateB();

The variabletDateIF is a reference variable that is of an interface type. It can refer to any object which is of a
class that implements the interface.

10.4 Other points
Here are some other points:

e Only constants (i.e., variables that aatic final) and methods can be listed in an interface.

e An interface can be derived from another interface or from several interfaces:

0788: interface a extends b, ¢ { ... }

A class can implement more than one interface:

0789: public class x implements y, z { ... }

A class can be derived from another class as well as implement one or more interfaces:

0790: public class x extends w implements y, z { ... }

We saw earlier that multiple inheritance is not possible in Java. An interface is Java’s way of achieving some of
the possibilities of multiple inheritance. It is an idea that is borrowed from the programming language Objective
C.

11 Starting another thread
11.1 The class java.lang.Thread

Often the user of a program does something that causes the program to do some task that is time-consuming. In
this situation, you may prefer the user to have the ability to get on with something else at the same time as the
time-consuning task. In Java, you can put the time-consuming task into a sepegatiof execution.

It is easy to start another thread: you just need to create an object of theThlassl (from the package
java.lang), and execute itstart method. So, suppose a method, e.g.piden method of a program, contains:

0791: Thread tThread = new Thread();
0792: ...
0793: tThread.start();

The the call ofstart does two things:

e it starts the execution afThread.run() in a separate thread;

e it then immediately returns to the statement following the callbfread. start ().

So we now have two threads of activity that are running concurrentlymihe method and theThread.run
method.

This is not so exciting as it sounds becagsea.lang. Thread's run method does nothing because it has a null
body: it stops executing straightaway. And so we are just left with the thread of execution that is executing the
main method.

36

11.2 Deriving the class ClockStdout from java.lang.Thread

However, because Java has inheritance, we can derive a clasgdfvanlang . Thread and provide aun method
that does something useful.

In the code below, a class calléiockStdout is derived fromjava.lang.Thread, and ClockStdout’s
declaration overrideShread’s run method. The code dflockStdout’s run method is an infinite loop inside
which we first get the current date and time, then output that tetdredard outpytand then wait for two seconds.

0794: import java.util.Date; /I ClockStdout.java
0795: public class ClockStdout extends Thread {
0796: public void run() {

0797: while (true) {

0798: Date tDate = new Date();

0799: System.out.printin(tDate);

0800: try { Thread.sleep(2000); }

0801: catch (InterruptedException tinterruptedException) { }
0802:

0803:

0804: }

11.3 Using the class ClockStdout in the UseClockStdout program

Themain method of thé@JseClockStdout program (given below) creates an objetlockStdout) of the class
ClockStdout, and then callsClockStdout’s start method. However, the clag3ockStdout does not itself
declare astart method, and so it igava.lang.Thread’s start method that gets called. As explained earlier,
this does two things:

e it causexClockStdout’s run method (i.e., the infinite loop) to start executing in a separate thread,;

e it then immediately returns to execute the rest ofiihén method.

So we now have two threads of activity that are running concurrently: nthin method and the
tClockStdout.run method. Having started theClockStdout thread, themain method then goes on to
output the digits from 0 to 7 stopping for one second after it has output each digit:

0805: public class UseClockStdout { /I UseClockStdout.java
0806: public static void main(String[] args) {

0807: System.out.printin("UseClockStdout program™);

0808: ClockStdout tClockStdout = new ClockStdout();

0809: tClockStdout.start();

0810: for (int count = 0; count < 8 ; count++) {

0811: System.out.printin("count is: " + count);

0812: try { Thread.sleep(1000); }

0813: catch (InterruptedException tinterruptedException) { }
0814:

0815: System.out.println("UseClockStdout program");

0816:

0817: }

Here is the sort of output that the program produces:

UseClockStdout program
count is: 0

Sat Jun 14 15:49:15 GMT+01:00 1997
count is: 1

count is: 2

Sat Jun 14 15:49:17 GMT+01:00 1997
count is: 3

count is: 4

Sat Jun 14 15:49:19 GMT+01:00 1997
count is: 5

count is: 6

Sat Jun 14 15:49:21 GMT+01:00 1997
count is: 7

UseClockStdout program

Sat Jun 14 15:49:23 GMT+01:00 1997
Sat Jun 14 15:49:25 GMT+01:00 1997
Sat Jun 14 15:49:27 GMT+01:00 1997
Sat Jun 14 15:49:29 GMT+01:00 1997

You can see that the output is from both threads, and that the program will not finish becat@m#dieStdout
thread is an infinite loop. So, if you execute this program, you will need to @&KEE to stop its execution.

Two ways of getting the program to terminate properly are:

e Themain method can terminate the executiont@flockStdout’s thread by the call:

37

0818: tClockStdout.stop();

e Themain method can terminate the execution of the program by the call:

0819: System.exit(0);

11.4 Using synchronized for accessing a variable from different threads

If you wish to access the same variable from more than one thread, you will need to usemth€onized
keyword to ensure that accesses to the variable are performed correctly. You can control access either by means of
asynchronized statemeat by usingsynchronized methad An example of the use of synchronized methods is:

0820: public class Store {

0821: public Store(int vStore) { iStore = vStore; }

0822: public synchronized int get() { ... return iStore; }

0823: public synchronized void put(int vStore) { iStore = vStore; ... }
0824:

0825: private int iStore;

0826: }

38

	 Introduction
	 Declarations, statements, input and output
	 Handling strings
	 Using classes for data abstraction
	 Another example of data abstraction: the class Person
	 Grouping classes into packages
	 Object-oriented programming
	 Another example of OO programming: 2D shapes
	 Exception handling
	 Interfaces
	 Starting another thread

