
Java: steps towards good quality code
Barry Cornelius
Computing Services, University of Oxford
Date: 14th May 2001
http://users.ox.ac.uk/~barry/papers/
mailto:barry.cornelius@oucs.ox.ac.uk

1 Introduction 1
2 Providing a commonminimal public interface 1
3 Providing equals 1
4 Providing hashCode 4
5 Providing compareTo 7
6 Providing a clone 8
7 An introduction to interfaces 9
8 Looking at other programming languages 12
9 Providing an interface to describe a type 13
10 Pros and cons of providing an interface 14
11 The factory pattern 15
12 The names of interfaces and classes 16
13 Conclusions 16
14 References 16

1 Introduction
Good practice is best acquired from the start. Beginners find it difficult to learn one thing one day only to be told
later that it is best done in some other way. This document describes some of the ideas I teach when introducing
interfaces and classes to students. My aim is to get beginners to produce good quality code for interfaces and
classes from the outset.

2 Providing a common minimal public interface
Often a class declaration is used to produce a new type. When teaching interfaces and classes, I stress that it is
important that such classes have:

• methods calledequals, hashCode, toString, and (if appropriate) a method calledcompareTo;

• a constructor that initializes the object from a parameter of typeString;

• get methods;

• set methods (if appropriate);

• some means for cloning an object.

Some of these (e.g.,equals, hashCode, compareTo) are needed if objects of the class are to be stored in a
collection (e.g., a list). When we produce a class, we may not know whatclients(users of our class) will want to
do with objects of the class. I do not believe we should change the class later or produce a subclass later. Instead,
we should provide the required features at the outset.

In some ways, a class is poorly constructed unless it has all of these methods and constructors.

In a book entitled ‘Object-Oriented Design Heuristics’ ([13]), Arthur Riel introduces the idea of theminimal public
interface. He says: ‘If the classes that a developer designs and implements are to be reused by other developers in
other applications, it is often useful to provide a common minimal public interface. This minimal public interface
consists of functionality that can be reasonably expected from each and every class.’

Bill Venners has also written an article on the topic of minimal public interfaces. The article is entitled ‘The
canonical object idiom’, and it is available from the WWW at ([22]).

3 Providing equals

3.1 The need to provide equals with an Object parameter
I find it incredible that so many books on Java introduce classes as a means of representing real-world objects and
yet do not provide each class with the ability to find out whether two objects of the class have the same value. In
Java, this is normally done by providing a method calledequals. This method is called in a way illustrated by:

1

Java: steps towards good quality code

final Date tTodaysDate = new Date(2000, 12, 25);
final Date tNoelDate = new Date(2000, 12, 25);
final boolean tIsChristmasDay = tTodaysDate.equals(tNoelDate);

Suppose a book introduces a class calledDate for representing objects that are dates. Then, if the book does
mentionequals, often you will find it declared with a parameter of typeDate:

public boolean equals(final Date pDate)
{

return iYear==pDate.iYear && iMonth==pDate.iMonth && iDay==pDate.iDay;
}

If a client attempts to add objects of this class to an object of the Collections API (orHashtable or Vector), they
are in for a shock. None of the following methods will work with the above declaration ofequals:

Hashtable contains, containsKey, get, put, remove
Vector contains, indexOf
List contains, indexOf, remove
Map containsKey, containsValue, get, put, remove
Set add, contains, remove

For these methods to work, you need to provide anequalsmethod that has a parameter of typeObject. Currently,
you will find very few books on Java that teach this.

3.2 Using getClass in the code of equals
For example, if we are providing a class calledDate, we could declare the following:

public boolean equals(final Object pObject)
{

if (pObject==null || getClass()!=pObject.getClass())
{

return false;
}
final Date tDate = (Date)pObject;
return iYear==tDate.iYear && iMonth==tDate.iMonth && iDay==tDate.iDay;

}

This code uses a method calledgetClass (which is declared in the classjava.lang.Object). This is a method
that returns a value of typejava.lang.Class, a value that describes the class of its target. In the above code for
equals, thegetClass method is called twice:

pObject==null || getClass()!=pObject.getClass()

In the second call, the target of the call ofgetClass is the object to whichpObject is pointing. So the value that
is returned is the class of this object.

In the first call, there is no explicit target. WhengetClass is called without a target (from theequals method),
it will be applied to whatever object is the target of the call ofequals. So the first call ofgetClass is finding out
the class of the object to whichequals is being applied.

Since theequals method appears in a class calledDate, you would think that the target ofequals must be
an object of classDate, and so this kind of call ofgetClass always returns a value describing the classDate.
However, suppose we derive a class calledNamedDate from Date:

public class NamedDate extends Date
{

private String iName:
...

}

Suppose thatNamedDate does not overrideequals. If we write:

tFirstNamedDate.equals(tSecondNamedDate)

then this will be a call ofDate’s equals method and both calls ofgetClass will return values describing the
classNamedDate. So, even though this code appears in the class declaration forDate, in some circumstances the
first call ofgetClass will return a value describing a subclass of the classDate.

2

3.3 UsinggetClass in preference toinstanceof

3.3 Using getClass in preference to instanceof

When providing a proper version ofequals, many authors (e.g., [4]) use code forequals that has the following
form:

public boolean equals(final Object pObject)
{

if (! (pObject instanceof Date))
{

return false;
}
final Date tDate = (Date)pObject;
return iYear==tDate.iYear && iMonth==tDate.iMonth && iDay==tDate.iDay;

}

Here theinstanceof operator is being used instead of callinggetClass twice.

Although the code using theinstanceof operator looks easier to understand, it is inappropriate to use this code
because it causes problems if you or someone else later uses inheritance to subclass this class and you want the
subclass to override the version ofequals provided byDate.

The problem is that this version ofequals does not always satisfy one of the rules of the contract ofequals
mentioned in the WWW pages that document the classObject ([19]). This rule says that theequals method ‘is
symmetric: for any reference valuesx andy, x.equals(y) should return true if and only ify.equals(x) returns
true’.

Suppose we were to provideDate with the version ofequals given above, and providedNamedDate with the
following version ofequals:

public boolean equals(final Object pObject)
{

if (! (pObject instanceof NamedDate))
{

return false;
}
return super.equals(pObject) && iName.equals(((NamedDate)pObject).iName);

}

Then we would have a problem when we useequals with two objects, one being of classDate and the other
being of classNamedDate. This can be illustrated by executing the code:

Date tDate = new Date(2001, 5, 16);
NamedDate tNamedDate = new NamedDate(2001, 5, 16, "Hull");
System.out.println(tDate.equals(tNamedDate));
System.out.println(tNamedDate.equals(tDate));

The first call of equals is being applied to aDate object and soDate’s equals method will be used.
This call will lead to pObject pointing to an object of classNamedDate. So what happens with the test
pObject instanceof Date? Is this going to delivertrue or false whenpObject is pointing to aNamedDate
object? Well, for a condition that has the form: ‘RelationalExpressioninstanceof ReferenceType’ the definition
of Java (given in ‘Java Language Specification’ ([10])) says: ‘At run time, the result of theinstanceof operator
is true if the value of theRelationalExpressionis notnull and the reference could be cast to theReferenceType
without raising aClassCastException’. Since the cast(Date)pObject is allowed whenpObject is pointing
to aNamedDate object, thenpObject instanceof Date is allowed and has the valuetrue. So the code moves
on and produces the valuetrue or false depending on whether theiYear, iMonth andiDay values of the two
objects are the same. In the above example, they are the same, and so the valuetrue will be produced.

The second call ofequals usesNamedDate’s equals method. It will always produce the valuefalse. This is
becausetDate does not satisfy the test that checks whether the parameter is aninstanceof NamedDate.

So, when anequals method is written usinginstanceof, it does not always satisfy the symmetric rule. For more
information about this, see:

• pages 44 to 59 of the book ‘Practical Java’ ([11]) by Peter Haggar;

• the WWW page at [14] containing an article by Mark Roulo entitled ‘How to avoid traps and correctly
override methods fromjava.lang.Object’.

Both of these authors point out thatinstanceof (rather thangetClass) is used in the code of theequals
methods of some of the classes of Java’s Core APIs. And so you may run into the non-symmetric problem if you
want to produce a subclass of one of these classes. In his book, Peter Haggar says: ‘A quick glance through the
source code of the Java libraries shows the use ofinstanceof in equals method implementations is common.
You also find the use ofgetClass. The Java libraries are not consistent in how they implement theequals
methods of their classes, thereby making consistent equality comparisons difficult’.

3

Java: steps towards good quality code

4 Providing hashCode

4.1 The need to provide hashCode

If you declareequals properly, you need also to declarehashCode. There are warnings about this in the docu-
mentation of some of the classes. For example, the WWW pages that documentjava.util.Hashtable ([21])
state that ‘to successfully store and retrieve objects from a hashtable, the objects used as keys must implement
the hashCode method and theequals method’. By this, it means that a class should override the methods
calledhashCode andequals that are declared injava.lang.Object. So you should declare methods with the
following headers:

public int hashCode();
public boolean equals(Object pObject);

ThehashCode method will get used behind the scenes by the following methods:

Hashtable contains, containsKey, get, put, remove
HashMap containsKey, containsValue, get, put, remove
HashSet add, contains, remove

Few books that teach Java mentionhashCode.

4.2 The contract that hashCode should satisfy
The contract thathashCode needs to satisfy is given in the WWW pages that document the classObject ([20]).
They say that the general contract ofhashCode is:

1. ‘Whenever it is invoked on the same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer, provided no information used in equals
comparisons on the object is modified. This integer need not remain consistent from one execution of an
application to another execution of the same application.’

2. ‘If two objects are equal according to theequals(Object) method, then calling thehashCode method on
each of the two objects must produce the same integer result.’

3. ‘It is not required that if two objects are unequal according to theequals(Object) method, then calling
the hashCode method on each of the two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results for unequal objects may improve the
performance of hashtables.’

4.3 Providing a hashCode method that returns the value 0
The full implications of these three rules are not particularly easy to understand. So, when teachingequals and
hashCode, I find it easier, to begin with, to advise students to provide classes (for new types) with the following
hashCode function:

public int hashCode()
{

return 0;
}

When this function is called, it always returns the same value, and so thishashCode function satisfies the first two
rules. What the third rule is saying is that we may get poor execution speeds by choosing thishashCode function.
However, there are some subtle points that need to be considered if you wish to provide a more sophisticated form
of hashCode.

4.4 Providing other code for the hashCode function
For theDate example, another possibility for thehashCode function is:

public int hashCode()
{

return iMonth;
}

If we use thishashCode function, an integer in the range 1 to 12 is associated with each of the values of the class
Date. For example:

final Date tNoelDate = new Date(2000, 12, 25);
final int tValue = tNoelDate.hashCode();

4

4.4 Providing other code for thehashCode function

will assign the value 12 totValue.

So, if we were to store values of the typeDate in a collection (such as aHashSet), the designer of the collection
class could arrange for the values of the collection to be stored in severalbuckets: all the values of the collection
that have a hashcode of 1 would be stored in the first bucket; all those with a hashcode of 2 would be stored in
the second bucket; and so on. So, for thishashCode function, 12 buckets would be used. When we later call the
contains method to check whether a particularDate value is in the collection, the code of thecontains method
can find the hashcode of theDate value and then it need only look at the values in the appropriate bucket.

For example, suppose we want to store the dates when various composers died:

Bach 1750-08-28
Beethoven 1827-03-26
Cage 1992-08-12
Chopin 1849-10-17
Copland 1990-12-02
Elgar 1934-02-23
Handel 1759-04-14
Mendelssohn 1847-11-04
Purcell 1695-11-21
Sibelius 1957-09-20
Stanford 1924-03-29
Tallis 1585-11-23
Tchaikovsky 1893-11-06
Vaughan-Williams 1958-08-26
Walton 1983-03-08

Suppose we add each of these dates to aHashSet, e.g. for Bach:

Date tDeathOfBach = new Date(1750, 8, 28);
tHashSet.add(tDeathOfBach);

HashSet’s add method usesDate’s hashCode function, and so the values will be stored in 12 buckets:

1.

2. 1934-02-23

3. 1924-03-29, 1827-03-26, 1983-03-08

4. 1759-04-14

5.

6.

7.

8. 1750-08-28, 1992-08-12, 1958-08-26

9. 1957-09-20

10. 1849-10-17

11. 1847-11-04, 1695-11-21, 1893-11-06, 1585-11-23

12. 1990-12-02

Then, when later we ask the collection object whether it has the value1893-11-06 (the date when Tchaikovsky
died), thecontains method can callhashCode on this value and, because this produces the value 11, the
contains method only checks the values in the 11th bucket. The code of thecontains method usesequals
on each of these values in turn returning the valuetrue if and only if it finds the value (in this case, the value
1893-11-06).

Besides the above coding of thehashCode function, there are many other possibilities we could choose instead.
Here is another example:

public int hashCode()
{

return iYear*10000 + iMonth*100 + iDay;
}

If we were to use this function, each value of the classDate would have its own unique hashcode.

5

Java: steps towards good quality code

4.5 The reason for using a zero-returning hashCode

However, there is one problem which we have not yet considered. If a client chooses to change a value after it has
been put in a collection, the value will no longer be in the right bucket. So it will not be found if we later search
for it.

For example, contrary to what it says above, Bach actually died on 28th July 1750 (rather than on 28th August
1750). So we might want to change this date:

tDeathOfBach.setMonth(7);

This would change the collection to:

1.

2. 1934-02-23

3. 1924-03-29, 1827-03-26, 1983-03-08

4. 1759-04-14

5.

6.

7.

8. 1750-07-28, 1992-08-12, 1958-08-26

9. 1957-09-20

10. 1849-10-17

11. 1847-11-04, 1695-11-21, 1893-11-06, 1585-11-23

12. 1990-12-02

Suppose we now usecontains to search for the value1750-07-28. Because, whenhashCode is applied to this
value it produces the value 7, thecontains method will look in the 7th bucket, which is empty. So the method
will not find the value as the appropriate value is in the wrong bucket.

Rule 1: Here is an important rule: ahashCode function should not be written in terms of fields that can be
changed.

So, if the classDate providessetYear, setMonth andsetDay, we should not provide ahashCode function that
is written in terms of theiYear, iMonth and/oriDay fields. This is the reason why we might want to use:

public int hashCode()
{

return 0;
}

If we use thishashCode function, a collection class will use one bucket for all the objects we put into the
collection. Although this means that a method likecontains will execute more slowly as all the values of
the collection are in one bucket, it does mean that we need not worry about values being changed after they have
been added to the collection.

4.6 It is not a problem for immutable classes
Of course, this problem will not occur if you are providing animmutable class, a class where the fields of each
object of the class cannot be changed once an object has been created. In such circumstances, you will be able to
choose ahashCode function that helps to speed up searching.

So if we removedsetYear, setMonth andsetDay from theDate class, its objects would now be immutable.
We could then use either of the twohashCode functions that were given above. This would speed up the searching
for dates when they have been stored in aHashtable, aHashSet or aHashMap.

4.7 Another rule
Rule 2: Here is another important rule: the same hashcode values must be produced for any two objects that are
equal (according to theequals method).

In practice, this means that ahashCode function must always return the same value (e.g., the value 0) or it must
be written in terms of some or all of the fields used in the declaration ofequals (and no other fields).

6

5 Providing compareTo

4.8 What is the effect on performance?
I measured the effect on performance by timing the execution of a program. The program creates aHashSet that
contains 10000 elements that are objects of theDate class. The program times the execution of 10000 calls of
contains. The following results were obtained for different codings of thehashCode method of theDate class:

the code of thehashCode method time taken
return 0; 14826
return iMonth; 1235
return iYear*10000 + iMonth*100 + iDay; 36

The times are given in milliseconds. These results demonstrate how a carefully chosenhashCode method can
affect the performance of some programs.

5 Providing compareTo

5.1 The need to provide compareTo

If the class that you are providing is for a type where there is a natural order for the values of the type, the class
should also provide a means for finding out whether one value of the type is less than another value. Unfortunately,
few books on Java teach this.

There are some parts of the Collections API (e.g., the classesTreeSet andTreeMap) that work better if your class
implements theComparable interface ([17]) from the packagejava.lang. This interface is simply:

public interface Comparable
{

public int compareTo(Object pObject);
}

ForDate to implementComparable, we need to change it to something like the following:

public class Date implements java.lang.Comparable
{

...
public int compareTo(final Object pObject)
{

final Date tDate = (Date)pObject;
int tResult = iYear - tDate.iYear;
if (tResult==0)
{

tResult = iMonth - tDate.iMonth;
if (tResult==0)
{

tResult = iDay - tDate.iDay;
}

}
return tResult;

}
}

TheComparable interface became part of Java when the Java 2 platform was released in December 1998.

If a class implements theComparable interface, objects of this class can be stored in aTreeSet or aTreeMap.
For example:

final Set tOccurrences = new TreeSet():
tOccurrences.add(tDeathOfBach);

5.2 Using the Comparator interface
If a class such asDate fails to implement theComparable interface, or its implementation ofcompareTo provides
inappropriate code, a client class can still storeDate objects in aTreeSet or aTreeMap provided it creates the
TreeSet/TreeMap using a constructor that is passed an object that implements theComparator interface ([18]).
This interface requires the object to provide the method:

public int compare(Object pObject1, Object pObject2);

This method returns a negative integer, zero, or a positive integer depending on whether the value ofpObject1 is
less than, equal to, or greater than that ofpObject2.

Here is an example. Suppose, bizarrely, we chose to compare dates only on the year field. We could provide:

7

Java: steps towards good quality code

public class MyDateComparator implements java.util.Comparator
{

public int compare(final Object pObject1, final Object pObject2)
{

return ((Date)pObject1).getYear() - ((Date)pObject2).getYear();
}

}

and then use:

final MyDateComparator tMyDateComparator = new MyDateComparator();
final Set tOccurrences = new TreeSet(tMyDateComparator):
tOccurrences.add(tDeathOfBach);

6 Providing a clone

6.1 The need to provide a cloning operation
Few books teaching Java explain that, when producing a class, it is desirable to provide a cloning operation.
For example, when creating aPerson object, we might let a client supply aDate object that is the person’s
date-of-birth:

Date tBirthDate = new Date(2000, 1, 24);
Person tSomePerson = new Person("Joe", tBirthDate);

wherePerson is as follows:

public class Person
{

private String iName;
private Date iDateOfBirth;
public Person(final String pName, final Date pDateOfBirth)
{

iName = pName;
iDateOfBirth = pDateOfBirth; // share
...

If we do this, thePerson object is sharing theDate object supplied by the client. If theDate class provides
mutable objects, this may be undesirable.

Instead of sharing theDate object with the client, thePerson object may prefer to have its own copy. The classes
of Java’s Core APIs use two different ways of producing a copy of an object:

• a class sometimes provides a method calledclone that overridesjava.lang.Object’s clone;

• a class sometimes provides a suitable constructor.

So, if Date providedclone, thePerson constructor could use:

iDateOfBirth = (Date)pDateOfBirth.clone(); // clone

Or, if Date provided a cloning constructor, thePerson constructor could use:

iDateOfBirth = new Date(pDateOfBirth); // clone

It is best to provide a method calledclone as this can be used when inheritance is involved. However, getting the
code of aclone method completely right is difficult.

6.2 Providing a constructor for cloning
Because aclone method is difficult to get right, it is also difficult to teach. So, to begin with, I cheat by teaching
students to provide a constructor that can be used for cloning:

public Date(final Date pDate)
{

iYear = pDate.iYear;
iMonth = pDate.iMonth;
iDay = pDate.iDay;

}

8

6.3 Providing a method calledclone

6.3 Providing a method called clone

The classjava.lang.Object provides a method calledclone. The header of this method is:

public Object clone();

When it is used on an object, it returns a new instance of the object which contains a copy of all the fields of the
object. If you want a class to support cloning, it is best to override this method.

To do this, your class needs to say that it implements theCloneable interface and itsclone method must catch
theCloneNotSupportedException exception. Both of these need only be done if your class is a direct subclass
of Object. For example, for theDate class, we may want to provide:

public class Date implements Cloneable
{

...
public Object clone()
{

try
{

return super.clone();
}
catch(final CloneNotSupportedException pCloneNotSupportedException)
{

throw new InternalError();
}

}
}

Object’s clone method only produces ashallow copy. So, if a class has one or more fields that are of a reference
type, we may want to provide adeep copyby cloning these fields. For example, for thePerson class, we could
provide:

public class Person implements Cloneable
{

...
public Object clone()
{

try
{

final Person tPerson = (Person)super.clone();
if (iDateOfBirth!=null)
{

tPerson.iDateOfBirth = (Date)iDateOfBirth.clone();
}
return tPerson;

}
catch(final CloneNotSupportedException pCloneNotSupportedException)
{

throw new InternalError();
}

}
}

6.4 Other information about cloning
For more information about how to clone objects, look at the ‘The canonical object idiom’ article by Bill
Venners ([22]) or look at Section 19.8 of my book ‘Understanding Java’ ([5]).

7 An introduction to interfaces

7.1 Use of interfaces for GUI callbacks
Perhaps a Java programmer’s first use of an interface occurs with handling the events of a GUI. For example,
suppose a window (JFrame) has a button (JButton):

final JFrame tJFrame = new JFrame("some title");
final JButton tJButton = new JButton("click here");
final Container tContentPane = tJFrame.getContentPane();
tContentPane.add(tJButton, BorderLayout.CENTER);
tJFrame.pack():
tJFrame.setVisible(true);

If the program has to react to a click of the button, the program has to create an object and register it as a listener:

final JButtonListener tJButtonListener = new JButtonListener();
tJButton.addActionListener(tJButtonListener);

9

Java: steps towards good quality code

Here we have created an object of a class calledJButtonListener and passedtJButtonListener as the
argument of theaddActionListener method. The documentation ofaddActionListener states that its
parameter is of the interface typeActionListener. So JButtonListener must be a class that implements
theActionListener interface:

public class JButtonListener implements ActionListener
{

...
}

Looking again at the documentation of theActionListener interface, you will see that this interface is simply:

public interface ActionListener
{

public void actionPerformed(ActionEvent pActionEvent);
}

So this means thatJButtonListener could be something like:

public class JButtonListener implements ActionListener
{

public void actionPerformed(final ActionEvent pActionEvent)
{

final Date tDate = new Date();
System.out.println(tDate);

}
}

7.2 Use of interfaces with collection classes
Java’s Collections API provides classes that can be used for representing collections of objects, such as lists,
sets and maps. It provides two classes for each of these. For lists, it provides classes calledArrayList and
LinkedList; for sets, it provides classes calledHashSet andTreeSet; and, for maps, it provides classes called
HashMap andTreeMap. Often your choice of the class will be determined by the particular operations that you
want to perform: one of the classes performs faster than the other.

Suppose we want to represent a list of objects. If we are using the Collections API, we have a choice between
using anArrayList and aLinkedList:

-

?

@
@

@
@R

A
A
A
AU

Tom HarryDick

3 ...

0 1 2 3 4 5tList

nullnull
-

?

.
�

-

?

.
�

-

?

�
-
�-

0 1 2

HarryTom Dick

nullnull

tList

The ArrayList class performs well in most situations. However, theLinkedList class performs better than
ArrayList when the operations that dominate involve adding or removing items at the ends of the list.

Having made a choice over the class, then the operations that you can perform on the list are the same. So, if
tList points to anArrayList object or aLinkedList object, we can perform operations such as:

tList.add("Tom");
tList.add("Harry");
tList.add(1, "Dick");
tList.remove(1);
tList.set(1, "Dick");
String tString = (String)tList.get(1);

Before executing this code, we need to create the list object. The code we use for this depends on whether we
want anArrayList or aLinkedList. So we can choose between:

ArrayList tList = new ArrayList();

10

7.3 Providing your own interfaces

or:

LinkedList tList = new LinkedList();

However, the above is not regarded as good programming style. Sun’s documentation for the Collections API
encourages you to code in terms of interfaces calledList, Set and Map instead of writing code in terms of
specific classes (such asArrayList andLinkedList).

ArrayList

.....................
.........

.....................
.........

.....................
.........

.....................
.........

.....................
..............................

.........

.....................
.........

.........

.....................
.........

..

LinkedList HashSet

Set

«interface»
Collection

List
«interface» «interface»

TreeSet

SortedSet
«interface»

HashMap

Map

TreeMap

SortedMap
«interface»

«interface»

So use either:

List tList = new ArrayList();

or:

List tList = new LinkedList();

Instead of using a variabletList which is of a specific class type (ArrayList or LinkedList), we are now
using a variabletList which is of the interface typeList. A variable that is of an interface type may point to
any object that is of a class that implements that interface.

If a list object has to be passed as an argument to a method, then this style of programming recommends that the
parameter be of the interface type rather than of the specific class type. So, instead of the method having a header
like:

public void processList(ArrayList pArrayList);

it should be:

public void processList(List pList);

With this style of programming, most of the code is written in terms of theList interface. The only place where
eitherArrayList or LinkedList has to be mentioned is when we create the list object, i.e., the commitment to
use anArrayList instead of aLinkedList (or vice-versa) only appears where the object is created.

7.3 Providing your own interfaces
So far, the examples have involved interfaces that others have provided. So, when might we want to provide our
own interface declarations?

We may want to do this if we have many classes that provide the same set of operations and we want to execute
code that processes various objects of these different classes.

Suppose we are processing geometrical figures, some of which are circles and others are rectangles. Suppose
we want to find out the area or the perimeter of these figures. We could provide the interface:

public interface Figure
{

public double area();
public double perimeter();

}

11

Java: steps towards good quality code

and provide classes calledCircle andRectangle. Here is some code forCircle:

public class Circle implements Figure
{

private double iRadius;
public Circle(final double pRadius)
{

iRadius = pRadius;
}
public double area()
{

return Math.PI*iRadius*iRadius;
}
public double perimeter()
{

return 2.0*Math.PI*iRadius;
}
...

}

The code forRectangle is similar.

.....................
..............................

.........

Circle

iRadius

area

perimeter

«interface»

Figure

perimeter

area

iWidth

area

perimeter

iHeight

Rectangle

Suppose we store several objects of these two classes in a list:

final List tList = new ArrayList();
tList.add(new Circle(100.0));
tList.add(new Rectangle(200.0, 300.0));
...

We can then process the elements of the list using code like:

final Iterator tIterator = tList.iterator();
while (tIterator.hasNext())
{

final Figure tFigure = (Figure)tIterator.next();
System.out.println(tFigure.area());

}

By coding the classes as implementations of an interface we can perform operations on objects that are of different
classes.

8 Looking at other programming languages
When I came to examine Java for the first time, it was from a background in many programming languages
including Modula-2, Ada 83 and C++.

8.1 Modula-2
In Modula-2, ‘a separate module is split into two parts: a definition part and an implementation part. The definition
module gives information as towhatservices are provided; and the implementation module contains the full code
of the module: it specifieshowthe services are to be provided. These two parts of a separate module are stored in
two different files’ ([3]). By using anopaque type, clients can be written that are not dependent on the code of the
implementation module.

8.2 Ada 83
In a similar way, in Ada 83, a package can be split into two parts: apackage specificationand apackage body.
A limited private typecan be used in much the same way as an opaque type can be used in Modula-2.

12

8.3 C++

8.3 C++
Both Modula-2 and Ada 83 provide different constructs for the interface and the implementation. This is not so
with C++ where, if you wish to use this style of programming, the class construct is used for both.

In his fascinating book ‘The Design and Evolution of C++’ ([16]), Stroustrup (the designer of C++) says:
‘I ... made matters worse for the C++ community by not properly explaining the use of derived classes to achieve
the separation of interface and implementation. I tried (see for example Section 7.6.2 of [15]), but somehow I
never got the message across. I think the reason for this failure was primarily that it never occurred to me that
many (most?) C++ programmers and non C++ programmers looking at C++ thought that because youcould put
the representation right in the class declaration that specified the interface, youhad to.’

To make it easier to express this separation, Stroustrup added the concept of anabstract classto C++. ‘The
very last feature added to Release 2.0 before it shipped [in June 1989] was abstract classes. Late modifications
to releases are never popular, and late changes to the definition of what will be shipped are even less so.
My impression was that several members of management thought I had lost touch with the real world when I
insisted on this feature.’

‘An abstract class represents an interface. Direct support for abstract classes

• helps catch errors that arise from confusion of classes’ role as interfaces and their role in representing
objects;

• supports a style of design based on separating the specification of interfaces and implementations.

’

In C++, an abstract class is a class that has one or morepure virtual functions:

class figure
{

public:
virtual double area() = 0;
virtual double perimeter() = 0;

};

9 Providing an interface to describe a type
In Modula-2 and Ada 83, it is easy to separate the interface from the implementation. So having this background,
and having taught Modula-2 in this way for many years ([3]), when I started to look at Java I wondered whether
the same style of programming could be achieved (and should be adopted) in Java.

If we need to represent some objects in a Java program, at the same time as producing a class declaration
that describes the implementation, we could also produce an interface declaration that describes the operations
provided by the methods of the class.

An interface declaration for dates could be:

public interface Date
{

public int getYear();
public int getMonth();
public int getDay();
public void setYear(int pYear);
public void setMonth(int pMonth);
public void setDay(int pDay);
public boolean equals(Object pObject);
public int hashCode();
public String toString();

}

And a class declaration for dates could be:

import java.util.StringTokenizer;
public class DateImpl implements Date
{

private int iYear;
private int iMonth;
private int iDay;
public DateImpl()
{

this(1970, 1, 1);
}
public DateImpl(final Date pDate)
{

final DateImpl tDateImpl = (DateImpl)pDate;
iYear = tDateImpl.iYear;
iMonth = tDateImpl.iMonth;
iDay = tDateImpl.iDay;

13

Java: steps towards good quality code

}
public DateImpl(final int pYear, final int pMonth, final int pDay)
{

iYear = pYear;
iMonth = pMonth;
iDay = pDay;

}
public DateImpl(final String pDateString)
{

try
{

final StringTokenizer tTokens =
new StringTokenizer(pDateString, "-");

final String tYearString = tTokens.nextToken();
iYear = Integer.parseInt(tYearString);
final String tMonthString = tTokens.nextToken();
iMonth = Integer.parseInt(tMonthString);
final String tDayString = tTokens.nextToken();
iDay = Integer.parseInt(tDayString);

}
catch(final Exception pException)
{

iYear = 1970;
iMonth = 1;
iDay = 1;
throw new IllegalArgumentException();

}
}
public int getYear() { return iYear; }
public int getMonth() { return iMonth; }
public int getDay() { return iDay; }
public void setYear(final int pYear) { iYear = pYear; }
public void setMonth(final int pMonth) { iMonth = pMonth; }
public void setDay(final int pDay) { iDay = pDay; }
public boolean equals(final Object pObject)
{

if (pObject==null || getClass()!=pObject.getClass())
{

return false;
}
final DateImpl tDateImpl = (DateImpl)pObject;
return iYear==tDateImpl.iYear &&

iMonth==tDateImpl.iMonth && iDay==tDateImpl.iDay;
}
public int hashCode()
{

return 0;
}
public String toString()
{

return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
}

}

Whenever possible, the code of a client should use the interface (rather than the class). So:

• reference variables should be declared to be of the interface typeDate rather than of the class type
DateImpl:

Date tDate;

• parameters of any methods (of the client) should be declared to be of the interface typeDate rather than of
the class typeDateImpl:

public boolean iIsLeap(final Date pDate);

The only time we have to use the class type (DateImpl) is when we want to create an object:

Date tDate = new DateImpl(2000, 12, 25);

10 Pros and cons of providing an interface
Introducing an interface as well as a class declaration is preferable because:

1. an interface declaration provides a clearer statement than a class declaration as to the contract (between the
client and the supplier);

2. writing the client mainly in terms of the interface means that it will be easier for the client to switch to a
different implementation of a class;

14

11 The factory pattern

3. writing the client so that it only uses the interface and not the class implementing the interface means that it
is not necessary to recompile the client when the class changes.

Cymerman ([6]) says: ‘The only drawbacks to this scheme are the fact that there is some overhead associated with
the creation and casting of objects, and the fact that more code is required to first specify the interface and then
code the class that implements the interface. These two drawbacks seem insignificant, though, compared to the
vast number of benefits.’

The book ‘The Java Programming Language’ by Arnold, Gosling and Holmes ([1]) says: ‘Any major class you
expect to be extended, whether abstract or not, should be an implementation of an interface. Although this
approach requires a little more work on your part, it enables a whole category of use that is otherwise precluded.’
In their book, they produce a class with the header:

class AttributedBody extends Body implements Attributed

They say: ‘suppose we had created anAttributed class instead of anAttributed interface with an
AttributedImpl implementation class. In that case, programmers who wanted to create new classes that
extended other existing classes could never useAttributed, since you can extend only one class: the class
AttributedBody could never have been created.’

In the book ‘UML Distilled’ ([7]), Martin Fowler writes: ‘Programming languages [other than Java] use a single
construct, the class, which contains both interface and implementation. When you subclass, you inherit both.
Using the interface as a separate construct is rarely used, which is a shame.’

In the 1990s, some useful work was done on understanding how complex systems are built: this work recognized
the importance of the use ofpatterns. Currently, the principal book in this area is ‘Design Patterns: Elements of
Reusable Object-Oriented Software’ by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides ([9]).
These four people are affectionately known as theGang of Four(or theGoF). In their book, they say: ‘This ... leads
to the following principle of reusable object-oriented design:

• Program to an interface, not an implementation.

Don’t declare variables to be instances of particular concrete classes. Instead, commit only to an interface defined
by an abstract class [or an interface in Java]. You will find this to be a common theme of the design patterns in
this book.’

On the WWW at [8], you will find an excellent document entitled ‘ChiMu OO and Java Development: Guidelines
and Resources’. Mark Fussell says: ‘Use interfaces as the glue throughout your code instead of classes: define
interfaces to describe the exterior of objects (i.e., their Type) and type all variables, parameters, and return values
to interfaces. The most important reason to do this is that interfaces focus on the client’s needs: interfaces define
what functionality a client will receive from an Object without coupling the client to the Object’s implementation.
This is one of the core concepts to OO.’

Stroustrup ([16]) says: ‘The importance of the abstract class concept is that it allows a cleaner separation between a
user and an implementer than is possible without it. An abstract class is purely an interface to the implementations
supplied as classes derived from it. This limits the amount of recompilation necessary after a change as well as the
amount of information necessary to compile an average piece of code. By decreasing the coupling between a user
and an implementer, abstract classes provide an answer to people complaining about long compile times and also
serve library providers, who must worry about the impact on users of changes to a library implementation. I have
seen large systems in which the compile times were reduced by a factor of ten by introducing abstract classes into
the major subsystem interfaces.’

11 The factory pattern
Although this programming style encourages the client to use the interface rather than the class, the client is still
using the class if it has to create an instance of the class:

Date tDate = new DateImpl(2000, 12, 25);

Suppose we now need to represent people and the constructor for the classPersonImpl needs to create a
DateImpl object for a person’s date of birth:

public PersonImpl(String pName, int pYear, int pMonth, int pDay)
{

iName = pName;
iDateOfBirth = new DateImpl(pYear, pMonth, pDay);

}

Including this code inPersonImplmeans that it is dependent onDateImpl. If we make a change to theDateImpl
class, we will need to recompile (and re-test)PersonImpl (as well asDateImpl).

There is one other problem. Suppose we now wish to switch to using some other class that implements theDate
interface. We need to detect all the occurrences of:

15

Java: steps towards good quality code

new DateImpl(...)

and change them to create instances of the new class. One of the principles of software engineering is that the
commitment to some decision should be made in one place and not all over the place.

One way to do this which also overcomes the recompilation problem is to use thefactory pattern(as described
in [9]). We can introduce an interface (e.g.,Factory) and a class (e.g.,FactoryImpl) that are responsible for
creating objects. They could have a method calledcreateDate:

public Date createDate(final int pYear, final int pMonth, final int pDay)
{

return new DateImpl(pYear, pMonth, pDay);
}

Clients should be written in terms of this method. For example,PersonImpl’s constructor contains:

iDateOfBirth = new DateImpl(pYear, pMonth, pDay);

This should be replaced by:

iDateOfBirth = iFactory.createDate(pYear, pMonth, pDay);

whereiFactory is a variable of the interface typeFactory.

If the FactoryImpl object is created in the program’s program class, then only the program class,FactoryImpl
and DateImpl will need to be recompiled if the code of theDateImpl class needs to be changed. Or, if
FactoryImpl chooses to use some class other thanDateImpl, then only the program class andFactoryImpl
will need to be recompiled.

12 The names of interfaces and classes
In their book ‘Exploring Java’ ([12]), Niemeyer and Peck say: ‘Interfaces define capabilities, so it’s common
to name interfaces after their capabilities in a passive sense.Driveable is a good example;runnable and
updatable would be two more.’

In the book ‘Java Design: Building Better Apps and Applets’ ([2]), Coad and Mayfield say: ‘Requiring interface
names to end inable or ible is a bit too complicated a convention. ... Choose whatever prefix convention you
prefer:I, I_, Int_; whatever. We preferI.’

In ‘ChiMu OO and Java Development: Guidelines and Resources’ ([8]), Mark Fussell says: ‘Interfaces should be
given no suffixes or prefixes: they have thenormalname space. Classes are given a suffix ofClass if they are
meant to be instantiated or are given a suffix ofAbsClass if they are an abstract class that provides inheritable
implementation but is not complete and instantiable by itself.’

In my teaching, I follow Fussell’s advice for interfaces and use a suffix ofImpl for classes.

13 Conclusions
This document has made some suggestions about the ways in which classes should be coded. It has also shown
how a Java interface declaration can be used to separate out the interface and implementation aspects of a class.

The document also points out that this material is not usually taught in books that teach Java. The document is
really a plug for ‘Understanding Java’, the author’s book on Java ([5]).

14 References
1. Ken Arnold, James Gosling and David Holmes, ‘The Java Programming Language, Third Edition’,

Addison-Wesley, 2000, 0-201-70433-1.

2. Peter Coad and Mark Mayfield, ‘Java Design: Building Better Apps and Applets’,
Prentice Hall, 1996, 0-13-271149-4.

3. Barry Cornelius, ‘Programming with TopSpeed Modula-2’,
Addison-Wesley, 1991, 0-201-41679-4.

4. Barry Cornelius, ‘Teaching a Course on Understanding Java’,
http://www.ics.ltsn.ac.uk/pub/Jicc4/

5. Barry Cornelius, ‘Understanding Java’,
Addison-Wesley, 2001, 0-201-71107-9.

6. Michael Cyberman, ‘Smarter Java Technology Development’,
http://developer.java.sun.com/developer/technicalArticles/GUI/Interfaces/

16

 http://www.ics.ltsn.ac.uk/pub/Jicc4/
 http://developer.java.sun.com/developer/technicalArticles/GUI/Interfaces/

14 References

7. Martin Fowler (with Kendall Scott), ‘UML Distilled’,
Addison-Wesley, 1997, 0-201-32563-2.

8. Mark Fussell, ‘ChiMu OO and Java Development: Guidelines and Resources’,
http://www.chimu.com/publications/javaStandards/

9. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, ‘Design Patterns: Elements of Reusable
Object-Oriented Software’,
Addison-Wesley, 1995, 0-201-63361-2.

10. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, ‘The Java Language Specification, Second Edition’,
Addison-Wesley, 2000, 0-201-31008-2.

11. Peter Haggar, ‘Practical Java’,
Addison-Wesley, 2000, 0-201-61646-7.

12. Patrick Niemeyer and Joshua Peck, ‘Exploring Java’,
O’Reilly, 1996, 1-56592-184-4.

13. Arthur Riel, ‘Object-Oriented Design Heuristics’,
Addison-Wesley, 1996, 0-201-63385-X.

14. Mark Roulo, ‘How to avoid traps and correctly override methods fromjava.lang.Object’,
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html

15. Bjarne Stroustrup, ‘The C++ Programming Language, First Edition’,
Addison-Wesley, 1986, 0-201-12078-X.

16. Bjarne Stroustrup, ‘The Design and Evolution of C++’,
Addison-Wesley, 1994, 0-201-54330-3.

17. Sun Microsystems, ‘java.lang.Comparable’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Comparable.html

18. Sun Microsystems, ‘java.util.Comparator’,
http://java.sun.com/j2se/1.3/docs/api/java/util/Comparator.html

19. Sun Microsystems, ‘java.lang.Object.equals’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#equals(java.lang.Object)

20. Sun Microsystems, ‘java.lang.Object.hashCode’,
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#hashCode()

21. Sun Microsystems, ‘java.util.Hashtable’,
http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html

22. Bill Venners, ‘The canonical object idiom’,
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-techniques.html

17

 http://www.chimu.com/publications/javaStandards/
 http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html
 http://java.sun.com/j2se/1.3/docs/api/java/lang/Comparable.html
 http://java.sun.com/j2se/1.3/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html#hashCode()
 http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html
 http://www.javaworld.com/javaworld/jw-10-1998/jw-10-techniques.html

	 Introduction
	 Providing a common minimal public interface
	 Providing equals
	 Providing hashCode
	 Providing compareTo
	 Providing a clone
	 An introduction to interfaces
	 Looking at other programming languages
	 Providing an interface to describe a type
	 Pros and cons of providing an interface
	 The factory pattern
	 The names of interfaces and classes
	 Conclusions
	 References

