
Decomposing Linear Representations of Finite Groups

Kaashif Hymabaccus

Wadham College

University of Oxford

Supervisor: Dr Dmitrii Pasechnik

Final Honour School of Mathematics and Computer Science Part C

Trinity 2019



Abstract

We develop a package using the computer algebra system GAP for computing the decom-
position of a representation ρ of a finite group G over C into irreducibles, as well as the
corresponding decomposition of the centraliser ring of ρ(G). Currently, the only open-
source programs for decomposing representations are for non-zero characteristic fields.
While methods for characteristic zero are known, there are no open-source computer pro-
grams that implement these methods, nor are details on how to achieve good performance
of such an implementation published. We aim to record such details and demonstrate an
application of our program in reducing the size of semidefinite programs.
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1 Introduction

1.1 Motivation and Requirements

In 1971, in his graduate textbook on the linear representations of finite groups [1], Serre
specified a method of computing the decomposition of a representation of a finite group
G into irreducible subrepresentations. Despite the existence of Serre’s text, this algorithm
has no open source implementation. Indeed, there is no open source program solving
this problem in general at all. This is the problem our project aims to solve, using the
computer algebra systems GAP [2] and SageMath [3].

Specifically, we aim to provide a GAP package providing the functionality to compute
the following, given a finite dimensional representation of a finite group ρ : G → GL(V ),
where V is a C-vector space.

• A decomposition of V into irreducible subrepresentations

• The corresponding block diagonalisation of ρ, along with the associated basis change
matrix

• A basis for the centraliser ring Cρ ⊆ End(V )

We only deal with the case where the representation ρ is over C - in particular, this means
we are in characteristic zero. In the case where the representation is over a finite field, a
user could take advantage of the Meataxe algorithms, introduced by Parker [4] and later
improved by various authors. These algorithms have been implemented in GAP and allow
computations of decompositions of modules, tests of irreducibility, isomorphisms between
modules and so on. None of these methods are applicable in the case of a characteristic
zero field, which is what we focus on in this project.

We also aim to extensively test and document our package to ensure correctness and ease
of use. After the completion of the project, our goal is for this package to be included
with the GAP distribution.

1.2 Outline

In Section 2, we provide some background on representation theory, group theory, and
some terminology (some of which is not standardised) that will be used throughout this
project.

In Section 3, we describe Serre’s algorithms to decompose a representation of a finite
group, with some discussion of performance and possible improvements.

In Section 4, we describe an alternate algorithm of our own design, incorporating some
results due to Serre and various small performance enhancements.

In Section 5, we describe our testing and benchmarking methodology. We analyse the
performance, focusing on the effect of the size of G and the degree of the representation
ρ on the running time, as well as measuring the effect of our optimisations.
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In Section 6, we describe an application of our program to reducing the dimension of
semidefinite programs, using a method due to de Klerk et al. [5]. We reproduce their
calculation of a bound on the crossing number of Km,n (a complete bipartite graph) using
our method to formulate the program.

In Section 7, we describe how our contributions satisfy the requirements, possible improve-
ments, and further work that could be done on this project.

In the appendix Section A, we implement an algorithm to unitarise representations using
methods developed while implementing the main algorithms of this project. We also
describe an algorithm due to Dixon [6] for decomposing unitary representations that has
some desirable properties. This section is not a part of the requirements set out earlier,
but is a possibly useful consequence of our work.
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2 Background

In this section, we provide some background information required to understand the results
presented in this project. A basic understanding of group theory and linear algebra is
assumed, but nothing more.

2.1 Representation Theory

Let G be a finite group. A representation of G is a homomorphism ρ from G to the
automorphism group of a vector space, GL(V ). We will only consider the case where V
is a finite-dimensional vector space over C.

A common abuse of terminology is to refer to V , the vector space, as a representation of
G. This is done only when it is clear what the action of G is.

Let ρ : G→ GL(V ) be a representation of G.

ρ is isomorphic as a representation to τ : G → GL(W ) if there is a linear isomorphism
α : V →W such that for all g ∈ G, α ◦ ρ(g) = τ(g) ◦ α. In other words, ρ and τ differ by
a change of basis.

A subrepresentation of ρ is a representation ρ|W : G→ GL(W ), whereW is a subspace of V
which is invariant under the action of G. The action on W is given by ρ|W (g)w = ρ(g)|Ww.
This is well defined because W is preserved by ρ(g).

A representation ρ is said to be irreducible if it has no subrepresentations other than 0
and V . Note that, for finite group representations over C, this is equivalent to saying that
V does not break down into a direct sum of subrepresentations [1]. We will sometimes
refer to an “irreducible representation” as an “irreducible”.

Let W1, . . . ,Wn be the complete list of irreducibles of G. If V =
m⊕
i=1

Ui is the decomposition

of V into irreducibles, then the canonical decomposition of V is
n⊕
k=1

Vk where each Vk is

the direct sum of the Ui which are isomorphic as representations to Wk.

The centraliser (sometimes called the commutant) of a representation ρ is the C-vector
space of linear maps A such that Aρ(g) = ρ(g)A for all g ∈ G.

Given ρ, the dual representation ρ∗ is the representation defined by:

ρ∗(g) = ρ(g−1)T

2.2 Orbitals

A more detailed presentation of some of these definitions, with illustrative examples, can
be found in P. Cameron’s Permutation Groups [7].

Frequently, it will be convenient to consider a representation ρ : G→ GL(V ) where all of
the images ρ(g) are permutation matrices as a map ρ : G→ Sym(X), where X is a basis
for V . This is a group action of G on X.
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An orbital of this action is an orbit of G acting on X ×X by: g · (x, y) = (g · x, g · y).

The orbital (di)graph associated with an orbital ∆ is the directed graph with vertex set
X and directed edge set ∆.

21 3

2

1 3

Figure 1: S3 acting on {1, 2, 3} has two orbital digraphs

When we refer to an orbital as a matrix, this refers to the adjacency matrix of the orbital
graph.

Computing with the full adjacency matrices is inconvenient due to their space inefficiency.
It is more convenient to work with collapsed versions of these matrices, which allow com-
putations to be done much faster.

Let α ∈ X and fix an ordering of the orbits ofGα (the stabiliser of α): X1 = {α}, X2, . . . , Xr.
Choose representatives αi ∈ Xi. Let Γ = (X,∆) be an orbital graph.

A collapsed adjacency matrix (in the sense of Praeger and Soicher [8]) for Γ, with respect
to the choice of α, representatives, and orderings, is the r× r integer matrix A defined by:

Aij = |Γ(αi) ∩Xj |

That is, Aij is the number of neighbours of αi in the graph Γ which are contained in Xj .

These collapsed matrices are useful because they provide a natural isomorphism from the
algebra generated by orbital matrices X to a smaller-dimensional algebra Y , given by the
collapsed orbital matrices. This means that whenever we have a problem in X that can be
formulated in terms of spectra of matrices, we can pass to Y using the isomorphism and
solve the same problem in Y . A detailed explanation of the isomorphism can be found in
[5], and an abbreviated explanation in Section 6, where we use this method to reduce the
dimension of a semidefinite program.

2.3 Cyclotomic numbers

Cyclotomic numbers are the numbers z ∈ C such that z ∈ Q(ζn) for some n, where ζn is
a complex primitive nth root of unity. Q(ζn) is called a cyclotomic field.

Brauer [9] proved that every irreducible complex character of a finite group G can be
realised by a representation of G over the cyclotomic field Q(ζx), where x is the exponent
of G (the smallest x such that for all g ∈ G, gx = 1G). This means that if we restrict our
attention to representations with cyclotomic coefficients, we get all representations of G,
up to isomorphism.
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In GAP (the computer algebra system that we use), we can represent general algebraic
numbers, but the algorithms for performing arithmetic with these is not efficient when
compared with cyclotomic numbers. Due to Brauer’s theorem, we do not need to consider
non-cyclotomic algebraic numbers.

Throughout this project, when we take a representation over C, we assume this represen-
tation is over the cyclotomic numbers.

2.4 Computer algebra systems used

To implement this project, we used two computer algebra systems: GAP [2] and SageMath
[3].

The main part of the project is a GAP package, implemented in the GAP programming
language, which is designed to be easy to read for mathematicians and programmers alike.
We will refrain from using non-obvious features in code snippets without explanation. A
reference for the programming language can be found here: https://www.gap-system.

org/Manuals/doc/ref/chap4.html.

Some parts of the project are implemented using SageMath, which uses the Python pro-
gramming language. This was necessary since certain algorithms are only implemented in
SageMath, like the computation of a complete list of irreducibles of Sn using integer ma-
trices. SageMath also has a convenient interface to both GAP and a semidefinite program
solver, making it an ideal choice to implement Section 6, which explores how our project
can be used to speed up computations by finding the optimal block diagonalization for a
semidefinite program.
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3 Algorithms due to Serre

The algorithms and theorems in this section are taken partially from Serre’s text on
representation theory [1]. In that text, you will find a more mathematically rigorous
treatment of this material, including full proofs of correctness. Our focus is on algorithmic
details and performance, which Serre was not overly concerned with.

We first present the basic algorithm as is presented in Serre’s text. Then, we describe
optimisations that greatly reduce the running time in certain cases.

3.1 Basic algorithm

The algorithm proceeds in two steps. Given a representation ρ : G → GL(V ), we first
compute the canonical decomposition of V , then we decompose each summand into irre-
ducibles.

Let W1, . . . ,Wh be the complete list of irreducibles of G, n1, . . . , nh their degrees and
χ1, . . . , χh their characters.

We use a result due to Serre [1]:

Theorem 3.1. The projection pi of V onto Vi associated with the canonical decomposition
is given by:

pi =
ni
|G|

∑
t∈G

χi(t)ρ(t)

We can iterate over each irreducible and compute the image of the projection to obtain
our canonical decomposition V =

⊕
i
Vi.

The next step is to decompose each Vi into a direct sum of irreducible subrepresentations.
The key result we use to compute this decomposition is due to Serre [1]:

Theorem 3.2. Let n be the degree of the irreducible Wi, with Wi given in matrix form by
rαβ(s). Let pαβ denote the linear map V → V given by:

pαβ =
n

|G|
∑
t∈G

rβα(t−1)ρ(t)

(a) The map pαα is a projection; it is zero on the Vj for j 6= i. Its image Vi,α is contained
in Vi and Vi is the direct sum of the Vi,α for 1 ≤ α ≤ n. We have pi =

∑
α pαα.

(b) The linear map pαβ is zero on the Vj for j 6= i, as well as on the Vi,γ for γ 6= β; it
defines an isomorphism from Vi,β onto Vi,α.

(c) Let x1 be an element 6= 0 of Vi,1 and let xα = pα1(x1) ∈ Vi,α. The xα are linearly
independent and generate a vector subspace W (x1) stable under G and of dimension
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n. For each s ∈ G we have:

ρ(s)(xα) =
∑
β

rβα(s)xβ

(in particular, W (x1) is isomorphic to Wi).

(d) If (x
(1)
1 , . . . , x

(m)
1 ) is a basis of Vi,1, the representation Vi is the direct sum of the

subrepresentations (W (x
(1)
1 ), . . . ,W (x

(m)
1 )).

We will iterate over the canonical summands Vi, compute a basis for Vi,1, (x
(1)
1 , . . . , x

(m)
1 ),

and for each j, compute the vector subspace W (x
(j)
1 ). Then Vi =

⊕
j
W (x

(j)
1 ) is the

irreducible decomposition of this canonical summand.

The full algorithm is as follows:

function decompose representation(ρ : G→ GL(V ))
n← degree(ρ)
∆← {} . This is where we will build the decomposition
for ρi ∈ irreducibles(G) do

∆i ← {} . Decomposition of Vi
ni ← degree(ρi)
χi ← character(ρi)
pi ← ni

|G|
∑

t∈G χi(t)ρ(t)

Vi ← pi(V )
for 1 ≤ α, β ≤ ni do

pαβ ←= ni
|G|
∑

t∈G(ρi(t
−1))βαρ(t)

end for
Vi,1 ← p11(Vi)

for x
(j)
1 ∈ basis(Vi,1) do

W (x
(j)
1 )← span({pα1(x(j)1 ) : 1 ≤ α ≤ ni})

∆i ← ∆i ∪ {W (x
(j)
1 )}

end for
∆← ∆ ∪∆i

end for
return ∆

end function

This basic version of the algorithm can be called in the GAP package as the function
IrreducibleDecomposition(rho : no optimisations).

3.2 Optimised algorithm

The most obvious optimisation is to prune the set of irreducibles to the Wi that actually
appear in the decomposition before performing any expensive per-irreducible computa-
tions. Let χρ be the character of ρ and recall that the irreducible characters form an
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orthonormal basis for the space of characters. We can restrict our attention to the irre-
ducibles Wi such that 〈χρ, χi〉 > 0, since these Wi are the only ones that appear with
nonzero multiplicity in the decomposition of ρ.

This is a cheap calculation since we can reduce it to a summation over the classes of G.
Suppose the conjugacy classes of G are given by {tG1 , . . . , tGm}. Then:

〈χρ, χi〉 =
1

|G|
∑
g∈G

χρ(g)χi(g)∗ =
1

|G|
∑
j

|tGj |χρ(tj)χi(tj)∗

This will reduce the amount of work if only a small number of irreducibles actually appear
in ρ.

3.2.1 Computing the canonical decomposition

In one case, we can skip the canonical decomposition computation altogether. If we find
only one irreducible Wi appears in the decomposition of V , the canonical decomposition
is just the whole space V .

Otherwise, we must compute the projections pi : V → Vi. The main optimisation for this
step requires some extra information to be provided by the user.

Suppose we are given a basis B1, . . . , Bd for the centraliser ring C of ρ, which is orthonor-
mal with respect to the inner product 〈A,B〉 = Trace(AB∗), where B∗ is the conjugate
transpose of B. We can rewrite the expression for pi as follows. Let {t1, . . . , tm} be a set
of representatives for the conjugacy classes of G. Then:

pi =
ni
|G|

∑
t∈G

χi(t)ρ(t)

=
ni
|G|

∑
j

∑
s∈tGj

χi(s)ρ(s)

=
ni
|G|

∑
j

χi(tj)
∑
s∈tGj

ρ(s)

A matrix M is in the centraliser of ρ exactly when conjugating M by any ρ(g) leaves M
unchanged. Say S = tG, the conjugacy class of t in G. Then

∑
s∈S ρ(s) is an element of

C, since:

ρ(g)

(∑
s∈S

ρ(s)

)
ρ(g)−1 =

∑
s∈S

ρ(gsg−1) =
∑

s∈gSg−1

ρ(s) =
∑
s∈S

ρ(s)

Now we can write
∑

s∈S ρ(s) as a vector in the space spanned by the Bk, using the inner
product.
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We also require that B∗k is in the centraliser.

〈∑
s∈S

ρ(s), Bk

〉
=
∑
s∈S
〈ρ(s), Bk〉

=
∑
s∈S

Trace(ρ(s)B∗k)

=
∑
s∈S

Trace(ρ(gs)ρ(t)ρ(gs)
−1B∗k) (s = gstg

−1
s for some gs ∈ G)

=
∑
s∈S

Trace(ρ(gs)ρ(t)B∗kρ(gs)
−1) (we require B∗k ∈ C)

=
∑
s∈S

Trace(ρ(t)B∗k)

= |S|Trace(ρ(t)B∗k)

(1)

Let {t1, . . . , tn} be representatives of the conjugacy classes of G. Now, to sum over the
whole group, we need to compute:

∑
g∈G

ρ(g) =
n∑
i=1

d∑
j=1

|tGi |Trace(ρ(ti)B
∗
j ) (2)

The number of field operations required to compute the summation (2) depends on both
d, the dimension of the centraliser, and n, the number of conjugacy classes of G, but does
not depend on |G| at all.

This proof depends on the fact that C is closed under complex conjugation. That is, to
use this trick, we require that C is a matrix ∗-algebra.

There are several cases where C has this property. The most obvious is if we have a
ρ : G → Mn(C) that has already been block-diagonalised according to its irreducible
decomposition.

Let ρ =
n⊕
i=1

mi⊕
j=1

ρi where the ρi are distinct and irreducible, and mi is the multiplicity of

ρi in ρ. Recall that the centraliser of Mn(C) is the set of scalar matrices λI for λ ∈ C.

In our case, each block of our matrix ρ(g) (corresponding to canonical summand Vi) is a
block-diagonal matrix diag(ρi(g), . . . , ρi(g)). If we now consider the ring of coefficients in
our matrix to be Mdi(C), where di is the degree of ρi, then this is a scalar matrix ρi(g)Imi ,
so commutes with all matrices in Mmi(S) where S is the subring of Mdi(C) consisting of
scalar matrices. We know that the ρi do not commute with any more matrices due
to Schur’s lemma, which tells us that the only G-invariant linear endomorphisms of an
irreducible are scalar.
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To clarify, the centraliser of ρ is spanned as a vector space by matrices with n scalar matrix
blocks indexed by i, with block Bi (corresponding to Vi) having size midi×midi. Each of
these blocks Bi is divided into an mi ×mi grid of smaller blocks, each of size di × di. An
orthonormal basis for C is given by a set of

∑
im

2
i matrices, each with exactly one small

block set to the identity matrix and all other blocks set to zero.

For example, if we have a representation ρ = ρ1 ⊕ 2ρ2, where deg ρ1 = 3 and deg ρ2 = 2,
then a basis for Cρ is:

 I3 0 0

0 0 0
0 0 0

 ,

 0 0 0

0 I2 0
0 0 0

 ,

 0 0 0

0 0 I2
0 0 0

 ,

 0 0 0

0 0 0
0 I2 0

 ,

 0 0 0

0 0 0
0 0 I2


It is now clear that given a matrix in the span of these matrices, its conjugate transpose
is also in the span.

In the case that we are not given a basis for C, we must calculate one. In general, this
may be difficult. In the specific case where ρ is an isomorphism to a permutation group,
i.e. the permutation representation of a faithful action of G on some finite set X, we have
a basis for C available to use already: the set of orbital matrices (see Section 2 for their
definition).

Let the set of orbitals be given by {∆i : 1 ≤ i ≤ r}, with ∆i having matrix Ai. The Ai
form an orthonormal basis for C, and can be used with the method of computing the sum
described earlier (see equation (1)) since they form a matrix ∗-algebra.

Notice that {Ai : 1 ≤ i ≤ r} span a ∗-algebra. This is because each orbital ∆i has a paired
orbital ∆i∗ = {(y, x) : (x, y) ∈ ∆i}. It is clear that the associated adjacency matrices are
transposes of each other. This means that the algebra generated is closed under ∗.

A permutation representation is a specific case of a more general class of representations
that work with this trick: unitary representations. A representation ρ is unitary if ρ(g)∗ =
ρ(g−1). Then if A ∈ Cρ, A∗ ∈ Cρ also:

ρ(g)A∗ = (ρ(g)A∗)∗∗ = (Aρ(g)∗)∗ = (Aρ(g−1))∗ = (ρ(g−1)A)∗ = A∗ρ(g−1)∗ = A∗ρ(g)

When implementing the canonical decomposition, we only use this optimisation when ρ
is unitary. Although the trick also works if ρ is already block diagonalised, it is a waste of
time to check for this: representations are almost never already optimally block diagonal
unless they were constructed that way intentionally.

Note that for groups with small numbers of generators that have easily calculated inverses
(e.g. Sn), checking whether a representation is unitary is fairly cheap since we only
need to check the generators have unitary images. More precisely, for a single generator,
the calculation is quadratic in the degree of the representation, since we must transpose
the matrix ρ(g), conjugate each cell and check equality with ρ(g−1). This cost is small
compared to the almost cubic running time of a matrix multiplication.
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3.2.2 Unsuitability of the Gram-Schmidt process

In the previous section, we only attempt to find bases for the centraliser ring that are
already orthogonal. An alternative approach would be to find a basis that is not necessarily
orthogonal and simply apply the Gram-Schmidt orthonormalisation process to obtain an
orthonormal basis.

Figure 2: An implementation of the Gram-Schmidt process in GAP

OrthonormalBasis@ := function(v, prod)

local proj , N, u, e, k;

proj := function(u, v)

return (prod(u, v) / prod(u, u)) * u;

end;

N := Length(v);

u := [1..N];

e := [1..N];

for k in [1..N] do

u[k] := v[k] - Sum ([1..k-1], j -> proj(u[j], v[k]));

e[k] := (1/ Sqrt(prod(u[k], u[k]))) * u[k];

od;

return e;

end;

This algorithm is simple and does not have an unmanageable complexity in terms of
the number of arithmetic operations - only 2nk2 operations are required, where k is the
number of vectors (in our case, the dimension of the centraliser) and n is the dimension
of the vectors (in our case, the square of the degree of the representation). The issue is
that the arithmetic operations themselves are do not happen in constant time or space if
we are using exact numbers, expressed in terms of cyclotomic numbers.

In GAP, a cyclotomic number z ∈ C, is represented internally as a list of coefficients
ai ∈ Q such that

∑n
i=0 ζ

i
n = z for some n. This means that cyclotomic numbers can cause

a blowup in the amount of space required to store the values of vectors and consequently,
a blowup in the amount of time required to perform arithmetic operations.

For example, suppose we are given the vector v = (19, 10), ‖v‖22 = 461. If we would like
to normalise v, we have to multiply by 1√

461
, but the smallest cyclotomic field of which

1√
461

is a member is Q(ζ461), so the scalars required to represent v√
461

will be internally

represented as lists of 461 coefficients. Arithmetic operations on the normalised vector
will thus be much slower than on the original vector.
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The Gram-Schmidt orthogonalisation algorithm does not take this into consideration and
is unusable in practice when dealing with exact complex numbers.

In general, we try to avoid increasing the degree of the cyclotomic field we are required
to work in. This means we allow the usual field operations, but not radicals, which is the
issue our example illustrates.

3.2.3 Computing the irreducible decomposition

In this section, we rephrase Serre’s formula for the projections pαβ using tensor products,
allowing us to optimise the sums using several observations about summing a representa-
tion.

Let ρi be the irreducible whose canonical summand we are decomposing, let r give ρi in
matrix form, with n = deg ρi, then:

pαβ =
n

|G|
∑
t∈G

rβα(t−1)ρ(t)

Serre’s method then proceeds by computing various images of vectors under these maps
to construct bases for the irreducible subspaces of V (see Section 3.1). The majority of
computation time in the basic method is spent computing these pαβ, so this is where we
will focus our optimisation efforts.

We can rewrite Serre’s formula as:

pαβ =
n

|G|
∑
t∈G

(ρ∗i (t))αβρ(t)

where ∗ denotes the dual representation (see Section 2.1 for its definition).

We can regard pαβ as an n×n block of a matrix p and notice that p is exactly in the form
of a tensor product of ρ∗i and ρ. Define τ = n

|G|(ρ
∗
i⊗ρ). Then τ(t)αβ = n

|G|((ρ
∗
i (t))αβρ(t)) =

n
|G|((ρi(t

−1)βαρ(t)).

So in fact:

pαβ =

(∑
t∈G

τ(t)

)
αβ

(3)

where we take the n× n block in the (α, β) position, indexing over blocks.

It is not possible to use the same trick from Section 3.2.1 to speed up the computation of
(3). While we may have bases for Cρ∗i (which is spanned by an identity matrix) and Cρ
(provided by the user), this does not give us a way to compute the basis for Cρ∗i⊗ρ.

In general, it is not the case that a basis for Cf and Cg will give us a basis for Cf⊗g. An
easy example is when G = S3, which has two degree one irreducibles: ρtriv and ρsign, and
a single degree two irreducible, ρ, the standard representation.
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A basis for Cρ is given by I2 (see the argument in Section 3.2.1 for why). However,
ρ ⊗ ρ = ρtriv ⊕ ρsign ⊕ ρ, so Cρ⊗ρ has dimension 3. We cannot immediately derive the
basis for Cρ⊗ρ from the basis for Cρ, since this is the same thing as deriving the block
structure of ρ⊗ ρ, which might end up being significantly more complicated than that of
ρ. In this extreme case, we end up with a direct sum of every irreducible by tensoring a
single irreducible with itself.

We can, however, take advantage of the fact that the summation (3) has summands given
by a group homomorphism.

Suppose we have a finite group G and a monoid homomorphism f : G→ (R, ·), where R
is a ring with multiplicative monoid (R, ·).

We want to compute:

∑
g∈G

f(g) (4)

Given a subgroup H ≤ G, we can compute the right coset representatives of H: r1 =
1, r2, . . . , r|G:H|.

We can now rewrite the summation as:

∑
i

(∑
h∈H

f(h)

)
f(ri) (5)

This requires only |H| + |G : H| image calculations, |H| + |G : H| additions in R, and
|G : H| multiplications in R. If H is either trivial or G, this sum is the same as (4).
To get an improvement over naively summing, we want to choose a subgroup H with
“medium-sized” index, meaning that |H|+ |G : H| ≤ |G|.

Notice that we can now recurse and apply the same method to compute the sum over H.
If we were only choosing one H to speed up the sum, we would want this index to be
“medium-sized”. However, since we can (by recursing) choose an arbitrarily long chain of
subgroups and we want to sum as few elements as possible, we want to split the group as
many times as possible. So we need to find a chain of subgroups G1 ≤ . . . ≤ Gn = G such
that |Gi+1 : Gi| is minimal (and not 1) at each stage.

If G = Sn, it is easy to find a chain with fairly small indices. Consider G to act on
{1, . . . , n} and use the chain {e} ≤ S2 ≤ . . . ≤ Sn = G, where we embed Si ↪→ Sn by
considering Si to be the pointwise stabiliser of {i+1, . . . , n}. This gives us an improvement
since |Si+1 : Si| = i + 1, so there is a significant saving compared to summing over the
group directly. This idea generalises.

Let G be a group acting on a set Ω. A base for G is a sequence B = (b1, . . . , bm) of points
in Ω such that the only g ∈ G stabilising all bi is the identity.

The basic stabiliser chain for B is a chain of the form:
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{1} = Gm ≤ . . . ≤ G0 = G

where Gi is the group of the elements of G stabilising the set {b1, . . . , bi}.

A strong generating set for G is a subset S ⊆ G such that S contains generators for all
Gi.

GAP already has an implementation of the Schrier-Sims algorithm [10] [11] to calculate
bases and strong generating sets (BSGS), so we need not focus on the algorithmic details
of finding a BSGS.

Suppose we have a basic stabiliser chain for G, Gm ≤ . . . ≤ G0. First, we compute the
sum for Gm, which is trivial. Then, we compute the sum for Gm−1 using the method
described earlier. We continue in this way until we reach G.

Although we are required to have a group with a natural action (i.e. a permutation group)
to use the BSGS algorithm to find a chain, the following group summation algorithm is
in no way specific to permutation groups. Any chain of subgroups in any type of group
(permutation, matrix, finitely presented, and so on) will work: we just do not describe
methods of finding chains for these other types of group.

function sum group(f : G→ R)
let {1G} = Gm ≤ . . . ≤ G0 = G be a basic stabiliser chain for G
σ ← f(1G)
for i ∈ {m− 1, . . . , 0} do

let rj be a transversal of representatives of Gi\G
σ ←

∑
j σf(rj)

end for
return σ

end function

In general, the complexity of this algorithm depends greatly on the basic stabiliser chain,
which depends on the structure of the group. To illustrate the speedup, we can consider
the case when G = Sn and use the chain {e} ≤ S2 ≤ . . . ≤ Sn = G. We will measure the
complexity in terms of ring operations, meaning additions and subtractions in R.

Naively summing over the group requires O(n!) additions in R.

If we ignore the cost of computing coset representatives (which is reasonable, since the
cosets of Sm−1 in Sm are known), to move from the sum over Sm−1 to the sum over Sm,
we compute:

m∑
i=1

 ∑
h∈Sm−1

f(h)

 f(ri)

where the ri are the m coset representatives of Sm−1 in Sm. Since the inner sum is already
known, this takes m multiplications and m− 1 additions in R.
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We do this for m = 2, 3, . . . , n, so the total number of additions is
∑n

m=2m − 1 which
is O(n2), and the number of multiplications is similarly O(n2). Even considering that R
is usually a matrix ring, where multiplication is almost cubic in the number of rows and
columns, this is still asymptotically much better than naively summing. In practice, we
can sum S10 in under a second with the BSGS method, while it takes several minutes with
the naive method.

We can use this algorithm to compute the projections pαβ in Section 3.2.3.

Note that we cannot directly use this algorithm to compute the projections to the canon-
ical summands, since the formula

∑
t∈G χi(t)ρ(t) does not have the property that the

summands are given by a group homomorphism.

However, from (3.2), we have that pi =
∑ni

α=1 pαα, so we can proceed by calculating the
pαβ first, then using these to calculate the pi projections onto the canonical summand and
the decomposition of Vi.

3.2.4 Summary

To summarise, we apply the following optimisations:

1. Determine which irreducibles we can ignore using the character inner product.

2. (a) If the matrix of blocks (pαβ) fits into memory, compute it using the group sum
trick (5), then use (3.2) to compute the projections pi.

(b) If we are given an orthonormal basis for the centraliser and ρ is unitary, compute
the pi using the class sum trick (1).

(c) If ρ is a permutation representation, compute an orthonormal basis for Cρ using
orbitals, then go back to the previous case to compute pi.

3. Use the group sum trick to compute (pαβ) if not already done and use these to break
Vi into irreducibles.

The effect of these optimisations can be observed in the benchmarks in Section 5.

The optimised version of the algorithm (which attempts to apply each of the optimisations
above) is the default when the functions IrreducibleDecomposition and CanonicalDe-

composition are called.
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4 Our algorithm

We are trying to find the decomposition of a representation ρ : G → Mn(C) into irre-
ducibles, but given the irreducible characters, we can immediately construct a represen-
tation τ : G→ Mn(C) that is isomorphic to ρ and is block diagonalised according to the
irreducible decomposition.

In this section, we present an algorithm to find this τ and use it to compute the irreducible
decomposition of V in the original basis.

The GAP functions described in this section must be called with the option decomp -

method := "alternate" to use the algorithms described here, the default methods are
those described in Section 3. For example, to call IrreducibleDecomposition in such
a way as to use these methods, a user would call IrreducibleDecomposition(rho :

decomp method := "alternate").

4.1 Finding the block diagonalisation

Two representations of a finite G over C are isomorphic if and only if they have the same
character. Let the list of irreducible characters of G by given by χ1, . . . , χN . These form an
orthonormal basis for the C-vector space of characters, with respect to the inner product
〈χi, χj〉 = 1

|G|
∑

g∈G χi(g)χj(g).

We can thus determine the irreducible decomposition of ρ (up to isomorphism as rep-
resentations) by calculating the multiplicities mi in the expression χρ =

∑N
i=1 mi χi:

〈χρ, χi〉 = mi.

This means τ , the block diagonalised representation isomorphic to ρ, is given by τ =
N⊕
i=1

mi⊕
j=1

ρi, where ρi is the irreducible corresponding to the character χi.

The GAP function BlockDiagonalRepresentation(rho) returns this τ , given ρ.

4.2 Finding the intertwining operator

We have constructed a block diagonal τ , but we would now like to know what the irre-
ducible G-invariant spaces are, in our original basis.

In the basis τ is written in, the irreducibles are spanned by certain subsets of {e1, . . . , en}.
To translate these vectors into the old basis, we need to calculate the linear map A : Cn →
Cn with the property that:

A−1τ(g)A = ρ(g) for all g ∈ G (6)

A is an intertwining operator or isomorphism between the representations.
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We can find the intertwining operator by observing that the action of G on matrices given
by:

g 7→ (A 7→ τ(g)Aρ(g−1))

is in fact a linear action, so is a representation of G, call it α.

α is a map from G into the n2 dimensional (where n is the degree of ρ and τ) C-vector
space Mn(C). Using methods from Section 3, we can compute α and find the canonical
summand Vtriv corresponding to the trivial representation g 7→ (1).

If A ∈ Vtriv, then since G acts as the identity on this subspace, α(g)A = A. This means
for all g ∈ G, A = τ(g)Aρ(g−1), which is exactly the property required in (6) for A to be
the intertwining operator.

The running time of this method depends on the running time of finding the trivial
canonical summand of a representation of G, which is done using Serre’s formula for
the projection p : V → Vtriv:

p =
∑
g∈G

α(g) (7)

Notice that this summation has summands given by a homomorphism, so we can use the
method of building the sum from a BSGS, as in Section 3.2.3.

We then pick a random point B in the domain of p, calculate the image point pB, and
rely on the fact that pB will almost always be invertible.

To be precise, the map B 7→ det(pB) is polynomial in the entries of B. We know that it
is not identically zero since we know an isomorphism between ρ and τ exists, by construc-
tion. Nonzero polynomials are zero on hypersurfaces with dimension strictly less than the
dimension of the ambient space. In particular, this means the set of B with pB singular
has measure zero, since hypersurfaces have measure zero. In the pure mathematical sense,
this means that picking B from a uniform distribution on a ball with nonzero radius has
probability zero of being singular. In practice, with a computer, the probability is low
enough that a single try will almost always1 be enough to find an invertible pB.

We can directly prove, without relying on Serre’s proof, that A := pB satisfies the inter-

1Here, I do not mean “almost always” in the precise mathematical sense, I mean that the probability
is fairly close to 1
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twining operator property. Let g0 ∈ G. Then:

τ(g0)A = τ(g0)
∑
g∈G

τ(g)Bρ(g−1)

=
∑
g∈G

τ(g0g)Bρ(g−1)

=
∑
g∈G

τ(g)Bρ(g−1g0) (by relabelling)

=
∑
g∈G

τ(g)Bρ(g−1)ρ(g0)

= Aρ(g0)

(8)

While we do know what α is as a linear map, we need to know what it is as a matrix in
order to actually compute the sum.

Proposition 4.1. α = τ ⊗ ρ∗, where ρ∗(g) = ρ(g−1)T denotes the dual representation
(defined in Section 2.1).

(We consider α(g) to act on n×n matrices by reading off each row in sequence, one after
the other, to obtain a vector in Cn2

)

Proof. Recall that ei ⊗ ej = eie
T
j = Eij , and that the Eij form a basis for the space of

matrices Mn(C). Then:

(τ ⊗ ρ∗)(g)Eij = τ(g)ei ⊗ ρ∗(g)ej

= τ(g)ei(ρ
∗(g)ej)

T

= τ(g)eie
T
j ρ(g−1)

= τ(g)Eijρ(g−1)

= α(g)Eij

If we directly calculate the images α(g) using the Kronecker product of two n×n matrices,
this will incur O(n4) extra space. This is a problem if the degree of the representation is
large, since even a single matrix α(g) will not fit in memory.

4.3 Reducing the degree

One method of reducing the degrees we need to compute with is to proceed in two stages.
First, split V into canonical summands using the method due to Serre described in Section
3.2.1. Second, apply the method from Section 4.2 on the (hopefully much smaller degree)
canonical summands. In the worst case, this will provide no benefit, since it is possible
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that there is a single canonical summand - the whole space. Generally, representations do
consist of more than one isomorphism class of irreducible, so this optimisation is worth-
while, especially considering that the calculation for each summand can now happen in
parallel.

Given a linear map A : V → V , we can restrict it to a subspace W with basis {wj}dimW
j=1 by

computing the matrix (A|W )ij = A(wj)i. We can restrict a representation ρ by computing
ρ(g)|W for each generator g of G.

A key property used in Section 3.2.1 to compute the centraliser basis is that once we have
block diagonalised, blocks corresponding to isomorphic irreducibles will have the same
matrix coefficients. Restricting to a subspace preserves this property, as long as we are
careful to use the correct bases.

4.4 Memory-constrained methods

In some cases, the Kronecker products will still be too large to fit in memory. In this
case, we must find a way to represent α without using Kronecker products, then find an
element of Vtriv.

The key space optimisation is to represent a tensor product of matrices as a pair of
matrices, without actually calculating the Kronecker product. This takes advantage of
the (multiplicative) monoid homomorphism φ : Mn(C)×Mn(C)→Mn(C)⊗Mn(C) given
by φ(A,B) = A⊗B. This is a homomorphism since (A⊗B)(C ⊗D) = (AC ⊗BD).

Given g ∈ G, we can represent α(g) as (τ(g), ρ∗(g)). The action of α on n × n matrices
is then given by: (τ(g), ρ∗(g))Eij = τ(g)ei ⊗ ρ∗(g)ej = α(g)Eij (extending to all matrices
using linearity). Using the pair representation, we are never required to explicitly compute
and store the matrix representing α(g), thus getting rid of the problematic O(n4) space
usage.

The pair representation does not allow us to sum tensor products, so we cannot use the
same method as before. Let A ∈ Mn(C) and let G · A be its orbit under the action of G
given by α. If v =

∑
x∈G·A x, then v ∈ Vtriv, since the action of G fixes the set G · A and

is linear, so fixes their sum. Define the map f : Mn(C)→Mn(C) by:

f(A) =
∑
x∈G·A

x

then by a similar argument as for (7), this map almost always gives, in a precise sense, an
invertible matrix f(A). This matrix will satisfy the intertwining operator property.

The algorithm used to compute the orbit sum f(A), where the action of G is given by
ρ⊗ τ is as follows:
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function orbit sum(A, ρ⊗ τ)
let {g1, . . . , gn} be a generating set for G
σ ← 0
∆← [A] . singleton list
i← 1
while i 6= |∆| do

v ← ∆[i]
σ ← σ + v
for 1 ≤ i ≤ n do

if ρ(gi)⊗ τ(gi) · v /∈ ∆ then
append ρ(gi)⊗ τ(gi) · v to ∆

end if
end for
i← i+ 1

end while
return σ

end function

A downside to this method is that it is possible that the list used to hold orbit elements
could need to grow to a large size, possibly |G|. If this orbit cannot fit into memory, this
orbit summing method will not work, and we must resort to naively summing over G to
calculate an image of the projection to Vtriv:

∑
g∈G

α(g)A

for some randomly chosen A. This requires a number of matrix additions and multipli-
cations linear in the size of G but only requires us to store a small constant number of
n× n matrices (an accumulator and each summand, one by one), so is not very memory-
intensive.
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5 Testing and benchmarking

The benchmarks and tests in this section were run on a laptop with an Intel Core i7-
4720HQ CPU running at 2.60GHz, with 12 GB of memory. The code was run on Debian
GNU/Linux, with the 4.15.0 kernel and GAP version 4.10.1.

All times reported are wall-clock times, measured using GAP’s NanosecondsSinceEpoch

function. Each benchmark was run 3 times and the result averaged to produce each data
point.

5.1 Generating test cases

When converting our pseudocode and theorems into runnable code, it is helpful to have a
wide range of test cases so that we can be fairly sure our program is correct.

One approach is to think of a wide range of examples and write tests that check the
correctness of the algorithm on those specific cases. While this is better than having no
tests, it is unlikely that we will be able to come up with a complete set of examples.

The approach we took was to randomly generate test cases and check properties. This is
known as property-based testing and is inspired largely by QuickCheck2, a Haskell library
for property-based testing.

Our GAP package has a function, RandomRepresentation that generates a representation
by the following procedure:

• Randomly select a group G from GAP’s SmallGroup library.

• Compute the list of irreducible representations of G using IrreducibleRepresen-

tationsDixon

• Choose a small number of these irreducibles randomly and directly sum them using
our function DirectSumOfRepresentations.

• Conjugate by a random invertible matrix, generated by RandomInvertibleMat.

While computing this random representation, since we constructed it from irreducibles,
we know the block structure and centraliser. This knowledge is what we use to check the
correctness of the decomposition of the representation after the computation.

For each function in the package, our test suite generates several test cases and checks the
correctness of the result.

5.2 Performance comparisons

There are two types of benchmarks that were conducted: benchmarks on a large set of
random small groups (generated using RandomRepresentation), and benchmarks on some
known examples.

2http://hackage.haskell.org/package/QuickCheck
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Since there are too many combinations of options and flags to test them all, we focus on
several cases that demonstrate the effect of our optimisations.

First, we will benchmark the method described in Section 4, comparing the different ways
to find intertwining operators (4.2). Recall that to find an isomorphism ρ ∼= τ , we need
to find a vector in the fixed space Vtriv of α = ρ⊗ τ∗, there are several ways to do this:

1. Naively summing over G (referred to as the “naive” method)

2. Only summing an orbit of α (referred to as the “orbit sum” method)

3. Computing the projection to Vtriv using the fast group sum trick (3.2.3) and the
Kronecker product of ρ and τ∗ (referred to as the “Kronecker” method).

Consider the representation of Sn defined by ρn : Sn → Cn, ρ(σ)ij = 1 if j = σ(i) and 0
otherwise. This is clearly a faithful and unitary representation. It splits into a direct sum
of two irreducible representations: the trivial summand spanned by the all-one vector, and
the orthogonal complement (by the G-invariant inner product). The nontrivial irreducible
is known as the standard representation of Sn.
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It is immediately apparent that the orbit sum method is the worst. This is because a
random vector will likely have n distinct entries, which means its orbit under Sn will have
n! elements: we get every permutation of the entries. Thus summing over the orbit is not
an optimisation in this case: our running time is still linear in |G|.

The next worst method is the naive method. This has the same asymptotic behaviour as
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the orbit sum method, but with the overhead of keeping track of the orbit eliminated. It
is thus faster, but is still linear in |G|.

We see a significant improvement when we use the Kronecker method. Note that ρn has
degree n, and this is very small compared to the size of the group, n!. This means that
the matrices we are working with are not very large, so the Kronecker products are also
not too large.

We can observe a similar pattern in two of the methods used to implement Serre’s algo-
rithm:

1. Directly computing the projections pαα by summing over G (referred to as the
“naive” method)

2. Computing p as the projection to the trivial subspace of ρ∗i ⊗ρ, using the group sum
trick from Section 3.2.3 (referred to as the “Kronecker” method).
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We observe that the Kronecker is superior to the naive method in this case, where the
degree of the representation is small and the group is large, as before.

Next, we consider the regular representations of Zn, the group of integers modulo n. Zn
is an abelian group, so all irreducibles are of dimension 1, and appear in the regular
representation V with multiplicity 1. For the purposes of demonstration, we will consider
the tensor product V ⊗ V , as this has a larger degree, n2.
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We observe that the Kronecker method is still the most efficient. This is despite the small
group size, which improves the running time of the other methods, which sum over the
group. Our conclusion is that the Kronecker method is a fairly efficient method. We will
compare it to Serre’s method later on.

In our implementation of Serre’s method, we see the naive method remain competitive.
The cyclic group size is small enough that naively summing over the group is faster than
the the method using Kronecker products and the group sum trick.
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This is demonstrates a special case where the naive method is fastest: when the group
is extremely small. In most other cases, the Kronecker method will be better, as we saw
when decomposing representations of Sn.

We also want to test the dependency of the running times on the degree of the represen-
tations, while keeping the size of the group constant. To demonstrate, we consider the
representations τn : Z3 → ⊗nV where V is the 3 dimensional regular representation of Z3.
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Again, we see that the Kronecker method is the fastest.

Next, we will explore the effect of parallelisation on our method (see Section 4.3 for more
details) and Serre’s method. We do not expect to see a large improvement in cases where
a representation is made up of few irreducibles, so we will benchmark the methods on
the tensor V ⊗ V of the regular representation V of Zn described earlier, since these
representations have many irreducibles.

To parallelise our method, we iterate over the list of irreducibles in parallel: for each, we
project to the canonical summand using Serre’s formula and run the original non-parallel
method on the canonical summand.
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For both methods, we see a large improvement in some cases. The reason for this is that
there are n irreducibles of Zn over C, one for each nth root of unity. This means there
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are n canonical summands, so we could split the work between n processors effectively.
The laptop used to run these benchmark only has 4 physical cores, so we do not observe
the speedup we would in an ideal scenario, where there is one CPU for each canonical
summand.

Similarly to our method, we parallelise Serre’s method by splitting into canonical sum-
mands and running the original method on each summand.
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For these examples, the overhead of parallelising is too great and we do not see an im-
provement in running time for these small examples.

It is work explaining precisely how the parallelisation works, since this reveals why there
is no speedup. We use the GAP function ParListByFork to process lists in parallel. This
function forks child processes, performs the computation, then communicates the results
over a pipe to the parent, which builds the result list from each child’s result. The time this
takes is highly dependent on the performance characteristics of the OS fork system call,
IPC (interprocess communication) performance, and various GAP serialisation functions.
Ideally, we would parallelise using more finely-grained concurrency primitives to avoid the
need for any IPC, but none are available in GAP. When profiling, we found that a large
amount of running time is spent in functions such as IO Pickle and IO Unpickle, which
are serialisation functions, used to transmit results between processes.

Finally, we compare our method to Serre’s method. For our method, we will use the
paralellised Kronecker product method, since this was the fastest in all cases. For Serre’s
method, we will benchmark both the naive and Kronecker product methods. This is
because the naive method is faster for small groups, while the Kronecker method is faster
for large groups.

We benchmarked the algorithms for a random selection of 50 test cases, with group sizes
from 1 to 200 and the degree being less than 10.
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Serre’s method with Kronecker products performed extremely poorly in most cases, it was
never the best method for any representation tested.

Our method with Kronecker products was the fastest method 35 times, while Serre’s
method with naive summing was the fastest 15 times.

Next, we benchmarked the three methods on the defining representation of the symmetric
group.
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This time, we see that Serre’s naive method is the worst - this is due to the large size of
the symmetric groups. Our method is again the best.

Lastly, for an example where our method is not the best, we benchmarked the tensor
product of the regular representation of Zn.
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Here, Serre’s naive method is the best: its running time is dominated by the size of the
group which is small. Our method has a running time dominated by a polynomial in the
degrees of the representations, which grow quadratically (V ⊗ V has dimension n2) with
the size of the group.

We can conclude that for small groups, Serre’s naive algorithm has good performance. For
larger groups, our Kronecker method usually has good performance. In general, it is hard
to say anything more concrete than this, since performance depends on too many factors
- it is not just the size of the group that affects running time. We have different numbers
of conjugacy classes, special cases in GAP algorithms for certain groups (e.g. integers,
symmetric groups), different internal representations of certain groups (e.g. polycyclic,
presentations) and so on.
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6 An application: Bounding the crossing number of Km,n

Being able to efficiently decompose representations of finite groups leads to a wide variety
of possible applications. In semidefinite programming, it is common in several applications
that a program has symmetries which can be expressed as a group action and used to
greatly reduce the dimension of the problem. In this section, we present a method due
to de Klerk et al. [5] for reducing the dimension of such semidefinite programs. We also
apply this method to the problem of computing a lower bound for the crossing number of
the complete bipartite graph.

While the reduction in the dimension of the semidefinite program is done by us in the same
way as de Klerk et al. [5], the key difference is that we can now optimally block diagonalise
the representation of the action and thus the centraliser. This is an improvement over the
original method by de Klerk et al. [12], in which no general method of optimally block
diagonalising is given.

6.1 Motivation

A complete bipartite graph Km,n is a graph that can be partitioned into two sets. One
with m vertices, one with n vertices, and each vertex in one set connected with an edge
to each vertex in the other set, with no other edges.

In 1954, Zarankiewicz published a proof that the crossing number of Km,n, cr(Km,n) =
b14(m−1)2cb14(n−1)2c [13]. His argument contained an error, meaning the proof was only
valid for K3,n. Other proofs have been published, proving the conjecture for min(m,n) ≤ 6
[14] and m ∈ {7, 8} and 7 ≤ n ≤ 10 [15].

The truth of the conjecture is not known in general, but bounds on cr(Km,n) are known.
Let Z(m,n) = b14(m− 1)2cb14(n− 1)2c.
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Figure 3: Two drawings of K3,2. The second has Z(3, 2) = 0 crossings.

De Klerk et al. [5] showed that:

lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.8594

m

m− 1
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This is the result that we will reproduce in this section. Our improvement is that, due
to a reduction in the sizes of blocks of the matrices we compute with, the computation is
more efficient.

6.2 Reducing semidefinite programs

A more detailed presentation of this method, with full proofs of correctness, can be found
in the paper by de Klerk, Pasechnik and Schrijver [5].

Suppose we are given a semidefinite program:

min{tr(CX) | X positive semidefinite, X ≥ 0, tr(AjX) = bj for j = 1, . . . ,m} (9)

Suppose additionally that we have a finite group G acting on a finite set Z with ρ being
the permutation representation of this group action, i.e. ρ(g) is the matrix with rows and
columns indexed by Z with ρ(g)xy = 1 iff gx = y and 0 otherwise. We also require that
the C and Aj matrices in (9) are elements of the centraliser ring of this representation,
meaning they commute with all ρ(g).

Let {E1, . . . , Ed} be the orbital matrices forG acting on Z, and for each i, Bi = Ei
‖Ei‖ , where

the inner product is given by 〈X,Y 〉 = tr(XY ∗). Define Lk such that BkBj =
∑

i(Lk)ijBi.
This is possible since the centraliser ring (spanned by the Ei) is closed under multiplication.

A key result of de Klerk et al. [5] is that the program (9) is equivalent to the following
program:

min

{
d∑
i=1

tr(CBi)xi

∣∣∣∣∣
d∑
i=1

xiLi positive semidefinite, xi ≥ 0 for i = 1, . . . , d,

d∑
i=1

tr(AjBi)xi = bj for j = 1, . . . ,m

}

The number of variables xi is d, the dimension of the centraliser ring: this is in most cases
a significant reduction from the number of variables that need to be considered in (9).

Another reduction in complexity comes from the fact that we only condition on positive
semidefiniteness of matrices of the size of the Li, which are d×d matrices. Compared with
(9), which constrains on the positive semidefiniteness of X, a Z ×Z matrix, this can be a
large saving. As an example, in this section we will consider a case where |Z| = 6! = 720
while d = 78.

De Klerk et al. [5] note further that we can always find a symmetric matrix exhibiting
the optimal value. Recall that each orbital ∆i has a paired orbital ∆i∗ with all of the
pairs swapped. This corresponds to the adjacency matrices being transpose: Ei = ETi∗ . A
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consequence is that we can perform the restriction to symmetric matrices by adding the
constraints xi = xi∗ for each i.

We can apply this to crossing numbers as follows.

Let G = Sm × S2 act on Zm, the set of m-cycles in Sm by: (σ, e) · ρ = σρσ−1 and
(e, τ) · ρ = ρsign(τ).

Define a matrix C in RZm×Zm by Cσ,τ = the minimum number of adjacent interchanges
required to transform σ to τ−1. An adjacent interchange is a swap of elements that are
next to each other when the cycle is written down. For example, (1423) and (4123) differ
by an adjacent interchange. Then C is in the centraliser of the G-action. See [12] for more
details on the matrix C.

Then define a constant αm by:

αm := min{tr(CX) | X ∈ RZm×Zm , Xpositive semidefinite, tr(JX) = 1}

where J is the all-one matrix.

de Klerk et al. proved [5] that:

cr(Km,n) ≥ m(m− 1)

k(k − 1)

(
1

2
n2αk −

1

2
n

⌈
1

4
(k − 1)2

⌉)
for all n and k ≤ m, which implies:

lim
n→∞

cr(Km,n)

Z(m,n)
≥ 8αkm

k(k − 1)(m− 1)

for all n and k ≤ m.

We proceeded by reducing the semidefinite program defining αm using the method due to
de Klerk et al. [5], then block diagonalising the representation using our algorithm (using
naive summing) described in Section 4.4. We were forced into using this method since the
degrees of the representations are large: the Kronecker product methods quickly ran out
of memory.

We provided our algorithm with a complete list of irreducibles of Sn using Young tableaux.
This algorithm was not implemented in GAP, so we used the implementation from Sage.
The reason for using this algorithm over GAP’s generic Dixon algorithm is that computing
with Young tableaux is much faster and allows us to produce integer matrices: sidestepping
any issues involving cyclotomic fields (see Section 3.2.2 for why this is important).

6.3 Results

These results were computed on a laptop with an Intel Core i7-4720HQ CPU running at
2.60GHz, with 12 GB of memory. The results for αm for m ∈ {5, 7} match approximately
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those obtained in earlier papers [12] [5]. Values for αm for m ≥ 8 were not computed here
due to the time required, but values for m = 8, 9 were computed by de Klerk et al. [5].

The computation took less than a second for m = 5, 10 seconds for m = 6 and 1.5 hours for
m = 7. There is much room for improvement on these computation times, but optimising
this problem was not the goal of this project - we merely aim to prove that our algorithm
works in a real-world scenario.

m ≈ αm
5 1.9472133720059
6 2.9519170848593
7 4.3693933617464

Table 1: Results for 5 ≤ m ≤ 7

These were produced by running the script ./run crossing.sage m where m is the value
of m.

To demonstrate the efficiency of our block diagonalisation, we can examine the decompo-
sition of the m = 7 representation. m = 7 has degree 720 (it acts on the set of 7-cycles,
of which there are 6!), and decomposes into blocks as follows:

Block Size Number of Blocks

1 2
14 8
15 6
20 2
21 6
35 10

Table 2: Block sizes for m = 7

Notice that the largest block size is 35, considerably smaller than 720, meaning our method
has been effective in reducing the sizes of matrices we are required to compute with.
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7 Conclusions and future work

7.1 Conclusions

We have satisfied all of the requirements set out in Section 1. To summarise how we
achieved this:

We provide two functions to decompose a representation: IrreducibleDecomposition-

Collected, which returns a list of lists of irreducibles. The irreducibles are collected into
lists according to their isomorphism class, so all spaces appearing in a list are isomorphic
as representations. IrreducibleDecomposition is the flattened version, a list of irre-
ducibles. In this case, each irreducible is given as a subspace of V , in the form a of a GAP
vector space.

To compute the block diagonalisation of ρ, we provide the function BlockDiagonalRep-

resentation, which converts a representation ρ to a block diagonal one τ . τ is given as
a GAP homomorphism from the group to a matrix group. The matrix we conjugated by
to get τ is given by BlockDiagonalBasisOfRepresentation applied to ρ.

To compute a basis for the centraliser ring Cρ, we provide the function Centralize-

rOfRepresentation, which gives the matrices spanning Cρ as a vector space, written in
the same basis as τ . We also provide CentralizerBlocksOfRepresentation, which gives
the same matrices, but as lists of blocks rather than full matrices.

Our property-based testing method is described in Section 5.1. We found that this method
was superior to manually writing a complete set of examples, since it caught more errors.
Since our algorithm applies to representations of any group, it is almost impossible to
think of examples covering every possible case: solvable/unsolvable, abelian/nonabelian,
cyclic/not cyclic, nilpotent/not nilpotent, and so on. Through the random generation
of large numbers of test cases, we discovered edge cases where one of our assumptions
broke down. A specific example was encountered when we were testing the centraliser
trick (see Section 3.2.1). Originally we only tested on unitary representations and did not
realise our assumption that representations were unitary - after implementing randomised
testing, this was quickly detected and resolved.

Lastly, we wrote an extensive GAP package manual, documenting all functions, arguments,
preconditions, return values and so on. We also made sure to include comments on which
algorithms are best in which cases (derived from experiments conducted in Section 5). The
source code is also heavily commented, hopefully allowing future contributions without
much difficulty.

7.2 Future Work

While we have succeeded in fulfilling the requirements, there are still more improvements
and additions that could be made.

We could have written an implementation of Dixon’s algorithm for decomposing unitary
representations, discussed in the appendix A. This algorithm avoids the need for a complete
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list of irreducibles to be provided beforehand, which is a property none of the other
algorithms have and warrants further exploration. Once we factor in the computation
time for the list of irreducibles, it is possible that we would discover cases where Dixon’s
algorithm is the best. This task was out of scope for this project, but could form the basis
for future contributions to GAP or Sage.

In terms of performance analysis, there is much more that could be done. For example,
we could have written tools similar to KCachegrind3 to produce graphs and analyse the
call graphs of our functions in more detail. The analyses we did perform were done with
the aid of GAP’s profiling tools, which are not as advanced as the tools included with
valgrind4, for example.

We did not profile and analyse memory usage, as this was not a primary concern compared
to running time. This is another area of improvement: we did not heavily optimise
for memory usage, instead opting to trade memory for a better running time wherever
possible. This is most apparent in our usage of Kronecker products, which grow the size of
the matrices we are computing with from n×n to n2×n2. This generally improves running
time, but memory usage suffers. We saw this in Section 6, where the Kronecker product
methods were too memory intensive when n = 720, and could not be used. In some
cases, we may have been able to use sparse matrices to improve memory usage, since some
representations have matrices which have mostly zeroes as entries. One GAP package
that implements this is Gauss5, which implements a sparse matrix data structure that
only keeps track of the non-zero entries. We could also use sparse matrix data structures
from SageMath6 or SciPy7, but this would require implementing parts of our algorithm
in SageMath to take advantage of the interoperation between GAP and Python libraries.

7.3 Project Availability

All code associated with the project is currently available at https://gitlab.com/kaashif/
decomp. The GAP package RepnDecomp, containing all functionality implemented as a
part of this project, will be submitted for review and will become available at https:

//www.gap-system.org/Packages/packages.html as a deposited package. This means
that it will be included in future releases of the GAP distribution.

3http://kcachegrind.sourceforge.net/html/Home.html
4http://valgrind.org/
5https://www.gap-system.org/Packages/gauss.html
6http://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix_sparse.html
7https://docs.scipy.org/doc/scipy/reference/sparse.html
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A Algorithms for unitary representations

During the course of the research for this project, we discovered several interesting algo-
rithms that apply to the special case when a representation is unitary. As we have seen in
Section 3.2.1, unitary representations have desirable properties that allow us to perform
optimisations that are not possible in general.

In this section, we describe our method to compute a unitary representation isomorphic
to a given representation.

Even further, there is an algorithm due to Dixon [6] that allows the decomposition of
a unitary representation into irreducibles without the need to have a complete list of
irreducibles beforehand.

A.1 Unitarising representations

Given a representation ρ : G→ GL(V ), define:

S =
∑
g∈G

ρ(g)ρ(g)∗

To clarify: here, ρ(g)∗ means the conjugate transpose of ρ(g). This is not the same
thing as the dual representation, which we denoted by ρ∗(g), which means ρ(g−1)T , the
transpose of ρ(g−1). The dual representation does not appear in this section, ∗ always
means “conjugate transpose”.

If ρ is already unitary, then S is a scalar matrix. Our strategy is essentially to try to find
a change of basis such that S is a scalar matrix, then we will see that this means ρ, after
this change of basis, is unitary.

Notice that S is Hermitian, since:

S∗ =
∑
g∈G

(ρ(g)ρ(g)∗)∗ =
∑
g∈G

ρ(g)ρ(g)∗ = S

Notice also that ρ(g)Sρ(g)∗ = S by relabelling:

ρ(g)Sρ(g)∗ =
∑
t∈G

ρ(g)ρ(t)ρ(t)∗ρ(g)∗ =
∑
g∈G

ρ(gt)ρ(gt)∗ =
∑
g∈G

ρ(g)ρ(g)∗ = S

We can rephrase the definition of S in terms of a tensor product. We do this with the goal
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of using the group sum trick (from Section 3.2.3) used extensively in our other algorithms.

Sij =
∑
g∈G

(ρ(g)ρ(g)∗)ij

=
∑
g∈G

∑
k

ρ(g)ik(ρ(g)∗)kj

=
∑
g∈G

∑
k

ρ(g)ik(ρ(g))jk

=
∑
k

∑
g∈G

(ρ(g)⊗ ρ(g))ikjk

=
∑
k

∑
g∈G

(ρ(g)⊗ ρ(g))


ikjk

where (A⊗B)xyij refers to the (i, j) entry in the (x, y) block. A tensor product naturally
has this block structure, with each block given by AxyB.

The summation
∑

g∈G(ρ(g)⊗ ρ(g)) has summands given by a homomorphism g 7→ ρ(g)⊗
ρ(g), so we can use the fast group sum trick.

Given a Hermitian matrix A, we can decompose A into A = LDL∗ where L is lower
triangular with all 1 on the diagonal, and D is real, diagonal. We can use the following
formulas:

Dj = Ajj −
j−1∑
k=1

LjkL
∗
jkDk

Lij =
1

Dj

(
Aij −

j−1∑
k=1

LikL
∗
jkDk

)
for i > j

We can compute this decomposition for S, let S = LDL∗. Now:

D = L−1LDL∗(L∗)−1 = L−1ρ(g)LDL∗ρ(g)∗(L∗)−1 = (L−1ρ(g)L)D(L−1ρ(g)L)∗

Since D is real, we can take its square root. In fact, D has positive entries, since S is
positive definite, which means

√
D still has real entries. This lets us do the following:

I =
√
D
−1

(L−1ρ(g)L)
√
D
√
D(L−1ρ(g)L)∗

√
D
−1

= ((L
√
D)−1ρ(g)L

√
D)((L

√
D)−1ρ(g)L

√
D)∗

= τ(g)τ(g)∗

where we define τ(g) = (L
√
D)−1ρ(g)L

√
D. This shows that τ is unitary.
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S is invertible since it is a sum of positive definite Hermitian matrices. This means L
is invertible and allows us to define τ as above. A formula for L−1 is given by: L−1 =
DL∗S−1.

The main drawback of this method is that it requires computing square roots. As we have
seen in Section 3.2.2, square rooting means the minimal cyclotomic extension required to
contain all coefficients can be very large. This blowup in degree will cause a corresponding
blowup in memory usage and computation time.

A.2 Decomposing unitary representations

We describe an algorithm due to Dixon [6] for decomposing unitary representations into
irreducibles. A complete proof of correctness and explanation can be found there, we will
focus on describing the algorithm.

In principle, combined with the method for unitarising a representation, this gives a way
to find the complete irreducible decomposition of a representation without needing the
complete list of irreducibles.

In practice, this algorithm has drawbacks which will become clear. We did not implement
this algorithm.

The first step is finding a nonscalar, Hermitian element H of the centraliser ring Cρ. If
Ers denotes the matrix with 1 in the (r, s) position and 0 everywhere else, then define:

Hrs =


Err if r = s

Ers + Esr if r > s

i(Ers − Esr) if r < s

For each r, s, compute:

H =
1

|G|
∑
g∈G

ρ(g)∗Hrsρ(g)

H is Hermitian and commutes with the action of G given by ρ, so is an element of the
centraliser. Notice that the Hrs give a Hermitian basis for Mn(C).

If H is scalar for all r, s, by Schur’s lemma, this means ρ is in fact irreducible, so we can
stop here.

Otherwise, for some r, s, H will be nonscalar. H is conjugate symmetric, hence diagonal-
isable. We can find an orthonormal eigenvector basis for V by diagonalising (using e.g. a
Jordan form decomposition), J = P−1HP , then orthonormalising the columns of P using
the Gram-Schmidt process. P must be unitary for the subrepresentations we will find to
be unitary.
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The action of G preserves the eigenspaces of H, so the block diagonalisation given by J is
in fact a decomposition of V into G-invariant subspaces, giving the unitary subrepresen-
tations.

We then recurse until all representations become irreducible.

The downside to this algorithm is the we require P to be unitary. If it is not, then
the subrepresentations are not unitary and we cannot recurse. Computing P requires
an orthonormalisation process which, when we require exact coefficients, has problematic
performance characteristics when dealing with exact cyclotomic fields (as seen in Section
3.2.2).

Another problem is that computing H requires a summation over G. The reason this
algorithm is of interest is that it doesn’t require the computation of a complete list of
irreducibles for G, which could be intractable if G is large and complex enough. But if G
is large, summing over G is also undesirable.

Lastly, in real world cases, we often want to decompose permutation representations ρ :
G → Sn. These representations are already unitary, so it may seem as if this algorithm
will be a good choice. However, using Young tableaux, a complete list of irreducibles of
Sn can be computed very easily (as is done using SageMath in Section 6), while for large
n, summing over Sn (as required by the unitary algorithm) will be slow.

For these reasons, this algorithm was not the focus of this project.
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