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MATERIALS AND METHODS 
Image analysis 
To estimate the level of spatial correlation between the fluorescence intensities of GFP-
tagged proteins and the fluorescent size series, several optical (Z-) slices of each synapse 
were analyzed in MATLAB (MathWorks, Natick, MA, USA). An outline of a cell membrane 
was expanded along the direction of the selection (i.e. membrane) normal, until the pixels 
showing membrane intensities were within the selected region (see Fig. S1 A in Supporting 
Material). The intensities in each fluorescence channel for the pixels in the direction of the 
normal (≈membrane normal) were integrated to obtain the integrated intensity in each 
channel as a function of position along membrane perimeter. Since both cell types were 
labeled with different membrane-associated labels in all experiments, we could estimate the 
cell–cell contact, i.e. the limits of synapse, by determining where the different membrane 
stains overlapped (see Fig. S1 B). Fluorescence intensities in different channels at the synapse 
were plotted against each other and Pearson correlation coefficients calculated. This 
procedure was repeated for several slices throughout a given cell-cell conjugate and the 
average correlation coefficient for a given synapse was calculated. 
 Areas and relative concentrations of the fluorophores in the central and peripheral zone of 
the cell–cell contact were determined as follows: First, points from the center line of the 
membrane were picked manually from different z slices through the cell-cell conjugate.  Then 
values were converted to the cylindrical coordinate system, and the cubic interpolation 
function of MATLAB was used to interpolate the radius from cell center to membrane center 
for each angle across each z slice. For the intensity along the membrane, the fluorescence 
intensity was integrated in the direction of local membrane normal across four pixels on 
either side of the membrane center line. Both 3D reconstructions of the data as well as 2D 
projections were created (see Fig. S1 C). Any projection of a spherical surface in 2D requires 
compromises (as in maps of Earth, for instance). To facilitate intensity and area calculations, 
we chose projections that maintain the area and hence the total intensity of the surface 
although this leads to distortion in the 2D projection of the shapes on the 3D surface. For the 
analysis of intensities and areas, the outline of the cell–cell contact was drawn into the 2D 
projection based on the membrane stains overlapping between the two cells, and regions that 
had high HLA-Cw6-GFP intensity were marked (see Fig. S1 D).  
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 To estimate the surface density of receptors, in some cases 3D reconstructions were 
created semi-automatically with the aid of the 3D version of a region scalable segmentation 
algorithm (S2).  First, as pre-processing for the 3D segmentation, image stacks were 
smoothed by a smoothing algorithm (S3). After this, a local minimum in a 5×5×5 
neighborhood of the resulting stack was smoothed by Gaussian kernel (kernel width = 15 
pixels, σ = 2.5 pixels) and subtracted, setting negative values to zero. Then the stack was 
reduced in size by factor of 4 in xy directions and factor of 2 in z direction. A 3D version of 
the hybrid model filtering (S4) was used for smoothing the rescaled stack. Finally, the 
intensity was normalized in a 5×5×5 local neighborhood, setting the value within each pixel 
to be 
INEW = (IOLD-IMIN)/(0.2×SMAX+0.8×IMAX -IMIN)  
where IOLD is the original intensity of the pixel, IMIN is the minimum intensity of local 
neighborhood, SMAX  is the maximum of the intensity scale (255 for 8-bit image), and IMAX  is 
the maximum intensity of local neighborhood. The SMAX  term suppresses high values from 
low intensity noise in empty regions in the stack. This normalization causes some problems 
in large regions of nearly equal intensity, but enhances visibility of edges (see Fig. S2 for the 
effects of various steps in pre-processing).  

The segmentation algorithm was then run on this stack to find the external and 
internal borders of plasma membrane, and the results were corrected manually in MATLAB. 
In most cases the segmentation results at the very bottom and at the top of the cell required 
manual modification, i.e. joining the holes left partly resulting from the normalization 
procedure, likewise the intracellular clusters of fluorescence in the immediate vicinity of the 
plasma membrane and the other cells in contact needed to be manually separated from the 
plasma membrane (see Fig. S3 for a comparison of automated and manually modified 
results). After satisfactory segmentation, the volume of the cell, plasma membrane, and 
intracellular components were calculated based on the total volume of voxels in these 
compartments. The total (as well as mean and median) intensities in different channels for 
each compartment were calculated from the intensities of voxels within each compartment. It 
is important to note that the final, manual correction of the compartment borders as well as all 
the calculations were done using the original, unmodified image data. The surface 
triangularization of the isosurface of the image energy matrix produced by the algorithm and 
manual corrections was computed in MATLAB. The external membrane area was calculated 
based on the total area of triangles in the surface triangularization. Based on the data from 
this analysis and the surface expression level of HLA-Cw6 from the flow cytometry analysis 
the surface densities of HLA-Cw6-GFP within the peripheral zone of the synapse were 
calculated (see Table S1 in Supporting Material). 
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Figure S1. The analysis process. In (A) the selection of membrane is shown; the blue channel 
intensities were rescaled to enhance visibility. The intensities across the membrane in the 
direction of selection normal are then integrated and plotted against the distance along the 
selection (arrow shows the beginning of selection). (B) Left, the intensities plotted against the 
distance along the selection. Colors correspond to one in merged  images in (A). The intensity 
of the stain in the membrane of the other cell (blue line in (B) on the left)  is then used to 
define the limits of the synapse (magenta arrows), and the correlations for the intensities 
against the GFP intensity are then calculated from the line fits ((B), right). For the analysis of 
intensity distributions in the central and peripheral zone of the synapse a 3D reconstruction of 
the synapse was spread into two dimensions (C), and the outer perimeter of the synapse was 
outlined based on the overlap with the stain in the other cell (thin blue line in (C), right) and 
the central zone was chosen based on where GFP fluorescence was particularly intense in the 
mature, i.e. late-stage, synapse (thin green line in (C), right). 
  



4 

 

 
Figure S2. Image preprocessing steps for the semi-automated cell perimeter finding (see 
section Image Analysis for details). In (A) unmodified image is shown, in (B) image 
smoothed by Garcia algorithm, in (C) an image with local background subtraction, in (D) the 
image from the stack reduced in size by 4-fold in x and y directions and 2-fold in z direction, 
in (E) the 3D hybrid model-smoothed image, and in (F) the image with local normalization. 
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Figure S3. Example of an automatic border finding result and a manually corrected result. In 
(A) the result of the segmentation method operating on the pre-processed stack (see Fig. S2 
F) is shown. This image shows all the common problems, partly resulting from pre-
processing (though it avoids other problems): the cell is connected to nearby cells, and the 
bottom and top of the cell have many holes. In (B) the manually corrected result is shown. 
This result can then be used to pick from the stack automatically all the closed volumes and 
the subvolumes within these volumes and analyze their intensities. In (C) a view of the 
resulting 3D representation of the cell surface is shown. 
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Figure S5. Assay for NK cell function in the presence of nanoparticle Qdot655. The light 
gray columns indicate killing by YTS cells and the dark gray columns the killing by 
YTS/KIR2DL1 for the indicated three target cells: normal 221, 221/Cw6-GFP, and 221/Cw6-
GFP labeled with 23.4 nm Qdot655. The error bars indicate standard deviation of three 
samples. Note that the recognition of class I MCH molecule (Cw6-GFP) by the inhibitory NK 
cell receptor KIR2DL1 (dark gray) on YTS cells leads to decreased killing of the 221 cells, 
both in unlabeled and labeled cells, whereas no significant decrease in killing is seen for YTS 
cells not expressing KIR2DL1 (light gray). 
 

 

 
Figure S6. The synapse characteristics in the presence of different-sized fluorescent particles 
on 221/Cw6-GFP cells. In (A) the base two logarithm of Cw6-GFP central/peripheral 
intensity ratio is shown. The central/peripheral intensity ratio of Cw6-GFP showed minor but 
statistically significant differences (ANOVA p=0.002) for different fluorescent particles, with 
post hoc tests revealing that the Cw6-GFP intensity ratio for 23.4 nm particles was 
significantly different from that for 18.6 nm particles (p<0.01) and those for 15.4 and 21.2 
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nm particles (p<0.05) while other differences were not statistically significant.  These 
differences may be either coincidental, or alternatively, the largest particles that are not 
efficiently excluded from the synapse (i.e. 18.6 nm and 15.4 nm particles) may be the most 
efficient in excluding Cw6-GFP from the synapse. In (B) the areas of the synapses are shown. 
The synapse area was not significantly different with different fluorescent particles 
(ANOVA:  p = 0.085).  In (C) the fractions of the central area/total synapse area are shown. 
The fraction of central area (ANOVA p=0.002) of the total area had a small but statistically 
significant difference when comparing 18.6 nm particles to 5.9 nm (p<0.05) or 23.4 nm (43.4 
%, p<0.01) particles – other differences were not statistically significant. 
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Figure S7. Synapse formed by 221/ICAM-1-GFP with YTS/KIR2DL1. In (A) a Z slice from 
a stack is shown; the images from left to right are the brightfield and red/Qdot655, 
green/ICAM-1-GFP, and blue/SA405 fluorescence channels of the merged image. In (B) the 
contact-surface reconstruction is shown. In (C) the 2D plot of the contact-surface is shown; 
the channels from left to right are in the same order as in (A). 
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Figure S8. Intensity of the largest fluorescent particle does not show negative correlation to 
ICAM-1-GFP intensity. Intensity correlation coefficients in 221/Cw6-GFP-to-YTS/KIR2DL1 
and 221/ICAM-1-GFP-to-YTS/KIR2DL1 cell-to-cell contacts are compared for Qdot655 
(23.4 nm) (the two sets at the left) and SA (5.9 nm) (two sets at right).  
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Figure S9. The central/peripheral fluorescent particle intensity ratios cannot be fitted by a 
lateral crowding-based model alone. The data has been fitted by varying different parameters 
in Eq. 1 (see text and Appendix S1). The open circles represent the combined data used in 
fitting. The dotted line represents best fit, when the surface number density of Cw6-GFP was 
varied (ΓCw6 = 385/µm2 for the best fit, i.e. more than twice the actual estimate). The dashed 
line represents best fit for varying the diameter of Cw6-GFP (dCw6 = 12.1 nm for the best fit). 
The continuous line represent best fit for varying both ΓCw6  and dCw6 (subject to the 
constraints dCw6≥3 nm, ΓCw6≥0, resulting in dCw6 = 3 nm and ΓCw6 = 490/µm2). The red 
continuous line indicates fit where Cw6-GFP central/peripheral ratio RCw6 and ΓCw6 were 
varied (resulting in RCw6=1.0001 and ΓCw6=31600/µm2). Using all three parameters as 
adjustable ones makes the fitting very sensitive to initial values, but does not improve quality 
of the fits. Hence, even non-physical values of the parameters do not allow for a reasonable 
fit to data, using an equation based solely on lateral crowding, whereas the lateral crowding-
based equation provides excellent agreement with data, without a single adjustable parameter 
up to the point where membrane bending-dependent exclusion is expected to become 
apparent (Fig. 5 C).  
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Figure S10. The evaluation of membrane bending free energy in a simple model. For the 
calculation of order of magnitude estimates we considered an axisymmetric system, where 
the HLA-Cw6-GFP/KIR2DL1 complexes (green vertical lines in (A)) force the membrane to 
flatness at radius r = a. The fluorescent particle at r = 0 (red outline in (A)) induces curvature 
to the membrane at r ≤ a if its radius R > 7.5 nm, i.e. more than half the membrane 
separation. When mirror symmetry in the vertical direction is assumed, the problem 
simplifies to solving the curvature in the lower membrane in (A). The blue lines in (A) show 
the minimum free energy membrane profile for a=50 nm and R=11.7 nm. In (B) the 
minimum free energy profiles for a=50 nm and fluorescent particle diameters 15.4 nm (cyan 
line), 18.6 nm (red line), 21.2 nm (green line), and 23.4 nm (blue line). 
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Appendix S1: Derivation of Eq. 1 
The scaled particle adsorption theory derives for the adsorption of particle A onto surface 
with arbitrary occupancy of particle B the adsorption level of particle A is (for concentrations 
of A far from saturating) (Eq. 13 in ref. (S1)): Φ�Φ��

= (1 − Φ�)Λ 

(Eq. S1) 
where Φ refers to fractional coverage of surface by the particle, the subscript defining particle 
type, while the superscript 0 refers to coverage in the absence of the other particle. (1 − Φ�) 
describes the available area, not accounting for packing defects, e.g. circular disks (of particle 
B) could never decrease (1 − Φ�) to zero as it is impossible to cover an area with circles 
completely, since there will always be area not covered at the contact of three closely packed 
circles. The entropy and packing contribution Λ is defined as (S1): 

Λ ≡ �� �−��Φ� �2���
1

1 − Φ� + ���� �1 − (� − 1)Φ�(1 − Φ�)� ��� 
(Eq. S2) 
where � is the shape factor for particle B (for a circle � = 1), �� is the ratio of characteristic 
dimensions (such as radii) of particles A and B, �� is the calculated as a ratio of two ratios, 
namely the circumference/characteristic dimension ratios (=2π for a circle) for particles A 
and B (for two circular disks �� = 1), and similarly �� is calculated as a ratio of two ratios, 
namely the particle area/(particle characteristic dimension)2 (=π for a circular disks) for 
particles A and B (for two circular disks �� = 1). Here we approximate both the fluorescent 
particles and the receptor–ligand complexes as circular disks with given radii. Hence we 
obtain: 

Λ ≡ �� �−��Φ� �2 1
1 − Φ� + �� � 1

(1 − Φ�)���� 
(Eq. S3) 
Given that the level of adsorption in the absence of B is only dependent on the reference state 
in solution, for adsorption of A onto surface of two different levels of B or likewise for 
distribution of particles A between two such domains on a surface we have from Eq. S1: Φ��(1 − Φ��)Λ� = Φ��(1 − Φ��)Λ� 

(Eq. S4) 
Let us define  ρ ≡ Φ��/Φ�� and Φ� = Φ��, leading to the ratio of fractional surface 
coverage in domains 2 and 1 by particle A: 

! = Φ��Φ�� = (1 − ρΦ�)�� �−��ρΦ� �2 11 − ρΦ� + �� � 1(1 − ρΦ�)����
(1 − Φ�)�� �−��Φ� �2 11 − Φ� + �� � 1(1 − Φ�)����  

(Eq. S5) 
For our purposes the ratio in Eq. S5 represents the predicted ratio of fluorescent particle 
surface concentration between regions 2 (central zone of the synapse) and 1 (peripheral zone 
of the synapse) with ρ representing the same ratio for Cw6-GFP, i.e. ρ = !"#$ (obtained 
from the fluorescence intensity levels), and Φ� the fractional surface coverage by Cw6-GFP 
in the peripheral zone of the synapse. Since the ratios of radii and diameters are equal we 
replace ��  with �% and obtain Eq. 1. Note that here we assume that the contribution of other 
proteins to differences in crowding in the central and peripheral zones of the synapse is so 
small that it can be ignored.  
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Appendix S2: Derivation of the curvature free energy for a symmetric double bump in a 
tension-free homogeneous bilayer 

 
As discussed in the main text, the membrane curvature-mediated interactions are very 
complex and difficult to treat analytically. Hence, we merely wanted to estimate if the order 
of magnitude is correct by calculating the curvature free energy of a single double bump 
caused by a fluorescent particle in between the two bilayers. Even here, we will have to 
arbitrarily impose a condition defining the membrane outside the actual bump rather than 
evaluating the effect of receptor–ligand distribution outside the bump on the actual membrane 
curvature. We hence assume that the system is axisymmetric and that at the distance a from 
the center of the bump the membrane again becomes flat at the reference level (gradient=0), 
as imposed by the surrounding HLA-Cw6-to-KIR2DL1 complexes.  
 Because of the symmetry (see Fig. S10), we consider one bilayer in a Monge gauge that is 
valid as long as there are no overhangs. In a Monge gauge the level h describes the height of 
the bilayer locally below or above the reference plane and, as far the gradients are small, the 
free energy of the membrane in the absence of other forces and for zero spontaneous 
curvature is approximately  

& ≈ �
� ( ))*+,(∇�h)� + /(∇h)�0 ,                Eq. S6 

where κ is the membrane bending modulus and σ is the membrane tension. For the minimum 
energy solutions of this equation the first variation disappears and they satisfy the differential 
equation (S5) ∇�(∇� − 12�)h = 0                       Eq. S7 

where λ is the ratio 1 ∶= 56
7, and for a tension-free membrane (σ = 0), the minimum energy 

solution may be found as a solution of the biharmonic equation ∇8h = 0.                         Eq. S8 
 A very similar problem to ours has been treated by others (S5) who studied indentation 
caused by an AFM tip on a nanodrum pore. The solutions may be found as solutions of Eq. 
S7 if tension is to be included. When limited to an axisymmetric case, the general solution is 
(see ref. S5): 

 ℎ(:) = ℎ� + ℎ� ln =>
?@ + ℎAB� =>

?@ + ℎ8C� =>
?@             Eq. S9 

where values for hi are constants,  and I0 and K0 are modified Bessel functions of the first and 
second kind. Similarly, for the tension-free case the axisymmetric solution is the 
axisymmetric solution of the biharmonic equation (Eq. S8) (S6) ℎ(:) = D� + D� ln(:) + DA:� + D8:� ln(:)              Eq. S10 
In our case, the region limited by the surrounding receptor–ligand complexes corresponds to 
radius of the nanodrum pore in ref. S5. The membrane must be continuous at the edges of the 
region as well as at the fluorescent particle/membrane contact. Hence from ref. S5 we obtain 
the boundary conditions  
h(a) = 0                          Eq. S11 
h’(a) = 0                         Eq. S12 
where h’ = dh/dr, and a is the radius of the region limited by receptors.  
We assume the fluorescent particle to be spherical and to have its center symmetrically with 
respect to the two membranes. When the membrane is in contact with fluorescent particle, the 
height 

ℎ(:) = −ℎ� + !EF − G!EF� − :�, 
where h0 is the depth of indentation caused by the nanoparticle at r = 0 and hence at the 
contact point c of the membrane and the fluorescent particle 
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ℎ(H) = −ℎ� + !EF − G!EF� − H�                 Eq. S13 
while the continuity of the membrane requires that the gradients (in an axisymmetric case the 
radial derivatives) are equal.  
ℎ′(H) = �

5�JKL 2�L                       Eq. S14 

Hence, the solution can be found as the solution of Eq. S9 (if tension is included) or Eq. S10 
(for the tension free case) that satisfies the boundary conditions in Eq. S11–S14. In our 
treatment we omit the membrane–fluorescent particle adhesion free energy. After the solution 
is found, the contact point c is varied so as to give the minimum free energy solution. For 
ease of calculation we scale all the lengths in the system with the length a; i.e. set a=1 and 
present h0, RNP, and r in proportion to a.  
For the tension free case (Eq. S10), the boundary conditions then take the form ℎ(1) = D� + DA = 0  ℎM(1) = D� + 2DA + D8 = 0  

ℎ(H) = D� + D� ln(H) + DAH� + D8H� ln(H) = −ℎ� + !EF − 5!EF� − H� 

ℎM(H) = D�
1
H + DAH+2 ln(H) + 10 + 2D8H = H

G!EF� − H� 

Eq. S14 
The approximations made in our system will introduce a high level of uncertainty into our 
calculations, and we will in any case at best obtain order-of-magnitude estimates. In addition, 
the membrane tension σ in biological membranes is typically very low, and hence we 
consider only the tension-free estimate. From the boundary conditions Eq. S14 we get the 
values for the constants for c≠0: D� = −N ∙ (H� ln H) D� = −P + N(H� − 1 − 2H� ln H)  DA = N ∙ (H� ln H)  D8 = P − N(H� − 1 − 2 ln H)  
Eq. S15 
where 

P = −ℎ� + !EF − G!EF� − H�
(H� − 1) ln H  

and 

N = 1
4H�(ln H)� − H8 + 2H� − 1 R H�

G!EF� − H� − P(2H� ln H + H� − 1)S 
Alternatively, if c=0, D� = −ℎ� D� = 0  DA = ℎ�  D8 = −2ℎ� . 
Assuming constant bending modulus κ as well as zero spontaneous curvature, because two 
symmetric bilayers are involved and the system is axially symmetric the curvature free 
energy is: 

& ≈ , ( ): ( :)T(∇�h)� = 2U, �( ): : = �
�JK@� + ( ): :(4DA + 4D8 + 4D8ln :)��

�
�

� � =
2U, � = �

�JK@� + 4(2DA� + 2DAD8 + D8�)(1 − H�) − 8(2DAD8 + D8�)H� ln H − 8D8�H�(ln H)��  
Eq. S16 
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By inserting the values of constants b3 and b4 (Eq. S15) in Eq. S16 one can find the value of c 
that gives the minimum free energy. Due to complex dependence of b3 and b4 on c, the task 
of finding the zero of the derivative does not appear any simpler than finding c that gives the 
minimum in H in a straightforward numerical calculation. After the value of c that gives the 
minimum free energy is known, the profiles can also be calculated. For the special case c=0 
the free energy of the bump is simply given in terms of non-normalized original values (i.e. 
h0=(2RNP-d)/2 and a, too, has its original value rather than a=1) as  
H=16πκ(h0/a)2                       Eq. S17 
that is a very good approximation if h0/a ratio is not very large (largest deviation from our 
numerical results was 0.7%;). Let us consider that the height difference would be 
accommodated by one bilayer alone, i.e. h0 in Eq. S17 would be twice as large, but since 
there is only one bilayer, the final value must be divided by two. In other words, with this 
simple approximation, the free energy for accommodating a protein with a larger 
extracellular domain than preferred intermembrane spacing is twice as large when only one 
of the membranes can bend. Hence solid-supported lipid bilayer-based artificial immune 
synapses should be much more sensitive to height differences; assuming a = 50 nm, height 
difference of 6 nm (h0=3 nm in Eq. S17) and κ=0.3×10-19 J, the expected central/peripheral 
ratios based on this simple approximation would be 0.28 in the “cell–cell” and 0.08 in the 
“SLB–cell” systems. Note that these values should not be considered as predictions, as they 
do not take in to account the real complexity of the situation, but they demonstrate the effect 
that using SLBs is expected to have.        
 Very different values of κ for different membranes have been reported, and the value of κ 
is sensitive to the cholesterol content of the membrane, reaching values up to 3×10-19 J for 
fluid membranes containing tens of mol% cholesterol (S7). In the absence of cholesterol, the 
values of κ reported for fluid membranes are mostly in the region 0.1–1 ×10-19 J (S7). At our 
experimental temperature of ~310 K kBT≈4.28 ×10-21 J. We calculated the membrane 
curvature free energies for three different values of κ, 0.1×10-19 J, 0.3×10-19 J, and 1.0×10-19 
J, as well as for five different radii of the region: 50, 100, 150, 200, and 250 nm. The lower 
limit for the radius of the region was set as 50 nm, as it seems unlikely that a region much 
smaller than this would be realistic, for the calculated mean distance between HLA-Cw6-
GFP molecules in the central region of synapse is approx. 45 nm. The upper limit of the 
radius was set at 250 nm, as regions devoid of HLA-Cw6-GFP larger than 500 nm in 
diameter should be visible given the resolution of the microscope. To make the comparison to 
the data more clear, we present the data as the expected fluorescent particle central/peripheral 
ratio based on partitioning depending solely on membrane curvature free energy according to 
the Boltzmann distribution. The values show that particularly in the mid-range of κ estimates 
the membrane bending elasticity-driven expulsion of the fluorescent particles agrees 
reasonably well with the experimental results. Note that (in addition to the real complexity of 
protein–particle, particle–particle, and protein–protein interactions) we have neglected 
several factors that may affect the free energy cost of inserting the fluorescent particle 
between the membranes. First, the clustering of fluorescent particles is expected to decrease 
the bending free energy cost/particle. This clustering will be driven by the resulting decrease 
in bending free energy. Second, it is possible that the membrane may adhere onto the 
fluorescent particle surface. This is expected to decrease the free energy cost. Third, we 
neglected the small membrane tension observed in cell membranes. This tension will increase 
the free energy cost of creating a bump. Fourth, we did not consider the locally varying 
spontaneous bilayer curvature that could decrease or increase the free energy cost of creating 
the bump. Fifth, the lateral dimension of the curvature defect (“a” in our simple model) is 
expected to different for each particle size, depending on protein distribution-related entropy 
considerations and packing in the central zone of the synapse. In addition, of course, the 
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actual values of membrane tension, bending modulus, and spontaneous curvature in the 
immune synapse are unknown. Combined with realistic simulations and super-resolution 
imaging (S8) (to observe clustering), our method could allow for the deduction of these very 
values.  
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Table S1. The characteristics of cells (N=12) analyzed for quantification of the HLA-Cw6-
GFP numbers in the synapse. 

Property Value 

mean volume 3420±370 µm3 

mean area 1930±320 µm2 

mean of area/(area of sphere of 
equal volume) 

1.68±0.15 

mean total GFP intensity 2.0±0.3 ×107 a.u. 

mean fraction of GFP in 
membrane 

0.69±0.03 

mean fraction of NP in 
membrane 

0.83±0.01 

mean GFP surface number 
density in membrane1 

134±20 molecules/µm2 

mean GFP surface number 
density in the peripheral zone of 
synapse 

212±32 molecules/µm2
 

1Calculated from the flow cytometry analysis of mean number of GFP molecules/cell surface 
= 250 000 and the total cell and membrane GFP intensities. 
 

Table S2. Predicted fluorescent particle central/peripheral ratio based on the membrane 

curvature free energy of a bump, with κ = 0.1×10-19 J 

 particle diameter 

region radius 15.4 nm 18.6 nm 21.2 nm 23.4 nm 

50 nm 0.998 0.859 0.637 0.439 
100 nm 1.000 0.963 0.893 0.813 
150 nm 1.000 0.983 0.951 0.912 
200 nm 1.000 0.991 0.972 0.950 
250 nm 1.000 0.994 0.982 0.967 
experimental 0.876  

(0.833–0.921) 
0.828 

(0.814–0.842) 
0.693 

(0.658–0.729) 
0.586 

(0.568–0.605) 
experimental / 
scaled particle 
prediction 

0.987 
(0.939–1.039) 

0.971 
(0.954–0.987) 

0.842 
(0.800–0.886) 

0.736 
(0.713–0.760) 
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Table S3. Predicted fluorescent particle central/peripheral ratio based on the membrane 

curvature free energy of a bump, with κ = 0.3×10-19 J 

 particle diameter 
region radius 15.4 nm 18.6 nm 21.2 nm 23.4 nm 

50 nm 0.994 0.633 0.258 0.085 
100 nm 0.999 0.892 0.713 0.537 
150 nm 0.999 0.951 0.860 0.759 
200 nm 1.000 0.972 0.919 0.856 
250 nm 1.000 0.982 0.947 0.905 
experimental 0.876  

(0.833–0.921) 
0.828 

(0.814–0.842) 
0.693 

(0.658–0.729) 
0.586 

(0.568–0.605) 
experimental / 
scaled particle 
prediction 

0.987 
(0.939–1.039) 

0.971 
(0.954–0.987) 

0.842 
(0.800–0.886) 

0.736 
(0.713–0.760) 

 

 

 

Table S4. Predicted fluorescent particle central/peripheral ratio based on the membrane 

curvature free energy of a bump, with κ = 1.0×10-19 J 

 particle diameter 
region radius 15.4 nm 18.6 nm 21.2 nm 23.4 nm 

50 nm1 0.981 0.218 0.011 0.000 
100 nm 0.995 0.684 0.323 0.126 
150 nm 0.998 0.844 0.606 0.398 
200 nm 0.999 0.909 0.754 0.596 
250 nm 0.999 0.941 0.835 0.718 
experimental 0.876  

(0.833–0.921) 
0.828 

(0.814–0.842) 
0.693 

(0.658–0.729) 
0.586 

(0.568–0.605) 
experimental / 
scaled particle 
prediction 

0.987 
(0.939–1.039) 

0.971 
(0.954–0.987) 

0.842 
(0.800–0.886) 

0.736 
(0.713–0.760) 
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