
Getting started with Java
Barry Cornelius
Computing Services, University of Oxford
Date: last updated 5th June 2004; first created in 1996
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

1 Introduction 1
2 Declarations, statements, input and output 3
3 Handling strings 13
4 Using classes for data abstraction 16
5 Another example of data abstraction: the classPerson 26
6 Grouping classes into packages 27
7 Object-oriented programming 29
8 Another example of OO programming: 2D shapes 31
9 Exception handling 33
10 Interfaces 35
11 Starting another thread 36

1 Introduction

1.1 What is Java?
• Java is an object-oriented programming language developed by Sun Microsystems.

• It has: garbage collection, multithreading and exception handling.

• It does not have: architecture-dependent constructs, structs, unions, pointer arithmetic, operator-overloading
and multiple inheritance.

• It is accompanied by manypackages(each of which is a group of related classes). Each package forms an
Application Programming Interfaceor API. One of the key packages is one for building GUIs (graphical
user interfaces).

• The definition of the Java language and its accompanying APIs is known as theJava 2 Platform. The current
version is Version 1.4.2.

1.2 How is it executed?
• Unlike most programming languages, Java source code is not compiled into native code. Instead, a Java

compiler translates Java source code into an architecturally-neutral intermediate form known asbytecode.

• Instructions in this bytecode are interpreted by a Java interpreter.

• Sun provide a Software Development Kit for the Java 2 Platform (Java 2 SDK). This includes a compiler
and an interpreter. Previous versions of the SDK were known as theJava Development Kit(JDK).

• The Java 2 SDK was first released in December 1998. The latest version is 1.4.2. However, some people
still use versions of the JDK such as JDK 1.1.x and JDK 1.0.2 (which dates back to 1996). Whereever
possible, new systems should be written using the latest version of the Java 2 SDK.

• Sun provide implementations of the Java 2 SDK for Solaris 2.x, for Windows and for Linux. All of these
products can be downloaded (free of charge) from: http://java.sun.com/products/.

• Other companies provide rival products to Sun’s SDK.

• Programs written for an early version of Java can be compiled by a more recent compiler. Bytecodes
produced by an old compiler can be interpreted by a more recent interpreter.

1.3 What are Java applications?
• A Java application is a conventional program. It must have a ‘method’ (i.e., a function) calledmain.

• Suppose the fileHWTion.java contains the Java application:

1

http://java.sun.com/products/

Getting started with Java

0001: public class HWTion { // HWTion.java
0002: public static void main(String[] args) {
0003: System.out.println("Hello World!");
0004: }
0005: }

Note: the line numbers should be ignored: they do not form part of the program.

• The application can be compiled by using the Unix/MS-DOS command:

javac HWTion.java

This produces a file of bytecodes in the fileHWTion.class.

• The fileHWTion.class can be interpreted (i.e., executed) by using the command:

java HWTion

• At the University of Durham, the commandsjavac andjava currently run the compiler and interpreter
of the Java 2 SDK v 1.4.1-01. All the commands of JDK 1.1.x can be accessed by following a command
name with a minus sign, and those of JDK 1.0.2 can be accessed by using two minus signs. Here are some
examples:

javac-- HWTion.java
java-- HWTion

1.4 What are Java applets?
• A Java applet is Java source code whose bytecodes will be executed as part of viewing a WWW page. The

applet’s author compiles the Java source code into bytecodes.

• These bytecodes will be downloaded from their author’s site by a WWW browser when the WWW page is
visited. So, the browser needs a Java interpreter to interpret the bytecodes.

• This is true for browsers that areJava-aware, e.g., Microsoft’sInternet Explorer, Netscape’sNavigator
or Mozilla. The earlier versions of these browsers only understood JDK 1.0.2. Later versions of these
browsers understand JDK 1.1.x or Java 2 SDK bytecode files that use the facilities of JDK 1.1.x. Examples
are Version 4.0x (and later versions) of Netscape’s Navigator (which supports most aspects of JDK 1.1.x)
and Version 4.x (and later versions) of Microsoft’s Internet Explorer (which supports some aspects of JDK
1.1.x).

• Some versions of WWW browsers support Java 2 Platform v 1.2 and later. For more details see ITS Guide
108Advanced Java.

• Sun’s Java 2 SDK (and the earlier JDKs) also include anappletviewerthat can be used if you do not have a
Java-aware browser.

• Suppose the fileHWLet.java contains the Java applet:

0006: import java.applet.Applet; // HWLet.java
0007: import java.awt.Graphics;
0008: public class HWLet extends Applet {
0009: public void paint(Graphics rGraphics) {
0010: rGraphics.drawString("Hello World!", 50, 25);
0011: }
0012: }

• The applet can be compiled by using the Unix/MS-DOS command:

javac HWLet.java

This produces a file of bytecodes in the fileHWLet.class.

• When a browser reads the WWW page given below, it finds that it has to retrieve the fileHWLet.class.
When the bytecodes in this file arrive, the browser can interpret them.

0013: <HTML>
0014: <HEAD>
0015: <TITLE> HWLet example </TITLE>
0016: </HEAD>
0017: <BODY>
0018: Before the output from the applet.
0019: <APPLET CODE="HWLet.class" WIDTH=150 HEIGHT=25>
0020: </APPLET>
0021: After the output from the applet.
0022: </BODY>
0023: </HTML>

• You can access a WWW page containing the above HTML instructions by using the URL
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/HWLet.html.

2

http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/HWLet.html

1.5 APIs

1.5 APIs
• Related classes can be grouped together in apackage. Together the classes of a package form a way of

programming in a particular area: together they define what is called anapplication programming interface
(anAPI).

• Java has a large number of APIs already defined. Examples include APIs:

– for file I/O,

– for doing 2D and 3D graphics,

– communicating with databases (JDBC),

– for sending an e-mail message,

– for enabling access to WWW pages,

– for accessing objects of Java programs running on other computers,

– for supporting the writing of applets.

• Some of these APIs are considered to be crucial, called theCore APIs.

• There are WWW pages documenting the Core APIs: http://java.sun.com/j2se/1.4.2/docs/api. These WWW
pages can also be downloaded to filespace on your own computer.

• This Guide uses the notationjavaapi:java/lang/String.html to refer to the WWW page
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

1.6 A digression: what is JavaScript?
• Here is a WWW page containing some source code that is written inJavaScript:

0024: <HTML> <HEAD> <TITLE> Square demo </TITLE> </HEAD>
0025: <BODY>
0026: <P> Start. </P>
0027: <SCRIPT LANGUAGE="JavaScript">
0028: <!-- hide this script from some browsers
0029: function mysquare(myarg) {
0030: document.write("<P> Hello once more </P>");
0031: document.write("<P> <code>myarg</code> is: ", myarg, "</P>");
0032: return myarg*myarg;
0033: } ;
0034: document.write("<P> Value returned is: ", mysquare(7), "</P>");
0035: // end of hide -->
0036: </SCRIPT>
0037: <P> Finish. </P>
0038: </BODY> </HTML>

• JavaScript is another programming language.

• You put JavaScript code in HTML documents with a<SCRIPT> tag.

• The JavaScript code is not compiled: instead, it is interpreted by a JavaScript-aware WWW browser. Unlike
Java, JavaScript is understood by all browsers, including most of the early versions of Microsoft’s Internet
Explorer and Netscape’s Navigator.

• You can access a WWW page containing the above HTML instructions by using the URL
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/square.html.

• JavaScript has most of Java’s expression syntax and basic control flow constructs, but it does not have Java’s
strong type checking and static typing. You cannot write your own classes.

• So, JavaScript is not as powerful as Java. And it is confusing forJavato be included as part of the name
JavaScript.

2 Declarations, statements, input and output

2.1 A simple Java program
0039: import java.io.BufferedReader; // Convert.java
0040: import java.io.InputStreamReader; import java.io.IOException;
0041: public class Convert { /* BJC 960603 */
0042: public static void main(String[] args) throws IOException {
0043: System.out.println("type in the lowest Fahrenheit value");
0044: BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
0045: int lower = Integer.parseInt(input.readLine());
0046: System.out.println("type in the number of lines: ");
0047: int numOfLines = Integer.parseInt(input.readLine());

3

http://java.sun.com/j2se/1.4.2/docs/api
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://www.dur.ac.uk/barry.cornelius/papers/a.taste.of.java/code/square.html

Getting started with Java

0048: int upper = lower + numOfLines - 1;
0049: for (int fahrenheit = lower; fahrenheit <= upper; fahrenheit++) {
0050: float celsius = to_celsius(fahrenheit);
0051: System.out.println(fahrenheit + " F is " + celsius + " C");
0052: }
0053: }
0054: // function to convert a temperature from degrees Fahrenheit
0055: // to degrees Celsius
0056: private static float to_celsius(float fahr) {
0057: return (fahr - 32.0F)*5.0F/9.0F;
0058: }
0059: }

2.2 Primitive types

name purpose of the type default
value

examples of literal values

boolean logical values false false, true
char Unicode characters \u0000 ' ', 'A', '\101', '\u0041', '\�, '\t'
byte signed integers 0 useint literal values
short signed integers 0 useint literal values
int signed integers 0 0, 42, 2147483647
long signed integers 0 0L, 42L, 9223372036854775807L
float IEEE 754 floating

pt. values
0.0 0.0F, 9.81F, 2.9979E8F, 6.6252e-34F

double IEEE 754 floating
pt. values

0.0 0.0, 9.81, 1.0e100, 0.5E-100

Later we will see that thefields of aclass declarationare initially given thedefault valuegiven above, whereas
a variable declared in amethod declarationhas no default value. However, a Java compiler will generate a
compilation error for most attempts to use an uninitialized variable.

In Java, each of these types has arangethat is defined by the language. So the range does not change as you move
your Java source code from one platform to another. Here are the ranges:

name size
(bits)

smallest value of type largest value of type

boolean 1 N/A N/A
char 16 \u0000 \uFFFF
byte 8 −128 +127
short 16 −32768 +32767
int 32 −2147483648 +2147483647
long 64 −9223372036854775808 +9223372036854775807
float 32 −3.40282347E+38 +3.40282347E+38
double 64 −1.79769313486231570E+308 +1.79769313486231570E+308

Values of the typesfloat anddouble that are small in magnitude are considered to be zero:

name smallest negative value smallest positive value

float −1.40239846E−45 +1.40239846E−45
double −4.94065645841246544E−324 +4.94065645841246544E−324

2.3 Declarations and initializers
In Java, alocal variable declarationis a form of statement, and so such declarations may appear at any point in a
block. Here is an example:

0060: char ch, separator, delimiter;

When a variable is declared, you can include aninitializer that gives the variable its initial value. However, often
the initial value of a variable can only be established after the execution of a few statements. In these cases, it is
sometimes argued that less errors occur if the declaration is left until an appropriate initial value is known.

The initializer may be an expression that is calculated at runtime as is the case with thelower, numOfLines and
upper variables in the programConvert given above.

If the value of a variable is never changed after it has been initialized, this can be (and should be) documented
by using thefinal keyword. In the programConvert, this change could be made for the declarations ofinput,
lower, numOfLines, upper andcelsius, e.g.:

4

2.4 Expressions

0061: final int upper = lower + numOfLines - 1;

Note that this particular use offinal was not permitted in JDK 1.0.x.

2.4 Expressions
Java’s operators are similar to those of C. For example, Java has the operators+, -, *, /, and% for performing
arithmetic. Each of these has an associated assignment operator. For example, the statement:a += b; has the
same meaning as the statement:a = a + b;

The operator++ is a unary operator that is used to increment its operand which must be a variable. If it is used as
a prefix operator, the value of the expression is the value of the variable after it has been incremented, whereas if it
is used as a postfix operator, the value of the expression is the value of the variable before it has been incremented.
The operator� behaves like the operator++ except that the variable is decremented instead of incremented.

Java also has the relational operators==, !=, <, <=, >, >=. It has the two operators&& and||, that can be used
to andandor boolean values. Like C, these two operators doshort-circuit evaluation. Unlike C, full evaluation
can be performed by using the operators& and| instead.

An expression that is preceded by the name of a type enclosed in parentheses is called acast expression. The value
of the expression is converted to a value of the type. Here are two examples:

0062: double speedOfLight = ...;
0063: int roughSpeedOfLight = (int)speedOfLight;
0064: int someInt = ...;
0065: char someChar = (char)someInt;

2.5 Statements
2.5.1 Blocks

There are many situations where the syntax of Java requires a single statement. A sequence of statements can be
considered to be a single statement if they are turned into ablock (which is called acompound statementin some
other languages). This is done by surrounding the sequence of statements byand . Examples of this appear in
the following section.

2.5.2 Conditional statements

Java has 2 kinds of conditional statements. Here are some examples of anif statement:

0066: if (a < 0) if (a > b) if (a > b) {
0067: a = -a; larger = a; larger = a;
0068: else System.out.println("a>b");
0069: larger = b; }
0070: else {
0071: larger = b;
0072: System.out.println("a<=b");
0073: }

Although C (and C++) allow the condition after theif to have an arithmetic value, this is not permitted in Java:
the condition must be aboolean expression.

Here are two examples of aswitch statement:

0074: switch (dayNumber) { switch (dayNumber) {
0075: case 2: case 3: case 4: case 1:
0076: case 5: case 6: readRatherHeavyNewspaper();
0077: gotoWork(); break;
0078: doWork(); case 7:
0079: goHome(); break;
0080: watchTV(); default:
0081: gotoPub(); gotoWork();
0082: break; doWork();
0083: case 7: goHome();
0084: break; watchTV();
0085: case 1: gotoPub();
0086: readRatherHeavyNewspaper(); }
0087: }

Following the symbolswitch, there should be an expression which is enclosed by parentheses. In the above
examples, this expression is on the line:

0074: switch (dayNumber) { switch (dayNumber) {

and it just consists of the variabledayNumber. The expression should be of typechar, byte, short, or int.

When theswitch statement is executed, the expression is evaluated and then control is passed to the statement
whose associatedcase label has a value equal to that of the expression. If there is no such statement, then control

5

Getting started with Java

is passed to the statement associated with thedefault label if there is one; otherwise, control is passed to the
statement following theswitch statement.

A break statement must be executed if you wish to leave theswitch statement before the last statement of the
switch statement. So, normally, there will be abreak statement just before eachcase label and before the
default label (if there is one).

2.5.3 Looping statements

Java has 3 kinds of looping statements. Here is an example of afor statement:

0088: int numMonths = Integer.parseInt(input.readLine());
0089: int rainfallSum = 0;
0090: for (int monthNum = 0; monthNum < numMonths; monthNum++) {
0091: int figureForMonth = Integer.parseInt(input.readLine());
0092: rainfallSum += figureForMonth;
0093: }
0094: System.out.println(rainfallSum);

The above example has the variablemonthNum declared in thefor statement itself. If you do this, then this
variable can only be used within thefor statement. If you leave out the type, then the variable must be declared
elsewhere and the variable is similar to any other variable of the block containing thefor statement.

Here is an example of awhile statement:

0095: int rainfallSum = 0;
0096: int figureForMonth = Integer.parseInt(input.readLine());
0097: while (figureForMonth >= 0) {
0098: rainfallSum += figureForMonth;
0099: figureForMonth = Integer.parseInt(input.readLine());
0100: }
0101: System.out.println(rainfallSum);

Here is an example of ado statement:

0102: int rainfallSum = 0;
0103: do {
0104: int figureForMonth = Integer.parseInt(input.readLine());
0105: if (figureForMonth >= 0)
0106: rainfallSum += figureForMonth;
0107: } while (figureForMonth >= 0) ;
0108: System.out.println(rainfallSum);

Although C (and C++) allow the condition of awhile statement or ado statement to have an arithmetic value,
this is not permitted in Java: the condition must be aboolean expression.

2.5.4 Other control statements

A break statement terminates the execution of afor, do, while or switch statement, and transfers control to
the statement following that statement. Abreak statement may include a label, and this label indicates that it is
the statement with that label that is to be terminated.

A continue statement transfers control to end of the current iteration of afor, do or while statement. A
continue statement may include a label, and, if this is the case, control skips to the end of the loop that has this
label.

Java also hastry statements,catch clauses,finally clauses, andthrow statements. These are all used for
exception handling, and details about these will be given later.

2.6 Objects
2.6.1 Reference variables

Besides the primitive types that can be used for simple values, we often want to represent structured values. For
example, we might want to represent a date in history, a point in two-dimensional space, and so on. In Java, a
variable that is of areference typeis used torefer to a structured value.

For example, in order to represent a point in two-dimensional space, the packagejava.awt provides a ‘class
declaration’ calledPoint. Such a class declaration automatically provides a reference type calledPoint, and we
can declare a variable calledmyPoint to be of this reference type by the declaration:

0109: java.awt.Point myPoint;

To avoid having to repeat the package name every time we want to usePoint, we can use animport declaration
at the start of the file containing the Java source code:

0110: import java.awt.Point;

6

2.6 Objects

Having done this, we can declare the variablemyPoint by:

0111: Point myPoint;

Such a declaration only introduces areference variable, a variable that can refer to an object that contains the
details about the point.

myPoint

In some ways, a reference variable is like apointer variablein Pascal, C or C++.

2.6.2 Creating an object

Having declared the reference variable, we ought to get it to refer to aPoint object. This is done by using an
assignment statement where the RHS contains aclass instance creation expression:

0112: myPoint = new Point(100,200);

The creation expressionnew Point(100,200) uses a ‘constructor’ for the classPoint to create an object of that
class with x and yfields of 100 and 200. We will see later that we can do this because this kind of constructor has
been provided by the designers of thejava.awt package. Often a class provides several different constructors,
e.g., as well as a constructor that has two parameters which are the x and y coordinates, the designers of the class
Point could also have provided a constructor to construct aPoint from aString:

0113: myPoint = new Point("100:200");

but they chose not to do this.

So we now have a variable calledmyPoint that refers to a point that has the x and y coordinates 100 and 200.

-

myPoint x y

100 200

The above declaration ofmyPoint together with the above assignment statement can be shortened to a declaration
that has an initializer:

0114: Point myPoint = new Point(100,200);

2.6.3 Referring to the fields of an object

We can use thedot notationto refer to the fields of an object, e.g., we can usemyPoint.x andmyPoint.y. For
example, we could change the point being represented by 10 units in the x direction and 20 units in the y direction
by the assignment statements:

0115: myPoint.x += 10;
0116: myPoint.y += 20;

-

myPoint x y

110 220

Note that this is a little different to the languages Pascal, C and C++ where some extra syntax is used to say that
we are dereferencing a pointer.

2.6.4 Applying methods to an object

The designers of thejava.awt package have thought that we may want to move an existing point to a new point
in space, and so they have provided amethodto do this. A method is what would be called afunctionor procedure
in other programming languages. The method that they have provided is calledtranslate. So, instead of the
above two assignment statements, we could write:

0117: myPoint.translate(10,20);

Note that the dot notation that we used above to refer to the two fields of aPoint object is also used in the call
of a method. You should look at this call in the following way: ‘apply thetranslate method with arguments 10
and 20 to themyPoint object’. Note: you would have written something like:translate(myPoint,10,20)
in languages like Pascal and C.

7

Getting started with Java

2.6.5 Copying objects

Suppose we have:

0118: Point otherPoint;
0119: otherPoint = myPoint;

The assignment statement causesotherPoint to refer to the same object thatmyPoint refers to.

-

�
�

�
�
�7

myPoint x y

110 220

otherPoint

So, the above assignment statement does not produce a clone. The classes of the Core APIs use two different ways
of enabling you to produce a clone of an object:

• a class sometimes provides a method calledclone;

• a class sometimes provides a suitable constructor.

AlthoughPoint does not provide aclone method, it does provide a suitable constructor:

0120: Point clonePoint;
0121: clonePoint = new Point(myPoint);

x y

-

-

myPoint

110 220

110 220

clonePoint yx

2.6.6 Comparing objects

The== operator in the following condition is asking whether the two reference variables refer to the same object:

0122: if (myPoint == otherPoint) { ... } else { ... }

-

�
�

�
�
�7

myPoint x y

110 220

otherPoint

If, instead, you want to ask whether the two objects referred to by two reference variables have the same value,
you can often use a method calledequals:

0123: if (myPoint.equals(clonePoint)) { ... } else { ... }

x y

-

-

myPoint

110 220

110 220

clonePoint yx

8

2.7 Arrays

2.6.7 The value null

If a reference variable has the valuenull, then this means that the variable does not currently refer to any object.
An assignment statement can be used to indicate this:

0124: myPoint = null;

myPoint

null

And you can test whether a reference variable does not refer to an object:

0125: if (myPoint == null) { ... } else { ... }

Note: whilstnull appears to be a keyword of the language, it is technically thenull literal.

2.6.8 Garbage collection

Pascal/C/C++ programs inadvertentlydispose/free/delete objects which are still in use:

0126: var p, q:^integer; int *p, *q; int *p, *q;
0127: new(p); p = malloc(sizeof(int)); p = new int;
0128: p^ := 27; *p = 27; *p = 27;
0129: q := p; q = p; q = p;
0130: dispose(p); free(p); delete p;
0131: writeln(q^); printf("%d\n", *q); cout << *q << endl;

And programs often cause memory leaks bynot usingdispose/free/delete on unwanted objects.

In Java, you do not delete objects: instead, Java hasgarbage collection. The garbage collector detects objects no
longer in use, and reuses their space. Also, unlike C++, you do not have to provide destructors for classes.

2.7 Arrays
2.7.1 Introduction

In Java, anarray is a collection of values that are of the same primitive type or of the same reference type. Since
an array type is itself a reference type, arrays of arrays can be constructed.

2.7.2 An array of integers

The numbers of the days in a non-leap year on which each of the twelve months start are 1, 32, 60, 91, 121, 152,
182, 213, 244, 274, 305 and 335. For example, March 1st is the 60th day of the year. Suppose we want to provide
an array calledmonthStarts that contains this information.

In Java, there are two syntaxes for an array declaration. To keep C programmers happy, an array declaration can
be written using the following syntax:

0132: int monthStarts[];

However, the following syntax is better:

0133: int[] monthStarts;

Note that the number of elements in the array is not included in this declaration. This is because this declaration
only declares a reference variable that can be used to refer to an array object.

monthStarts

In order to create the actual array object we need to use an assignment statement that contains anarray creation
expressionon its RHS:

0134: monthStarts = new int[12];

So this has set upmonthStarts to be a reference variable that refers to an array of 12 integers, with indexes from
0 to 11.

-

0 2 3 4 5 6 7 8 9 10 110 1monthStarts

You can access each individual element using the usual notation:

9

Getting started with Java

0135: monthStarts[0] = 1;
0136: monthStarts[1] = 32;
0137: ...
0138: monthStarts[11] = 335;

-

0 2 3 4 5 6 7 8 9 10 110 1monthStarts

3351 32 60 91 121 152 182 213 244 274 305

If an index is out of bounds, the exceptionArrayIndexOutOfBoundsException will be thrown: details about
‘exception handling’ are given later.

As before, the creation expression can be used as an initializer:

0139: int[] monthStarts = new int[12];
0140: monthStarts[0] = 1;
0141: monthStarts[1] = 32;
0142: ...
0143: monthStarts[11] = 335;

This code can be abbreviated to:

0144: int[] monthStarts = { 1,32,60,91,121,152,182,213,244,274,305,335 };

2.7.3 An array of points

Suppose we want an array where each element is an object of classjava.awt.Point. Perhaps we want an array
to represent the four vertices of the rectangle (100,100), (300,100), (300,400) and (100,400). We can do this as
follows:

0145: Point[] vertices = new Point[4];
0146: vertices[0] = new Point(100,100);
0147: vertices[1] = new Point(300,100);
0148: vertices[2] = new Point(300,400);
0149: vertices[3] = new Point(100,400);

-
�

�
�

�
�

�
�+

�
�

�
�
��

A
A
A
A
AU

Q
Q

Q
Q

Q
Q

Qs

0 2 31

100 100 100 100300 300 400 400

0vertices

Once again, this code can be abbreviated:

0150: Point[] vertices = { new Point(100,100), new Point(300,100),
0151: new Point(300,400), new Point(100,400) };

2.7.4 Flexible arrays

Within the square brackets of an array creation expression, there needs to be an expression indicating the number
of elements that are required in the array object. This expression may be one whose value is not known until
runtime. For example:

0152: BufferedReader input = ... ;
0153: int size = Integer.parseInt(input.readLine());
0154: int[] monthStarts = new int[size];

2.7.5 Even more flexible arrays

Having created an array object, the size of the array object is fixed. Suppose you are storing details about a
collection of people, and suppose the size of the collection changes during the course of the execution of a program.
It may be that you have no idea what the maximum size of the collection will be. Although you could arbitrarily
choose a large value, this is wasteful of space, and no matter what value you choose, your program will fail if the
value you choose is too small. In such situations, it is probably better to use aList, aSet or aMap. These are
facilities that are provided by the Collections API of the Java 2 Platform. For more details, see ITS Guide 108
Advanced Java.

10

2.8 Methods

2.8 Methods
In Java, the wordmethodis used instead offunction, procedureor subroutine. The argument toprintln in:

0155: System.out.println(convertToCelsius(82.0));

is convertToCelsius(82.0). This is an example of a call of a method such as:

0156: private static double convertToCelsius(double fahr) {
0157: return (fahr - 32.0)*5.0/9.0;
0158: }

Unlike C and C++, there is no default return type: you must specify it. If the method does not return a result,void
should be used as the return type.

In Java, a parameter of a method behaves like a local variable of the method. It gets its initial value from the
argument passed in the call. Any assignment to the parameter within the method only affects the value of the local
variable. If a method does not assign a value to the parameter, this can be (and should be) documented by using
thefinal keyword. However, note that this use offinal was not permitted in JDK 1.0.x. Here is an example:

0159: private static double convertToCelsius(final double fahr) {
0160: return (fahr - 32.0)*5.0/9.0;
0161: }

Unlike other languages, a method cannot change the value of the variable that is passed as an argument. So given:

0162: private static void silly(double p) {
0163: p = p + 4.2;
0164: System.out.println(p);
0165: }

the following code will not alter the value of the variablea:

0166: a = 2.7;
0167: silly(a);
0168: System.out.println(a);

If a method has no parameters, then it is declared with an empty parameter list:

0169: private static void m() { ... }

and a call has an empty argument list:

0170: m();

It is possible to declare several methods having the same name provided that they can be distinguished by the
types of their parameters. This is calledmethod overloading. Here is an example where the namemin is declared
twice:

0171: private static long min(long a, long b) { return a<b ? a : b; }
0172: private static Date min(Date a, Date b) { return a.before(b) ? a : b; }

At a call ofmin, the compiler can look at the arguments to see whichmin is required.

Note: the modifiersprivate andstatic will be discussed later.

2.9 Output and input
2.9.1 Attaching an output stream

To write values to a file calledresults, you can use a variable of the typePrintWriter. Suppose you want to
use a variable calledfilout:

0173: PrintWriter filout =
0174: new PrintWriter(new BufferedWriter(new FileWriter("results")));

This declaration assumes that the following imports appear at the start of the file of source code:

0175: import java.io.BufferedWriter;
0176: import java.io.FileWriter;
0177: import java.io.PrintWriter;

If you want some output to be sent to thestandard output, which is usually the screen, you can useSystem.out as
an output stream. The variableout is a variable (of the typejava.io.PrintStream) that is a ‘class variable’ of
the classSystem which is defined in the packagejava.lang. Any class of this package is automatically available
to a program without the need for anyimport declaration.

11

Getting started with Java

2.9.2 Outputting values to the output stream

In order to output a textual representation of a value, theprint method should be applied to an object of the class
PrintWriter or PrintStream. Here are two examples:

0178: filout.print("Hello World!");
0179: System.out.print("Hello World!");

Theprint method can be passed:

• an argument of any primitive type;

• an argument of any reference type for which the methodtoString is defined;

• an expression that uses thestring concatenation operator, e.g.:

0180: int first = 42;
0181: System.out.print("first has the value " + first);

If you want the output to move on to the next line after the value has been printed, useprintln instead ofprint.

2.9.3 Closing a file

As output to aBufferedWriter stream is buffered, the stream will need to beclosed when you have finished
using it:

0182: filout.close();

2.9.4 Attaching an input stream

To read values, you will need a variable of the typeBufferedReader that is in the packagejava.io. To read
from thestandard input, which is normally the keyboard, you can useSystem.in as an input stream. So, if you
want to use a variable calledinput for this input stream, you can use the following declaration:

0183: BufferedReader input =
0184: new BufferedReader(new InputStreamReader(System.in));

This declaration assumes that the following imports appear at the start of the file of source code:

0185: import java.io.BufferedReader;
0186: import java.io.InputStreamReader;

If, instead, you want to read values from a file calleddata, you can use:

0187: BufferedReader filin = new BufferedReader(new FileReader("data"));

This declaration assumes that the following imports appear at the start of the file of source code:

0188: import java.io.BufferedReader;
0189: import java.io.FileReader;

2.9.5 Reading a line of characters

The methodreadLine can be used to read in a line of characters from an input stream. It returns a value of type
String. Here are two examples:

0190: String inputLine = input.readLine();
0191: String filinLine = filin.readLine();

The classString is defined in the packagejava.lang, and so it can be used in a program without the need for
an import declaration.

2.9.6 Reading a value

If you would like to read a value into a variable whose type is one of the primitive types, you first need to call
readLine to read in a line of characters and then call an appropriate method to parse the string. Here is an
example where a value of typeint is obtained from the keyboard:

0192: String line = input.readLine();
0193: int intVal = Integer.parseInt(line);

This can be abbreviated to:

12

3 Handling strings

0194: int intVal = Integer.parseInt(input.readLine());

Given a variable calledline containing aString:

0195: String line = input.readLine();

values of the other primitive types can be obtained using the following statements:

0196: long longVal = Long.parseLong(line);
0197: float floatVal = Float.parseFloat(line);
0198: double doubleVal = Double.parseDouble(line);
0199: boolean booleanVal = new Boolean(line).booleanValue();

Note that the methodsparseFloat andparseDouble were introduced into Java when the Java 2 Platform was
released, and so, if you are using JDK 1.0.2 or JDK 1.1.x, you will have to use methods calledfloatValue or
doubleValue instead (in a similar way in whichbooleanValue is used above).

The classesInteger, Long, Float, Double andBoolean are defined in the packagejava.lang, and so they
can be used in a program without the need for any import declarations.

2.9.7 Handling more than one data item per line

You can use the classjava.util.StringTokenizer if you want more than one data item per line. Suppose a
line contains anint, followed by afloat, followed by anotherint. You could use:

0200: String line = input.readLine();
0201: StringTokenizer tokens = new StringTokenizer(line);
0202: String token = tokens.nextToken();
0203: int firstInt = Integer.parseInt(token);
0204: token = tokens.nextToken();
0205: float theFloatVal = Float.parseFloat(token);
0206: token = tokens.nextToken();
0207: int secondInt = Integer.parseInt(token);

2.9.8 Flushing the output

If you want the user to type on the same line as a prompt, you will need toflushthe output stream after outputting
the prompt:

0208: BufferedReader input =
0209: new BufferedReader(new InputStreamReader(System.in));
0210: System.out.print("Type in an integer: ");
0211: System.out.flush();
0212: String line = input.readLine();
0213: int value = Integer.parseInt(line);

2.9.9 Dealing with java.io.IOException

If you are going to use the classes and methods from thejava.io package, you will find that you are unable to
compile your program unless it indicates what you want to happen if anexceptioncalledjava.io.IOException
occurs. Details about ‘exception handling’ are given later. So, to begin with, you may be happy for your program
to crash if an IO exception occurs. This can be done by adding the clausethrows IOException to the heading
of any method that does IO. For example:

0214: public static void main(String[] args) throws IOException { ... }

This code assumes that the following import appears at the start of the file of source code:

0215: import java.io.IOException;

2.9.10 JDK Version 1.0.x

Many of the classes given above are not available if you use Version 1.0.x of the JDK. And the input-output
facilities provided by Version 1.0.x can only handlebyte streams. Those of JDK Version 1.1.x (and later) include
support forcharacter streams, i.e., streams containing 16-bit Unicode characters rather than just 8-bit bytes.

3 Handling strings

3.1 Creating an object of the class String

Although:

String tName = new String("James Gosling");

13

Getting started with Java

is the obvious way of creating a string object and makingtName point to it, for strings there is an alter-
native syntax for theclass instance creation expression. You can use"James Gosling" instead of using
new String("James Gosling") as in:

String tName = "James Gosling";

So you have a choice here: both forms of syntax can be used to create new string objects.

A string literal can include characters that arenon-graphic characters. This is done by using anescape sequence.
An escape sequence is also necessary for putting a single quote, a double quote or a backslash in a string:

System.out.println("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

We will sometimes need to represent a string that has no characters. The string literal"" or the expression
new String("") can be used. Such a string is called theempty string.

3.2 Applying methods to a String object
The classjava.lang.String comes with a large number of methods for manipulating strings. A list of these
methods is documented in theMethod Detailsection ofjavaapi:java/lang/String.html.

For example, if you want to access an individual character of a string, you can use a method calledcharAt. The
value that is returned is of typechar. You use an argument that is anint value to indicate the position of the
character which you want to be returned. However, its value needs to be one less than the position of the character.
So if you want the first character of the string to be returned, you need an argument with the value 0:

String tName = new String("James Gosling");
char tFirstChar = tName.charAt(0);
System.out.println("The first character of the name is: " + tFirstChar);

Theprintln statement will output the line:

The first character of the name is: J

There is also a method that can be used to find out how many characters there are in a string:

String tName = new String("James Gosling");
int tNameLength = tName.length();
char tLastChar = tName.charAt(tNameLength - 1);
System.out.println("The last character of the name is: " + tLastChar);

This will output:

The last character of the name is: g

3.3 The exception StringIndexOutOfBoundsException

Many of the methods of the classString have an argument that is an integer that is the position of a character
within a string. If you pass an argument that is invalid, the method will signify that it cannot handle this situation,
by throwing anexceptioncalledStringIndexOutOfBoundsException. An exceptionis an occurrence of an
exceptional circumstance, a situation that does not normally occur.

For example, if you callcharAtwith the value5when a string has 5 characters, your program will crash displaying
lines like:

java.lang.StringIndexOutOfBoundsException: String index out of range: 5
at java.lang.String.charAt(String.java)
at StringIndexTest.main(StringIndexTest.java:6)

Instead of letting the program crash like this, we can include code in our program that will be executed when an
exception occurs. Java has a statement called atry statementthat is used tohandle exceptions, and we will look at
try statements later.

Java divides exceptions into two categories:checked exceptions and unchecked exceptions. A
StringIndexOutOfBoundsException is an unchecked exception, and Java says that a program does not
have to say what it wants to happen when an unchecked exception occurs.

14

3.4 Changing aString object

3.4 Changing a String object
The classjava.lang.String is rather unusual: none of its methods alter the object to which the method is being
applied. The objects of the class are said to beimmutable.

Instead of a method altering the value of a string object, it will produce a new string object. For example, consider:

String tToday = new String("1999-07-11");
tToday = tToday.replace(’-’, ’:’);
System.out.println(tToday);

First, a string object containing the string"1999-07-11" is created andtToday is made to point to it. Then the
methodreplace is applied to the string object that is pointed to bytToday. This does not change that string
object, but instead creates a new string object in which any occurrences of the'-' character are replaced by a
':' character. Then the value oftToday is changed. It is currently pointing to the first string object, and it is
now altered to point to the new string object. There is now no variable pointing to the first string object: it is lost.
Finally, the string thattToday points to is output by the call of theprintln method:

1999:07:11

3.5 Copying String objects
As was shown with the classjava.awt.Point, you can make another variable refer to the same string by an
assignment statement:

String tName = new String("James Gosling");
String tSameName = tName;

Both reference variables refer to the same object.

Earlier, when we used theString constructor, we passed a string literal as an argument. If you want a clone of a
String object, then you can pass thatString object as the argument of aString constructor:

String tName = new String("James Gosling");
String cloneName = new String(tName);

3.6 String concatenation
The classjava.lang.String is unusual because an operator is defined in the language specifically for the
concatenation of the values of two objects of this class:

String tFirstName = new String("James");
String tSurname = new String("Gosling");
String tName = tFirstName + tSurname;

The variabletName now points to a string object containing the string"JamesGosling". Perhaps that is not what
we were after. So use this instead:

String tName = tFirstName + " " + tSurname;

The string concatenation operator is very flexible in that it will convert any operand (that is permitted) into a string.
Here is an example:

Point tFirstPoint = new Point(100, 200);
String tLine = "The point has the value " + tFirstPoint;
System.out.println(tLine);

This will output:

The point has the value java.awt.Point[x=100,y=200]

If you have a long string literal, the string concatenation operator can be used to help in the layout of the text. For
example, the statement:

System.out.println("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

can instead be written as:

System.out.println("Lister glared at Rimmer." +
" \"You really are a smeghead\", he said.");

15

Getting started with Java

3.7 A program that uses these ideas about Strings
Suppose we want a program that takes a person’s name arranged asFirstName Surnameand outputs it in the
formatSurname, InitialwhereInitial is the first letter of theFirstName. We will also suppose that the output must
be displayed inupper-case. Here is a program that does this for the name"James Gosling":

0216: public class SimpleString { // SimpleString.java
0217: public static void main(final String[] pArgs) {
0218: final String tName = new String("James Gosling");
0219: System.out.println(tName);
0220: final char tFirstChar = tName.charAt(0);
0221: final int tPositionOfSpace = tName.indexOf(" ");
0222: final String tSurname = tName.substring(tPositionOfSpace + 1);
0223: String tLabel = tSurname + ", " + tFirstChar;
0224: tLabel = tLabel.toUpperCase();
0225: System.out.println(tLabel);
0226: }
0227: }

The twoprintlns of this program produce the following output:

James Gosling
GOSLING, J

3.8 The class StringBuffer

Besides the classString, there is another class calledStringBuffer (which is also in thejava.lang package).
When you wish to build up a string gradually by performing a lot of string manipulation, it is more efficient
to use aStringBuffer rather than create a lot ofString objects. If you have aStringBuffer variable
called tStringBuffer, you can applytoString method to the variable in order to create aString from
tStringBuffer:

0228: public static String reverse(String source) {
0229: int charNum;
0230: int numChars = source.length();
0231: StringBuffer temp = new StringBuffer(numChars);
0232: for (charNum = numChars-1; charNum>=0; charNum--) {
0233: temp.append(source.charAt(charNum));
0234: }
0235: return temp.toString();
0236: }

4 Using classes for data abstraction

4.1 Introduction
Typically a program has to maintain several data structures each of which is manipulated in many different ways.
It is best for the pieces of code that manipulate a particular data structure to be located in a small number of
functions. And it would be desirable if the program could be written so that each data structure can only be
accessed from its associated functions, i.e., it is not directly accessible to the rest of the program. In this way,
we would then prevent a data structure from accidentally being misused. What we want is a way of building a
wall around a data structure and the functions that manipulate it, and only allowing some of these functions to be
accessible from outside the wall. Modern programming languages have a construct to do this: for example, Ada
has packages, Fortran90 and Modula-2 both have modules, and C++ and Java both have classes.

In this section, we look at how to write our own class declarations.

4.2 Using a class declaration to define your own type
There are two main characteristics to atype:

• a type has a set of values associated with it;

• a type has a set of operations that are permitted on these values.

For example, the typeint refers to the set of integer values from some large negative value to some large positive
value, together with operations such as addition and subtraction (denoted by+ and-).

One approach to writing a program is to identify the objects of the problem that you need to represent in the
program. Each object can be in a number of states (i.e., may possess one of a number of different values) and has
a set of operations that can be performed on it.

Although some of these objects can be realised in your program by a variable of a type that is pre-defined in the
programming language you are using, it would be useful to be able to define your own types to represent the other
objects. The process of identifying the types needed for these objects is referred to asdata abstraction.

16

4.3 A class calledDate

4.3 A class called Date

In Java, it is possible to use aclass declarationto define your own type. For example, suppose that it is necessary
to manipulate some dates in a program. We can think of dates as being composed of three parts, the day, month
and year. Operations that are performed on dates include constructing dates, copying dates, comparing two dates,
getting the day, month and year parts of a date, and performing input-output for values that are dates.

4.4 Stage A: providing a primitive version of the class Date

To begin with, we will produce a class declaration that is just able to represent values that are dates: it provides no
operations, and so there will be little that we can do with these date values.

Within each object of this class, threeints will be used to represent the year, month and day parts of a date. Here
is the class declaration:

0237: // A class for representing values that are dates. // Date.java
0238: public class Date
0239: {
0240: public int year;
0241: public int month;
0242: public int day;
0243: }

This class declaration for the classDate needs to be stored in the fileDate.java.

Here is a program that uses the classDate. It is calledNoelProg, and so these lines need to be stored in the file
NoelProg.java:

0244: // This program creates an object of the class Date // NoelProg.java
0245: // and then sets its fields to represent Christmas Day 1999.
0246: public class NoelProg
0247: {
0248: public static void main(final String[] pArgs)
0249: {
0250: final Date tNoelDate = new Date();
0251: tNoelDate.year = 1999;
0252: tNoelDate.month = 12;
0253: tNoelDate.day = 25;
0254: System.out.println(tNoelDate.year + "-" +
0255: tNoelDate.month + "-" + tNoelDate.day);
0256: }
0257: }

When we want to execute theNoelProg program, we first have to compile the two pieces of Java source code:

javac Date.java
javac NoelProg.java

This produces the filesDate.class andNoelProg.class. Since it is the fileNoelProg.java that contains the
main method, we can execute the program by typing:

java NoelProg

What does theNoelProg program do? The first statement:

final Date tNoelDate = new Date();

is a declaration. The left-hand side establishes a reference variable calledtNoelDate. The initializer on the
right-hand side is aclass instance creation expression:

new Date()

This creates an object that is just big enough to hold the fields of the class, i.e., the three fields calledyear, month
andday.

Each field will be initialized to a value which depends on the type of the field. The default values for fields were
given earlier. As the three fields of the classDate have the typeint, they will be initialized to zero. The initializer
causestNoelDate to be assigned a value that points to this object.

Following the declaration oftNoelDate, there are three assignment statements that assign values to each of these
three fields. For example:

tNoelDate.year = 1999;

17

Getting started with Java

puts a value in theyear field of tNoelDate. Here thedot notationintroduced earlier is being used. Although
it is possible to assign values to the year, month and day fields that do not represent a date, we will ignore this
deficiency.

The last statement of the program outputs the line:

1999-12-25

Here is some jargon: a piece of code that uses another class is said to be aclient of the class. So the program
NoelProg is aclient of the classDate.

Although this is exciting because we have declared this class ourselves, there is nothing new about the way in
which we are using the class. It is much like what we did with the classPoint earlier.

4.5 Stage B: adding a constructor and a method declaration
4.5.1 Stage B1: adding a constructor declaration

The three assignment statements in theNoelProg program (given above) ensure that theDate object has the
values that we want it to have. When we create an object, we will frequently want to assign values to all of the
fields of the object. For this reason, Java allows class declarations to haveconstructors.

With a class to represent dates, an obvious constructor is one that creates a date object from three integers:

final Date tNoelDate = new Date(1999, 12, 25);

Here theclass instance creation expressionuses a constructor that has threeint arguments. This is only possible
if the class declaration forDate has aconstructor declarationthat has threeint arguments:

public Date(final int pYear, final int pMonth, final int pDay)
{

year = pYear;
month = pMonth;
day = pDay;

}

In many ways, a constructor looks like a method declaration. However, there are two differences: there is no result
type and the declaration has the same name as the class.

So, when the declaration:

final Date tNoelDate = new Date(1999, 12, 25);

is executed, first the object is constructed with default initial values, and then the constructor is executed. So, the
values 1999, 12, 25 are assigned topYear, pMonth andpDay, and then the block of the constructor leads to the
following statements being executed:

year = 1999;
month = 12;
day = 25;

A constructor can refer to the fields of the object being initialized by using the names of the fields. So these
statements result in the fields of the object having their values changed. The final act of the declaration is to make
tNoelDate refer to the object that has just been created by theclass instance creation expression.

After this declaration, theNoelProg program executes:

tNoelDate.day++;

This statement increases the value of theday field of this object by 1.

4.5.2 Stage B2: using a method to display the value of an object

TheNoelProg program that was given earlier outputs the value of aDate object by using:

System.out.println(tNoelDate.year + "-" +
tNoelDate.month + "-" + tNoelDate.day);

Displaying the value of an object is a common task and:

• to save us from writing the above code each time we want to output a date;

• to ensure that we get consistent output;

18

4.6 Grouping fields and methods together to implement a type

it is useful to put the code for outputting a date into a method.

The following class declaration forDate includes a method declaration for a method calleddisplay:

0258: // A class for representing values that are dates. // Date.java
0259: public class Date
0260: {
0261: public int year;
0262: public int month;
0263: public int day;
0264: public Date(final int pYear, final int pMonth, final int pDay)
0265: {
0266: year = pYear;
0267: month = pMonth;
0268: day = pDay;
0269: }
0270: public void display()
0271: {
0272: System.out.println(year + "-" + month/10 + month%10 +
0273: "-" + day/10 + day%10);
0274: }
0275: }

Its use is illustrated by this version of theNoelProg program:

0276: // This program creates an object of class Date // NoelProg.java
0277: // representing Christmas Day 1999, then moves
0278: // the day field on by 1, and then outputs the new date.
0279: public class NoelProg
0280: {
0281: public static void main(final String[] pArgs)
0282: {
0283: final Date tNoelDate = new Date(1999, 12, 25);
0284: tNoelDate.day++;
0285: tNoelDate.display();
0286: }
0287: }

When theNoelProg program executes the statement:

tNoelDate.display();

the method calleddisplay will get called, and it will be applied to the object pointed to by thetNoelDate
variable. When the block ofdisplay is executed, i.e., when the statement:

System.out.println(year + "-" + month/10 + month%10 + "-" + day/10 + day%10);

is executed, the references toyear, month and day are references to theyear, month and day fields of
tNoelDate. The uses of/10 and%10 ensure that two digits are always output for the month and day values.

The call of this method will output the line:

1999-12-26

4.6 Grouping fields and methods together to implement a type
The above class declaration forDate not only has the declaration of three fields (year, month andday): it also
has the declaration of a method (display). Earlier, it was suggested that the two main characteristics of a type
are a set of values and some operations to perform on those values. So, one of the major attractions of a class
declaration is that it allows us to group together:

• fields to implement the values of a type;

• methods to implement the operations of a type.

The fields and methods are sometimes referred to as themembers of the class.

4.7 Stage C: hiding fields, providing access methods and toString

4.7.1 Stage C1: hiding the fields and accessing them using methods

With the previous class declaration for a date, the fields of an object are directly accessible from a client,
i.e., a program likeNoelProg can refer to theday field of the object pointed to bytNoelDate by using
tNoelDate.day. It can do this because, in the class declaration, the fields have apublic modifier, e.g.:

public int day;

19

Getting started with Java

Back in the real world, when you want to get off a bus, you usually indicate this by signalling to the bus driver in
some way, e.g., by pressing a button that rings a bell. Giving everyone a brake pedal would not be a good idea! In
the same way, it is unusual to expose the fields of an object to a client. Instead of making a fieldpublic, we will
make itprivate and usually we will provide some methods to allow access to the field. Such methods are called
access methods.

So in the following class declaration forDate the three fields for year, month and day have been madeprivate:

private int iYear;
private int iMonth;
private int iDay;

At the same time, the names of these fields have been changed. In this Guide, thei prefix will be used for entities
that areinternal to a class. You can also remember the meaning ofi because it is also a letter of the words hidden
and private.

0288: // A class for representing values that are dates. // Date.java
0289: public class Date
0290: {
0291: private int iYear;
0292: private int iMonth;
0293: private int iDay;
0294: public Date(final int pYear, final int pMonth, final int pDay)
0295: {
0296: iYear = pYear;
0297: iMonth = pMonth;
0298: iDay = pDay;
0299: }
0300: public int getYear()
0301: {
0302: return iYear;
0303: }
0304: public int getMonth()
0305: {
0306: return iMonth;
0307: }
0308: public int getDay()
0309: {
0310: return iDay;
0311: }
0312: public void setYear(final int pYear)
0313: {
0314: iYear = pYear;
0315: }
0316: public void setMonth(final int pMonth)
0317: {
0318: iMonth = pMonth;
0319: }
0320: public void setDay(final int pDay)
0321: {
0322: iDay = pDay;
0323: }
0324: public String toString()
0325: {
0326: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0327: }
0328: }

The above class declaration also provides six access methods calledgetYear, getMonth, getDay, setYear,
setMonth andsetDay. Two of these are used by the following version of theNoelProg program:

0329: // This program creates an object of class Date // NoelProg.java
0330: // representing Christmas Day 1999, then moves the
0331: // day component on by 1, and then outputs the new date.
0332: public class NoelProg
0333: {
0334: public static void main(final String[] pArgs)
0335: {
0336: final Date tNoelDate = new Date(1999, 12, 25);
0337: final int tDay = tNoelDate.getDay();
0338: tNoelDate.setDay(tDay + 1);
0339: System.out.println(tNoelDate.toString());
0340: System.out.println(tNoelDate);
0341: }
0342: }
0343:

When the program callsgetDay as intNoelDate.getDay(), the block ofgetDay will execute the statement:

return iDay;

20

4.8 Using the default version oftoString

So the value of theiDay field of the object that is the target of the method invocation is returned. In the case of
theNoelProg program,getDay is being applied to the object pointed to bytNoelDate, and the method returns
the value of itsiDay field. So, 25 gets returned.

In the next statement, the program executes:

tNoelDate.setDay(tDay + 1);

So pDay (the parameter ofsetDay) is assigned the value 26 and this value is used in the block ofsetDay to
changeiDay to 26. Once again, the object pointed to bytNoelDate is the target of this call and so it is this
object’siDay field that is changed to 26.

The technique of hiding fields behind access methods is an important one. It is calleddata encapsulation(or
information hiding). If you look at the WWW pages for the Core APIs you will find very few classes that have
public fields. Possibly the only ones are in the classesjava.awt.Point andjava.awt.Rectangle.

4.7.2 Stage C2: using toString instead of display

Although in Stage B2, we found it useful to introduce a method (display) which usesprintln to display the
value of aDate object, in Java it is more usual:

• for a class to declare a method (calledtoString) that returns a string that is some textual representation of
the value;

• for a client to do whatever it wants with the string, e.g., one possibility being to callprint or println to
output the string.

So, instead of having a method calleddisplay that callsprintln, the version of the classDate given above
declares a method calledtoString that just returns a string thatNoelProg passes as an argument toprintln:

System.out.println(tNoelDate.toString());

WhentoString gets called, it just executes:

return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;

You can see that the result type oftoString is the typeString. So the execution of this return statement forms
a string consisting of the concatenation of theiYear field of tNoelDate, a hyphen, the two digits of theiMonth
field oftNoelDate, another hyphen, and then the two digits of theiDay field oftNoelDate, e.g.,"1999-12-25".
This is the string thatNoelProg passes as an argument toprintln.

It is usual to call this methodtoString. The reason for this is that the statement:

System.out.println(tNoelDate.toString());

can be abbreviated to:

System.out.println(tNoelDate);

This is because bothprint andprintln are defined so that if a variable of a reference type is passed as an
argument then that type’stoString method is called.

4.8 Using the default version of toString
If you provide a class declaration but fail to provide atoString method, it is still possible for a program to apply
thetoString method to an object of the class. For example, if thetoString declaration ofDate’s declaration is
removed, theNoelProg program is still a valid program. When it is run, the program will execute thetoString
method of a class calledObject. The two calls ofprintln would then produce output that is something like:

Date@80cb419
Date@80cb419

This is the name of the class, followed by an@, followed by thehashcodeof the object (given in the hexadecimal
notation).

One of the key aspects of an object-oriented programming language such as Java isinheritance. This is a
topic which will be described later. What we need to know at this stage is that a class isderived, by default,
from a class calledObject (belonging to the packagejava.lang). It is said to be asubclassof the class
Object. This means that, if a program applies a method to an object, and the class of the object does not
provide the method, but it is provided by the classObject, thenObject’s method will be called. The WWW

21

Getting started with Java

pagejavaapi:java/lang/Object.html contains a list of the methods provided by the classObject: they are
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString andwait.

On the WWW pagejavaapi:java/lang/Object.html#toString(), it says: ‘ In general, thetoString
method returns a string thattextually representsthis object. The result should be a concise but informative
representation that is easy for a person to read. It is recommended that all subclasses override this method.
’ And this is exactly what is happening above: the definition oftoString given in the class declaration for
Date overridesthe one given inObject.

4.9 Stage D: providing class variables, class methods and class constants
If a class declaration includes a field, then every object that is of this class will include this field. Such a field is
called aninstance variable. It is also possible to have a field that is associated with the class rather than with each
object of the class. Such a field is called aclass variable, and it is indicated by using astatic modifier.

A superficial example would be a class declaration that has a field that is used to count how many times methods
of the class have been called:

private static int tNumberOfCalls = 0;

In order for this to work, we would need to add the statement:

tNumberOfCalls++:

to each of the methods of the class. Here is such a class declaration:

0344: // A class for representing values that are dates.
0345: // Barry Cornelius, 20th September 1999
0346: import java.util. StringTokenizer;
0347: public class Date
0348: {
0349: private static int iNumberOfCalls = 0;
0350: private int iYear;
0351: private int iMonth;
0352: private int iDay;
0353: public static int getNumberOfCalls()
0354: {
0355: return iNumberOfCalls;
0356: }
0357: public Date(final int pYear, final int pMonth, final int pDay)
0358: {
0359: iNumberOfCalls++;
0360: iYear = pYear;
0361: iMonth = pMonth;
0362: iDay = pDay;
0363: }
0364: public int getYear()
0365: {
0366: iNumberOfCalls++;
0367: return iYear;
0368: }
0369: ...
0370: public void setYear(final int pYear)
0371: {
0372: iNumberOfCalls++;
0373: iYear = pYear;
0374: }
0375: ...
0376: public String toString()
0377: {
0378: iNumberOfCalls++;
0379: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0380: }
0381: }

A method that can be applied to any object of its class is called aninstance method. It is also possible for a class
to have standalone methods: such a method is called aclass method.

So we could add to theDate declaration a method that returns the value of the class variableiNumberOfCalls,
i.e., that returns the number of times methods of the class have been called. Such a method declaration appears in
the above class declaration. Note that it is easy to detect a class method because its declaration includesstatic.

A class method is called by putting the name of the class on the left of the dot. An example of the call of
getNumberOfCalls() is shown in the following version of theNoelProg program. It outputs the value 7:

0382: // This program creates objects of the version of the // NoelProg.java
0383: // class Date that keeps track of the number of calls of its methods.
0384: public class NoelProg
0385: {

22

4.10 Stage E: the final version of theDate class

0386: public static void main(final String[] pArgs)
0387: {
0388: final Date tNoelDate = new Date(1999, 12, 25); // 1
0389: final int tDay = tNoelDate.getDay(); // 2
0390: tNoelDate.setDay(tDay + 1); // 3
0391: System.out.println(tNoelDate.toString()); // 4
0392: System.out.println(tNoelDate); // 5
0393: final Date tAnotherDate = new Date(2000, 12, 25); // 6
0394: System.out.println(tAnotherDate); // 7
0395: System.out.println("number of calls is: " + Date.getNumberOfCalls());
0396: }
0397: }
0398:

As a class method is not applied to an instance of a class, it does not make sense to refer to non-static members
(e.g.,iDay andtoString) in the block of the method of a class method (e.g.,getNumberOfCalls). Any attempt
to do this produces a compilation error likeCan’t make a static reference to nonstatic variable iDay in class Date.

If it is appropriate for a class to have a constant associated with it, then you can use a class variable whose
declaration includes thefinal modifier. For example, the classjava.lang.Math includes:

public static final double PI = 3.14159265358979323846;

4.10 Stage E: the final version of the Date class
4.10.1 Stage E1: the text of the final version of the Date class

The final version of the class declaration forDate is given below. It contains a number of new features.

0399: // A class for representing values that are dates. // Date.java
0400: import java.util. StringTokenizer;
0401: public class Date
0402: {
0403: private int iYear;
0404: private int iMonth;
0405: private int iDay;
0406: public Date()
0407: {
0408: this(0, 0, 0);
0409: }
0410: public Date(final Date pDate)
0411: {
0412: this(pDate.iYear, pDate.iMonth, pDate.iDay);
0413: }
0414: public Date(final int pYear, final int pMonth, final int pDay)
0415: {
0416: iYear = pYear; iMonth = pMonth; iDay = pDay;
0417: }
0418: public Date(final String pDateString)
0419: {
0420: try
0421: {
0422: final StringTokenizer tTokens = new StringTokenizer(pDateString, "-");
0423: final String tYearString = tTokens.nextToken();
0424: iYear = Integer.parseInt(tYearString);
0425: final String tMonthString = tTokens.nextToken();
0426: iMonth = Integer.parseInt(tMonthString);
0427: final String tDayString = tTokens.nextToken();
0428: iDay = Integer.parseInt(tDayString);
0429: }
0430: catch(Exception pException)
0431: {
0432: iYear = 0; iMonth = 0; iDay = 0;
0433: }
0434: }
0435: public int getYear()
0436: {
0437: return iYear;
0438: }
0439: public int getMonth()
0440: {
0441: return iMonth;
0442: }
0443: public int getDay()
0444: {
0445: return iDay;
0446: }
0447: public void setYear(final int pYear)
0448: {
0449: iYear = pYear;
0450: }
0451: public void setMonth(final int pMonth)
0452: {
0453: iMonth = pMonth;

23

Getting started with Java

0454: }
0455: public void setDay(final int pDay)
0456: {
0457: iDay = pDay;
0458: }
0459: public boolean equals(final Object pObject)
0460: {
0461: if (! (pObject instanceof Date))
0462: {
0463: return false;
0464: }
0465: return iYear==((Date)pObject).iYear &&
0466: iMonth==((Date)pObject).iMonth &&
0467: iDay==((Date)pObject).iDay;
0468: }
0469: public int hashCode()
0470: {
0471: return iYear*416 + iMonth*32 + iDay;
0472: }
0473: public String toString()
0474: {
0475: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0476: }
0477: }

4.10.2 Stage E2: providing other constructors

Earlier, we saw that a class declaration can have several method declarations each having the same name provided
the types of the parameters of each declaration are different (method overloading). In the same way, a class
declaration can provide several constructors so long as the types of the parameters of each constructor are different.

Although we have a means of outputting the value of a date object, we currently have no means of reading a textual
representation of a date from the keyboard or from a file. Obviously, we could usereadLine to read a textual
representation of a date and store it in a string. What we then need is a way of parsing the string and forming an
appropriateDate object. The above class declaration contains a constructor that can be used to initialize a new
Date object from a string (as well as one for initializing a date from three integers). It could be used as follows:

Date tTodaysDate = new Date("1999-09-26");

The above class declaration forDate also contains the constructor:

public Date()
{

this(0, 0, 0);
}

This constructor is one which has no parameters, and so it would get used for the following declaration:

Date tDate = new Date();

The body of this constructor contains some magic: thethis means ‘use the constructor that you will find
elsewhere in this class declaration that matches the arguments following thethis’. So since the0, 0, 0 are
threeints then thethis(0, 0, 0) leads to using the constructor that has threeints as parameters. If you use
this in this way, thethis statement must appear as the first statement of the constructor.

By this means, you can provide a constructor that has no arguments in order to generate an object with default
values (that you can choose).

Earlier it was mentioned that the classes of the Core APIs use two different ways of producing a copy of an object:

• a class sometimes provides a method calledclone;

• a class sometimes provides a suitable constructor.

Getting the code of aclone method completely right is difficult: instead, the above class declaration provides
Date with a constructor that can be used for cloning.

Here is an example of how this constructor can be used. If we first do something like:

final Date tNoelDate = new Date(1999, 12, 25);

we can later pass this reference variable as an argument to the new constructor:

final Date tHappyDate = new Date(tNoelDate);

We finish up with two reference variables pointing to two different objects that have the same value.

24

4.10 Stage E: the final version of theDate class

4.10.3 Stage E3: defining a method called equals

If a client usesDate variables, then using== on these variables only determines whether they are pointing to
the same object. However, if a class declares an appropriate method calledequals, then a client can determine
whether the dates are the same. So, when you declare a class, it is important to declare a method calledequals.
This is done in the class declaration forDate that is given above.

If we declare a class and fail to declare a method calledequals, thenequals can still be applied to an object of
the class because the classjava.lang.Object has a method calledequals. However,Object’s equals will
just tell you whether the target and the argument point to the same objects (i.e., it does the same as==): it will not
compare the values of the two objects.

The above declaration ofequals has the following header:

public boolean equals(final Object pObject);

rather than:

public boolean equals(final Date pDate);

So why would you want to work with a parameter of typeObject? Well, one important reason will occur when we
look at forming collections of data: for example, we may be wanting to represent a collection of dates, a collection
of strings, a collection of points, and so on. Java has a number of useful classes that can be used to manipulate
collections. So as to make these classes generally useful the methods of these classes are written in terms of the
typeObject. For example:

public boolean add(Object pObject);
public void add(int pIndex, Object pObject);
public boolean contains(Object pObject);
public Object get(int pIndex);
public boolean remove(Object pObject);
public Object remove(int pIndex);

are methods that can be used to perform operations on one kind of collection (alist). These collection classes are
discussed in ITS Guide 108Advanced Java.

These collection classes are wonderful because they allow us to create dynamically growing collections of objects.
But the person who wrote the code of the methods of these collection classes was not in a position to know what
sort of objects you would be storing in a collection. When you call a method likecontains (that finds out whether
an object is in the collection), behind the scenescontains will call a method with the header:

public boolean equals(Object pObject);

Now, if you are storingDates in the collection, and if in the classDate you have declaredequalswith a parameter
of typeDate:

public boolean equals(final Date pDate);

then thisequals will not be called (because the type of the parameter is different). Instead, the method called
equals from the classObject will be called: as explained earlier this returns true if and only if the target and the
argument point to the same object (and not if the two objects have the same values). This would be an inappropriate
method to be used bycontains. So instead we declareequals with a parameter of typeObject.

Such a method declarationoverridesthepublic boolean equals(Object pObject) that is declared in the
classjava.lang.Object.

4.10.4 Stage E4: adding hashCode (to help with using collections)

You can imagine that when checking whether a collection contains a particular object it can be quite time-
consuming to useequals on each of the objects of the collection in turn. Instead, clever techniques are used
to reduce the number of items of the collection that need to be checked. Some of these techniques require there to
be an integer (called ahashcode) associated with each of the possible values that can be stored in the collection.
And to speed up the execution of methods likecontains, the objects in the collection are arranged so that the
ones that have the same hashcode are kept together.

In order to support this, the classjava.lang.Object has a method calledhashCode:

public int hashCode();

The integer that is returned is one that is unique for that object.

However, this method is inappropriate when a class declares a method calledequals. What we need to do is to
provide our own version ofhashCode thatoverrides the one ofjava.lang.Object.

25

Getting started with Java

The WWW page that documentshashCode says: ‘If two objects are equal according to theequals(Object)
method, then calling thehashCode method on each of the two objects must produce the same integer result. It is
not required that if two objects are unequal according to theequals(Object) method, then calling thehashCode
method on each of the two objects must produce distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may improve the performance of hashtables.’

The above class declaration gives one possibility forhashCode. However, there are many other possibilities.
Instead, you could gethashCode to return the value ofiYear*10000 + iMonth*100 + iDay. Although it
would still work if you got it to return the value ofiYear + iMonth + iDay, or the valueiDay, or the value42,
these will lead to poorer performance as the same integer value is being produced for unequal objects.

4.10.5 Stage E5: using the new version of the Date class

The following program uses some of the facilities of the new class declaration forDate:

0478: // This program makes tNoelDate, a variable of // NoelProg.java
0479: // the class type Date, refer to an object of class Date
0480: // representing Christmas Day 1999.
0481: // It then makes tOtherDate refer to another Date object,
0482: // and then uses both == and equals to compare the two variables.
0483: import java.io. BufferedReader;
0484: import java.io. InputStreamReader;
0485: import java.io. IOException;
0486: public class NoelProg
0487: {
0488: public static void main(final String[] pArgs) throws IOException
0489: {
0490: final Date tNoelDate = new Date(1999, 12, 25);
0491: System.out.println("tNoelDate is: " + tNoelDate);
0492: final BufferedReader tKeyboard =
0493: new BufferedReader(new InputStreamReader(System.in));
0494: System.out.print("Type in the date, e.g., 1999-12-25: ");
0495: System.out.flush();
0496: final String tOtherDateString = tKeyboard.readLine();
0497: final Date tOtherDate = new Date(tOtherDateString);
0498: System.out.println("tOtherDate is: " + tOtherDate);
0499: System.out.println("tUsingOperator: " + (tNoelDate==tOtherDate));
0500: System.out.println("tNoelDate.equals: " + tNoelDate.equals(tOtherDate));
0501: System.out.println("tOtherDate.equals: " + tOtherDate.equals(tNoelDate));
0502: System.out.println("tNoelDate.iIsLeap: " + iIsLeap(tNoelDate));
0503: System.out.println("tOtherDate.iIsLeap: " + iIsLeap(tOtherDate));
0504: }
0505: private static boolean iIsLeap(final Date pDate)
0506: {
0507: int tYear = pDate.getYear();
0508: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);
0509: }
0510: }

4.11 The role of a class
You should view a class declaration as being split into two sections. The text of the headings of the public methods
(together with the names of any public fields) gives information as towhatservices are offered by the class. The
text of the bodies of the public members together with the text of the private members give the details ofhow the
services are to be provided.

The class declaration forDate hides threeints and provides four constructors to create a date and a rather formal
way of accessing the fields of a date by means of the three access methodsgetYear, getMonth andgetDay. This
idea of hiding fields behind access methods is often termedinformation hidingor encapsulation.

It may seem like a complicated way of providing an object and accessing it. However, you should view the class
declaration as documenting a design decision. At the moment we have chosen to represent a date by threeints.
At a later stage, we may feel that that is wrong: for example, we might choose threeshorts, threebytes, or a
singleint giving the number of days since a particular date. Since we have retained control over the access to the
fields of the class by providing access methods, we can make changes like this with only minimal impact to the
code of the program: we know that the only code that needs to be changed is located in the methods of the class.

5 Another example of data abstraction: the class Person

5.1 A class called Person

Here is a class declaration for a class calledPerson. It is rather basic as it can be used to store only a name, a date
of birth and a height:

0511: import java.util.StringTokenizer; // Person.java
0512: public class Person {
0513: public Person() { this("", 0.0F, new Date()); }
0514: public Person(String pString) {
0515: StringTokenizer tTokens = new StringTokenizer(pString, "%");

26

5.2 Using the classPerson

0516: oName = tTokens.nextToken();
0517: iHeight = Float.valueOf(tTokens.nextToken()).floatValue();
0518: oDateOfBirth = new Date(tTokens.nextToken());
0519: }
0520: public Person(String pName, float pHeight, Date pDate) {
0521: oName = pName; iHeight = pHeight; oDateOfBirth = pDate;
0522: }
0523: public String getName() { return oName; }
0524: public boolean equals(Object pObject) {
0525: return oName.equals(((Person) pObject).oName);
0526: }
0527: public String toString() {
0528: return oName + "%" + iHeight + "%" + oDateOfBirth;
0529: }
0530: protected String oName;
0531: private float iHeight;
0532: protected Date oDateOfBirth;
0533: }

Although this class declaration hasprotected fields, for the time being treat theprotected fields as if they
wereprivate fields. The distinction between the two will be discussed later.

5.2 Using the class Person

And here is a Java application that tests some aspects of the classPerson:

0534: import java.io.BufferedReader; // UsePerson.java
0535: import java.io.InputStreamReader;
0536: import java.io.IOException;
0537: public class UsePerson {
0538: public static void main(String[] args) throws IOException {
0539: BufferedReader input =
0540: new BufferedReader(new InputStreamReader(System.in));
0541: Person tGirlfriend =
0542: new Person("Smith", 5.5F, new Date(1973, 2, 27));
0543: System.out.print("Girlfriend> "); System.out.println(tGirlfriend);
0544: Person tWife = new Person();
0545: System.out.print("Wife> "); System.out.println(tWife);
0546: Person tBaby;
0547: tWife = tGirlfriend;
0548: System.out.print("Wife> "); System.out.println(tWife);
0549: tBaby = new Person(input.readLine());
0550: System.out.print("Baby> "); System.out.println(tBaby);
0551: System.out.println(tWife.getName().equals(tBaby.getName()));
0552: }
0553: }

When this program is executed, it produces output like:

Girlfriend> Smith%5.5%1973-02-27
Wife> %0.0%0-00-00
Wife> Smith%5.5%1973-02-27
Smith%1.5%1990-4-9
Baby> Smith%1.5%1990-04-09
true

6 Grouping classes into packages

6.1 Package declarations
By default, a class/interface declaration belongs to thedefault package. And.class files are stored in the current
directory.

It is useful to be able to group related classes/interfaces together. And for this, Java has the concept of apackage.

You can use apackage declarationto indicate that a class/interface belongs to a particular package. For example,
suppose you have a file containing the text of a class calledDate and that you want it to belong to a package called
dateutils. You just need to insert a package declaration at the start of the file:

package dateutils;

Any class/interface declaration that contains this line belongs to this package. The.class files associated with
these files of source code must appear in a directory calleddateutils. And any client that wishes to use this
class could use animport declaration, such as:

import dateutils.Date;

If instead some class/interface declarations each have a package declaration that takes the form:

27

Getting started with Java

package utils.dateutils;

then the.class files should be in a subdirectory calleddateutils that is itself in a directory calledutils. Any
client that wishes to use the class calledDate belonging to this package could use the import declaration:

import utils.dateutils.Date;

6.2 Setting the CLASSPATH
When the Java compiler/interpreter is executed, it looks for any packages in the directories that are mentioned in
theCLASSPATH. By default, the CLASSPATH is empty, and if this is the case it will instead look for packages in
the current directory.

So, if you have put some class/interface declarations into a package calledutils.dateutils, the utils
directory must be a subdirectory of the current directory.

Although the use of a subdirectory of the current directory is a useful place to hide the files of a package, this
mechanism can be too restrictive. For example, if you build a number of useful classes and store them in one or
more packages, it would be useful to put these in a standard place. The Java compiler/interpreter allows you to
specify other directories in which it can find packages by setting the CLASSPATH.

The way in which this is done depends on whether you are using a Unix or an MS-DOS command line. When
using Unix, then for csh/tcsh, an example is:

setenv CLASSPATH .:/users/dcl0bjc/classes:/users/dxy3abc/public_html

or, if you are using sh, ksh or bash, this would be:

CLASSPATH=.:/users/dcl0bjc/classes:/users/dxy3abc/public_html
export CLASSPATH

At an MS-DOS prompt, you could type something like:

set CLASSPATH=.;C:\project\classes;D:\myjava

Note that for Unix, items in the list of directories are separated by a colon, whereas the semicolon is used at
an MS-DOS prompt. If you also want the compiler/interpreter to look in the current directory, then it must be
included in the CLASSPATH: a dot can be used in the CLASSPATH in order to refer to this directory.

The Java compiler/interpreter knows how to find the packages that form part of Java’s Development Kit, and so
there is no need to include anything in the CLASSPATH to help the compiler/interpreter find these packages.
Note: this was not the case with earlier versions of the Development Kit.

6.3 It’s a small world: how can unique names be generated?
Java specifies a convention for generating globally unique names for classes/interfaces. The convention is that a
package name starts with the components of the author’s Internet address (in reverse order). Examples are:

organization domain name an example of a class/interface name
Sun Microsystems sun.com com.sun.xxx.yyyyy
IBM ibm.com com.ibm.wwww.vvv.uuuuu
University of Durham dur.ac.uk uk.ac.dur.aaaaa.bbb.ccc.dddd

If the University of Durham wanted to establish a convention for the uniqueness of the names of classes/interfaces,
it could utilise a person’s username. So I might prefer to put theDate class mentioned earlier into the package:

package uk.ac.dur.dcl0bjc.utils.dateutils;

And if I wanted this package to be accessible from the WWW (see below), then it would be sensible to put the
files of this package into the directory:

/users/dcl0bjc/public_html/uk/ac/dur/dcl0bjc/utils/dateutils

Having done this, if you needed to use this package in a Java application, you would need something like:

import uk.ac.dur.dcl0bjc.utils.dateutils.Date;

and you would need to set the CLASSPATH:

setenv CLASSPATH .:/users/dcl0bjc/public_html

in order for the Java compiler/interpreter to find the.class files.

The reason for putting these.class files in a directory that is below a user’spublic_html directory is that they
can then be accessed by a Java applet running on a WWW browser elsewhere in the world. You can use the
CODEBASE attribute of anAPPLET/OBJECT/EMBED tag if you want to indicate that an applet’s.class files are all
stored in a particular place, e.g.:

CODEBASE=http://www.dur.ac.uk/barry,cornelius/

28

6.4 Compiling from a private directory into one that is visible from the WWW

6.4 Compiling from a private directory into one that is visible from the WWW
Although it may be useful to put your.class files into a publically accessible place, you may want to hide the
source files. So, if the current directory contains some Java source code and the current directory is inaccessible
from the WWW, you can easily arrange for the Java compiler to put the.class files into a different directory (a
directory that is accessible from the WWW) by using thed option of thejavac command, e.g.:

setenv CLASSPATH .:/users/dcl0bjc/public_html
javac -d /users/dcl0bjc/public_html Date.java

If the file Date.java contains the line:

package uk.ac.dur.dcl0bjc.utils.dateutils;

then the directory/users/dcl0bjc/public_html/uk/ac/dur/dcl0bjc/utils/dateutils will be used by
the compiler to store theDate.class file. If need be, it will automatically create any directories that do not exist.

7 Object-oriented programming

7.1 Introduction
We have seen that classes can be used to describe objects existing in the problems that you wish to solve. Although
the programs we have written have used objects, many people view this as justobject-based programming: you
need to use bothinheritanceanddynamic bindingbefore you are doingobject-oriented programming. These two
topics form the main thrust of this section.

7.2 Using inheritance to form a subclass
So far, the classes we have produced have been for objects that are distinct from one another: a date is nothing like
a person, and vice-versa. However, there will be occasions when a new class is in fact a more specialized form of
another class.

For example, if we now have to produce a program that manipulates data about students, we will need a class to
represent a student. Such a class will have a lot in common with the class representing a person which we have
already produced. Instead of producing a completely new class for a student, we can derive theStudent class
from thePerson class:

0554: public class Student extends Person {
0555: ...
0556: }

This is calledinheritance: the classStudent is said toinherit from the classPerson: the classStudent is the
subclassand the classPerson is thesuperclass.

Note: you cannot derive a subclass from a class that has the modifierfinal, for example:

0557: public final class String { ... }

Note: unlike C++, in Java, you cannot derive a class from more than one class, i.e., Java does not havemultiple
inheritance.

7.3 A class called Student

Here is a class declaration for the classStudent:

0558: import java.util.StringTokenizer; // Student.java
0559: public class Student extends Person {
0560: public Student(String pName, float pHeight, Date pDateOfBirth,
0561: String pCourseName, int pStudentNumber) {
0562: super(pName, pHeight, pDateOfBirth);
0563: iCourseName = pCourseName; iStudentNumber = pStudentNumber;
0564: }
0565: public int getStudentNumber() { return iStudentNumber; }
0566: public boolean equals(Object pObject) {
0567: return oName.equals(((Student) pObject).oName);
0568: }
0569: public String toString() {
0570: return oName + "=" + oDateOfBirth
0571: + "=" + iCourseName + "=" + iStudentNumber;
0572: }
0573: private String iCourseName;
0574: private int iStudentNumber;
0575: }

Suppose you declare an object to be of the subclass:

29

Getting started with Java

0576: Student tStudent = new Student(...);

As well as having the members of the subclass, the object has all the members of the superclass. So, the object
tStudent has the members:

• Student, getStudentNumber, equals, toString,
iCourseName, iStudentNumber

from the classStudent and the following members:

• Person, Person, Person, getName, equals, toString,
oName, iHeight, oDateOfBirth

from the classPerson.

So an object of the classStudent has five fields that are calledoName, iHeight, oDateOfBirth, iCourseName
andiStudentNumber. The constructor for the classStudent has arguments that are used to initialize not only
the fields of the classStudent but also the fields from the classPerson. In the body of the constructor, a special
method calledsuper is used to initialize the fields of the superclass (Person).

Because each of these five fields is declared to beprivate or protected, they are inaccessible to a client of
the classStudent. However, a client can use any public members of the class or any public members of the
superclass. Examples are:

0577: System.out.println(tStudent.getName());
0578: System.out.println(tStudent.getStudentNumber());

7.4 Package members and protected members
Previously, we have declared members of classes to be eitherpublic or private. We look now at what it means
for a member to have aprotected modifier or to have no modifier at all.

If a member of a class has no modifier at all, it can be accessed by the code of any class within the same package.
Such a member is sometimes called apackage member.

If a member of a class has aprotected modifier, it can be accessed by the code of any class within the same
package or by the code of any subclass (whether or not it is in the same package).

So, the code of any method of a subclass may access anypublic andprotected members of a superclass.
Consider the classPerson again. If we want some members of the classPerson to be accessible inPerson
and in any subclass ofPerson but generally to be inaccessible, then those members can beprotected members
of the classPerson. However, if we want a member of the classPerson to be inaccessible in the code of the
subclass, then it needs to be aprivate member of the classPerson.

The class declaration forPerson hasoName andoDateOfBirth asprotected fields andiHeight as aprivate
field. So the code of a method of the classStudent is able to access the fieldsoName andoDateOfBirth but is
unable to accessiHeight.

Some people argue that it is inappropriate for a subclass to be able to access fields of its superclass: they would
argue that it is better for these fields to beprivate and for the superclass to providepublic methods to access
them.

7.5 Method overriding
You can give a method of a subclass the same name as a method of the superclass. This often occurs when more
appropriate code can be devised for the method of the subclass. This is called methodoverriding. Note: you
cannot override a method that has the modifierfinal (or static or private) in the superclass.

There are two examples of this with thePerson andStudent classes: the methodsequals andtoString appear
in both the superclassPerson and the subclassStudent.

Methodoverridingshould not be confused with methodoverloadingwhich was introduced earlier.

7.6 Using the class Student

Here is a Java application that tests some aspects of the classStudent:

0579: public class UseStudent { // UseStudent.java
0580: public static void main(String[] args) {
0581: Person tPerson = new Person("Jones", 1.6F, new Date(1969,12,25));
0582: System.out.println(tPerson);
0583: Student tStudent =
0584: new Student("Smith", 1.85F, new Date(1970,6,12), "Computing", 27);
0585: System.out.println(tStudent);
0586: tPerson = tStudent;
0587: System.out.println(tPerson);
0588: }
0589: }

30

7.7 Dynamic binding

7.7 Dynamic binding
So far, a reference variable of the typePerson has been given values that causes it to refer to aPerson object.
However, a reference variable can be given a value that causes it to refer to an object of its class orany subclass
of that class. For example, in theUseStudent program, the variabletPerson is first made to refer to an object
of classPerson, but, at the end of the program, it is made to refer to an object of classStudent.

So, suppose you have written a method:

0590: public void task(Person pPerson) {
0591: ...
0592: }

The code of the methodtask is written in terms of the variablepPerson. We can pass as an argument totask an
object that is of classPerson or an object that is of any subclass ofPerson. If the code oftask calls a method and
this method is one that has been overridden in the subclass, then the actual method that is called will depend on
what kind of object has been passed totask. For example, iftask callsequals thenPerson’s equals method
will be called if the object passed as an argument is of classPerson, whereasStudent’s equals method will be
called if the object passed as an argument is of classStudent. So the actual version of theequals method that
will be called is unknown until runtime: it depends on what kind of objectpPerson refers to. This is known as
dynamic binding.

The code of the methodtask will also continue to work if, later, another subclass ofPerson is produced: the
code oftask does not have to be modified every time a new subclass ofPerson is produced.

7.8 Inheritance should be used for is-a relationships
Earlier, we used the classDate when constructing the classPerson, and we have now used the classPerson
when constructing the classStudent. We used inheritance to produce the classStudent from the classPerson,
whereas the classPerson contains a field (calledoDateOfBirth) of typeDate. This is calledcomposition(or
layering): the classPerson is composedof a field of typeDate.

Earlier, we said we used inheritance because the new class ‘is a more specialized form of another class’. It is best
to use inheritance for is-a relationships and composition for has-a relationships. So, one test for deciding whether
to use inheritance or composition is to see whether it makes sense to use the wordsis a or has a. For example,
‘every person is a date’ is nonsense whereas ‘every person has a date for his/her date of birth’ makes sense.

8 Another example of OO programming: 2D shapes

8.1 The class Shape

We can use the following class for objects that are two-dimensional geometrical figures. The class includes a
constructor to create an object representing a shape at some position in two-dimensional space. It also includes a
method calledtranslate that moves a shape to a new position relative to its current position.

0593: public class Shape { // Shape.java
0594: public Shape(int vX, int vY) {
0595: iX = vX; iY = vY;
0596: }
0597: public Shape() { this(0, 0); }
0598: public int getX() { return iX; }
0599: public int getY() { return iY; }
0600: public void translate(int vX, int vY) { iX += vX; iY += vY; }
0601: public boolean equals(Object rObject) {
0602: return iX == ((Shape) rObject).iX && iY == ((Shape) rObject).iY;
0603: }
0604: public String toString() { return iX + ":" + iY; }
0605: private int iX, iY;
0606: }

8.2 The class Circle

Suppose we now want a classCircle to represent shapes that are circles. We can create this class by inheritance
from the classShape as follows:

0607: public class Circle extends Shape { // Circle.java
0608: public Circle(int vRadius, int vX, int vY) {
0609: super(vX, vY); iRadius = vRadius;
0610: }
0611: public Circle() { this(0, 0, 0); }
0612: public int getRadius() { return iRadius; }
0613: public boolean equals(Object rObject) {
0614: return super.equals(rObject) && iRadius == ((Circle)rObject).iRadius;
0615: }
0616: public String toString() { return super.toString() + ":" + iRadius; }
0617: private int iRadius;
0618: }

31

Getting started with Java

Objects of this class have three fieldsiX, iY andiRadius. Once again, the constructor for this class uses the
special method calledsuper:

0619: super(vX, vY);

in order to initialize theiX andiY fields (with the values that are passed throughvX andvY).

The bodies of theequals and thetoString methods show a different use of thesuper keyword. In these
methods, it appears assuper.methodname(...). This notation means: ‘apply the methodmethodnameas
defined in the superclass to the current object’.

In this example, instead of usingsuper.methodname(...), thegetX andgetY methods of the superclass could
be used. For example,toString could be declared as:

0620: public String toString() { return getX() + ":" + getY() + ":" + iRadius; }

Note that:

0621: public String toString() { return iX + ":" + iY + ":" + iRadius; }

would not be possible unless theiX and iY fields of the classShape were changed fromprivate fields to
protected fields.

8.3 The class Rectangle

In a similar way, the classRectangle can also be built from the classShape:

0622: public class Rectangle extends Shape { // Rectangle.java
0623: public Rectangle(int vWidth, int vHeight, int vX, int vY) {
0624: super(vX, vY); iWidth = vWidth; iHeight = vHeight;
0625: }
0626: public Rectangle() { this(0, 0, 0, 0); }
0627: public int getWidth() { return iWidth; }
0628: public int getHeight() { return iHeight; }
0629: public boolean equals(Object rObject) {
0630: return super.equals(rObject)
0631: && iWidth == ((Rectangle) rObject).iWidth
0632: && iHeight == ((Rectangle) rObject).iHeight;
0633: }
0634: public String toString() { return super.toString()
0635: + ":" + iWidth + ":" + iHeight; }
0636: private int iWidth;
0637: private int iHeight;
0638: }

8.4 Using the class Shape and its subclasses
The following program uses the classesShape, Circle andRectangle. It reads some data describing some
shapes from a file calleddata. The file could contain the values: 4, 2, 100, 200, 30, 50, 1, 150, 200, 30, 2,
200, 200, 50, 80, 1, 250, 200 and 40 (where each value is on a separate line of the file). This data is meant to be
interpreted as follows: there are four shapes; the first one is a rectangle with an x-coordinate of 100, a y-coordinate
of 200, a width of 30, a height of 50; the second shape is a circle with an x-coordinate of 150, a y-coordinate of
200, a radius of 30; and so on.

0639: import java.io.BufferedReader; // FileToScreen.java
0640: import java.io.FileReader;
0641: import java.io.IOException;
0642: public class FileToScreen {
0643: public static void main(String[] args) throws IOException {
0644: BufferedReader input =
0645: new BufferedReader(new FileReader("data"));
0646: String line = input.readLine();
0647: int numShapes = Integer.parseInt(line);
0648: Shape[] shapes = new Shape[numShapes];
0649: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
0650: line = input.readLine(); int shape = Integer.parseInt(line);
0651: line = input.readLine(); int x = Integer.parseInt(line);
0652: line = input.readLine(); int y = Integer.parseInt(line);
0653: switch (shape) {
0654: case 1:
0655: line = input.readLine();
0656: int radius = Integer.parseInt(line);
0657: shapes[shapeNumber] = new Circle(radius, x, y);
0658: break;
0659: case 2:
0660: line = input.readLine();
0661: int width = Integer.parseInt(line);
0662: line = input.readLine();

32

9 Exception handling

0663: int height = Integer.parseInt(line);
0664: shapes[shapeNumber] = new Rectangle(width, height, x, y);
0665: break;
0666: }
0667: }
0668: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
0669: Shape tShape = shapes[shapeNumber];
0670: tShape.translate(1, 2);
0671: System.out.println(tShape);
0672: }
0673: }
0674: }

The program stores the details about the shapes in an array calledshapes:

0648: Shape[] shapes = new Shape[numShapes];

and uses the following two statements to put values into the array:

0657: shapes[shapeNumber] = new Circle(radius, x, y);

0664: shapes[shapeNumber] = new Rectangle(width, height, x, y);

So the program does not use the array to store any references to objects of the classShape: instead, each element
is either a reference to aCircle object or a reference to aRectangle object.

At the end of the program, there is afor statement whose aim is to output the details about the shapes that have
been stored. It repeatedly executes the following three statements:

0669: Shape tShape = shapes[shapeNumber];
0670: tShape.translate(1, 2);
0671: System.out.println(tShape);

In the first of these, the variabletShape is made to refer to either aCircle object or aRectangle object. Then
thetranslate method is applied to the object. Because neitherCircle nor Rectangle declare atranslate
method, it will be thetranslate method of the superclass (Shape) that will be used. Finally, theprintln
statement will use eitherCircle’s or Rectangle’s toString method in order to print the shape referred to by
tShape. This is another example of dynamic binding.

When the program is executed with the above data, thisfor statement produces the following output:

101:202:30:50
151:202:30
201:202:50:80
251:202:40

0 2 310

Z
Z

Z
Z

ZZ~

-�������������)

PPPPPPPPPPPPPPq

�
�

�
�

�/

shapes

101 202 30 50 151 202 30 201 202 50 80 251 202 40

9 Exception handling

9.1 What is exception handling?
A method often detects situations which it knows it cannot handle. It may be that the arguments for the method
were inappropriate; it may be that a series of calculations has led to a situation that should not occur; it may be
that its attempt to allocate space usingnew has failed; and so on. What should the programmer of this method do
when such untoward events (exceptions) arise?

The method could output an error message and then terminate execution. However, the user of the method might be
extremely unhappy if this happens: he/she might want to do some ‘cleanup’ code before the program terminates.

Instead, the programmer of the method could return some value that signifies that an error has occurred. However,
returning an error value may be inconvenient to the user of the method as the point of call of the method may not
be the best place to handle the error. So his/her code has to be littered with error-handling code.

Some programming languages allow the code of the method to signify that an exception has occurred and this is
then handled by some code that occurs elsewhere in the program. In Java, atry statementconsists of atry block
together with zero or moreexception handlers (each introduced by the keywordcatch) and an optionalfinally
clause:

33

Getting started with Java

0675: try {
0676: ...
0677: }
0678: catch(...) {
0679: ...
0680: }
0681: catch(...) {
0682: ...
0683: }
0684: finally {
0685: ...
0686: }

A try statement can be used to indicate that a piece of code wishes to handle exceptions. In the code executed
by the try block, athrow statementis used to signify that an exception has occurred. When a throw statement is
executed, control is transferred to the exception handler of the most recently entered try statement containing an
appropriate exception handler. It is possible to write an exception handler that handles all exceptions, and to write
one that re-throws an exception.

How does a try statement end? If an exception occurs, the last-statement-to-be-executed will be in an exception
handler; otherwise, it will be in the try block. The last-statement-to-be-executed may be a statement that causes a
transfer of control (such as areturn, continue or abreak statement) or it may the statement that appears at the
end of the exception handler or the try block. If a try statement has a finally clause, the statements of the finally
clause will then be executed. If the last-statement-to-be-executed is one that causes a transfer of control, the finally
clause will be executed before control is actually transferred to its new destination. So, if a try statement has a
finally clause, it will always be executed.

Because a finally clause provides a way of guaranteeing that some code will be executed before a block is left, it
is sometimes useful to write try statements that have a finally clause but do not have any exception handlers.

9.2 Altering Date to deal with invalid dates
TheDate class given earlier can be modified to deal with invalid dates in the following way:

0687: // A class for representing values that are dates.
0688: // Barry Cornelius, 20th September 1999
0689: import java.util. StringTokenizer;
0690: public class Date
0691: {
0692: private int iYear;
0693: private int iMonth;
0694: private int iDay;
0695: ...
0696: public Date(final int pYear, final int pMonth, final int pDay)
0697: throws InvalidDateException
0698: {
0699: iYear = pYear; iMonth = pMonth; iDay = pDay;
0700: iCheckDate();
0701: }
0702: ...
0703: public int getYear()
0704: {
0705: return iYear;
0706: }
0707: ...
0708: public void setYear(final int pYear)
0709: throws InvalidDateException
0710: {
0711: iYear = pYear;
0712: iCheckDate();
0713: }
0714: ...
0715: private void iCheckDate()
0716: throws InvalidDateException
0717: {
0718: if (iYear<1900 || iYear>2100 ||
0719: iMonth>12 || iDay>31)
0720: {
0721: throw new InvalidDateException();
0722: }
0723: }
0724: }

TheDate class requires a file containing the following supporting class:

0725: // // InvalidDateException.java
0726: public class InvalidDateException extends Exception {
0727: public InvalidDateException() {
0728: super();
0729: }
0730: }

34

10 Interfaces

The following version of theNoelProg program contains some code that catches the exceptions caused by
inappropriate uses of the constructors and methods of this new version of theDate class:

0731: ...
0732: public class NoelProg
0733: {
0734: public static void main(final String[] pArgs)
0735: throws InvalidDateException,IOException
0736: {
0737: final Date tNoelDate = new Date(1999, 12, 25);
0738: System.out.println("tNoelDate is: " + tNoelDate);
0739: final BufferedReader tKeyboard =
0740: new BufferedReader(new InputStreamReader(System.in));
0741: Date tOtherDate = new Date();
0742: while (true)
0743: {
0744: System.out.println("Type in the date, e.g., 1999-12-25");
0745: final String tOtherDateString = tKeyboard.readLine();
0746: try {
0747: tOtherDate = new Date(tOtherDateString);
0748: break;
0749: }
0750: catch(InvalidDateException pInvalidDateException) {
0751: System.out.println("Invalid date");
0752: }
0753: }
0754: System.out.println("tOtherDate is: " + tOtherDate);
0755: ...
0756: }
0757: }

10 Interfaces

10.1 What is an interface?
Earlier, inThe role of a class, it was suggested that, when looking at a class declaration, you should distinguish
between the text that describeswhatservices are offered and the text that describeshowthese services are provided.
Thewhatdescribes the interface whereas thehowdescribes the implementation. Java allows us to document the
whatby means of a construct called aninterface.

So, in Java, an interface is a construct that gives a list of related methods (and/or constants). Here is an example
that lists a set of methods for manipulating a date:

0758: public interface DateIF {
0759: public int getYear();
0760: public int getMonth();
0761: public int getDay();
0762: public void setYear(int pYear);
0763: public void setMonth(int pMonth);
0764: public void setDay(int pDay);
0765: public boolean equals(Object pObject);
0766: public int hashCode();
0767: public String toString();
0768: }

With a class, we usenew and a constructor (i.e., a class instance creation expression) to create an object, an
instance of the class. It does not make sense to create an instance of an interface (and for this reason an interface
does not have a constructor).

10.2 Producing classes that conform to an interface
Instead, the purpose of Java’sinterface construct is to describe the interface to which a set of classes conform,
i.e., each class implements the interface.

For example, there are several ways of providing a class for representing a date each of which stores the details of
a date in a different way: we could use threeints representing a year, a month and a day; ashort and twobytes
representing a year, a month and a day; oneint that stores the number of days since thebeginning of time; and so
on. So we could provide several classes, each one of which conforms to theDateIF interface.

We should document that a class implements an interface. This is done by means of animplements clause:

0769: import java.util. StringTokenizer;
0770: public class Date implements DateIF
0771: {
0772: private int iYear;
0773: ...
0774: public String toString()
0775: {
0776: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
0777: }
0778: }

35

Getting started with Java

If Date says that itimplements DateIF, thenDate must at least include declarations for each method that is
defined inDateIF.

10.3 Using interfaces
Suppose that, besidesDate we have also created other classes that implement theDateIF interface, e.g.:

0779: public class DateA implements DateIF { ... }
0780: public class DateB implements DateIF { ... }

If the code of some client needs to refer to a class (e.g., a parameter of some method is a date), then it should use
the name of the interface (e.g.,DateIF) rather than the name of a class (e.g.,Date). For example:

0781: private static boolean iIsLeap(final DateIF pDateIF) {
0782: final int tYear = pDateIF.getYear();
0783: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);
0784: }

The only time when the code of a client needs to refer to one of the classes is when it wants to create a date. Then
it has to choose which implementation to use, e.g., to choose between one of the following statements:

0785: DateIF tDateIF = new Date();
0786: DateIF tDateIF = new DateA();
0787: DateIF tDateIF = new DateB();

The variabletDateIF is a reference variable that is of an interface type. It can refer to any object which is of a
class that implements the interface.

10.4 Other points
Here are some other points:

• Only constants (i.e., variables that arestatic final) and methods can be listed in an interface.

• An interface can be derived from another interface or from several interfaces:

0788: interface a extends b, c { ... }

• A class can implement more than one interface:

0789: public class x implements y, z { ... }

• A class can be derived from another class as well as implement one or more interfaces:

0790: public class x extends w implements y, z { ... }

We saw earlier that multiple inheritance is not possible in Java. An interface is Java’s way of achieving some of
the possibilities of multiple inheritance. It is an idea that is borrowed from the programming language Objective
C.

11 Starting another thread

11.1 The class java.lang.Thread

Often the user of a program does something that causes the program to do some task that is time-consuming. In
this situation, you may prefer the user to have the ability to get on with something else at the same time as the
time-consuning task. In Java, you can put the time-consuming task into a separatethreadof execution.

It is easy to start another thread: you just need to create an object of the classThread (from the package
java.lang), and execute itsstart method. So, suppose a method, e.g., themain method of a program, contains:

0791: Thread tThread = new Thread();
0792: ...
0793: tThread.start();

The the call ofstart does two things:

• it starts the execution oftThread.run() in a separate thread;

• it then immediately returns to the statement following the call oftThread.start().

So we now have two threads of activity that are running concurrently: themain method and thetThread.run
method.

This is not so exciting as it sounds becausejava.lang.Thread’s run method does nothing because it has a null
body: it stops executing straightaway. And so we are just left with the thread of execution that is executing the
main method.

36

11.2 Deriving the classClockStdout from java.lang.Thread

11.2 Deriving the class ClockStdout from java.lang.Thread

However, because Java has inheritance, we can derive a class fromjava.lang.Thread and provide arun method
that does something useful.

In the code below, a class calledClockStdout is derived fromjava.lang.Thread, and ClockStdout’s
declaration overridesThread’s run method. The code ofClockStdout’s run method is an infinite loop inside
which we first get the current date and time, then output that to thestandard output, and then wait for two seconds.

0794: import java.util.Date; // ClockStdout.java
0795: public class ClockStdout extends Thread {
0796: public void run() {
0797: while (true) {
0798: Date tDate = new Date();
0799: System.out.println(tDate);
0800: try { Thread.sleep(2000); }
0801: catch (InterruptedException tInterruptedException) { }
0802: }
0803: }
0804: }

11.3 Using the class ClockStdout in the UseClockStdout program
Themain method of theUseClockStdout program (given below) creates an object (tClockStdout) of the class
ClockStdout, and then callstClockStdout’s start method. However, the classClockStdout does not itself
declare astart method, and so it isjava.lang.Thread’s start method that gets called. As explained earlier,
this does two things:

• it causestClockStdout’s run method (i.e., the infinite loop) to start executing in a separate thread;

• it then immediately returns to execute the rest of themain method.

So we now have two threads of activity that are running concurrently: themain method and the
tClockStdout.run method. Having started thetClockStdout thread, themain method then goes on to
output the digits from 0 to 7 stopping for one second after it has output each digit:

0805: public class UseClockStdout { // UseClockStdout.java
0806: public static void main(String[] args) {
0807: System.out.println("UseClockStdout program");
0808: ClockStdout tClockStdout = new ClockStdout();
0809: tClockStdout.start();
0810: for (int count = 0; count < 8 ; count++) {
0811: System.out.println("count is: " + count);
0812: try { Thread.sleep(1000); }
0813: catch (InterruptedException tInterruptedException) { }
0814: }
0815: System.out.println("UseClockStdout program");
0816: }
0817: }

Here is the sort of output that the program produces:

UseClockStdout program
count is: 0
Sat Jun 14 15:49:15 GMT+01:00 1997
count is: 1
count is: 2
Sat Jun 14 15:49:17 GMT+01:00 1997
count is: 3
count is: 4
Sat Jun 14 15:49:19 GMT+01:00 1997
count is: 5
count is: 6
Sat Jun 14 15:49:21 GMT+01:00 1997
count is: 7
UseClockStdout program
Sat Jun 14 15:49:23 GMT+01:00 1997
Sat Jun 14 15:49:25 GMT+01:00 1997
Sat Jun 14 15:49:27 GMT+01:00 1997
Sat Jun 14 15:49:29 GMT+01:00 1997
...

You can see that the output is from both threads, and that the program will not finish because thetClockStdout
thread is an infinite loop. So, if you execute this program, you will need to pressCtrl/C to stop its execution.

Two ways of getting the program to terminate properly are:

• Themain method can terminate the execution oftClockStdout’s thread by the call:

37

Getting started with Java

0818: tClockStdout.stop();

• Themain method can terminate the execution of the program by the call:

0819: System.exit(0);

11.4 Using synchronized for accessing a variable from different threads
If you wish to access the same variable from more than one thread, you will need to use thesynchronized
keyword to ensure that accesses to the variable are performed correctly. You can control access either by means of
asynchronized statementor by usingsynchronized methods. An example of the use of synchronized methods is:

0820: public class Store {
0821: public Store(int vStore) { iStore = vStore; }
0822: public synchronized int get() { ... return iStore; }
0823: public synchronized void put(int vStore) { iStore = vStore; ... }
0824: ...
0825: private int iStore;
0826: }

38

	 Introduction
	 Declarations, statements, input and output
	 Handling strings
	 Using classes for data abstraction
	 Another example of data abstraction: the class Person
	 Grouping classes into packages
	 Object-oriented programming
	 Another example of OO programming: 2D shapes
	 Exception handling
	 Interfaces
	 Starting another thread

