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Abstract

Coding theory is an area of mathematics that examines the reliable and efficient

transmission of information over noisy channels. To achieve this, mathematical

constructions named codes are used. An important goal of coding theory is to study

the relationship between the length and the specification of a code, and its ability to

transmit information accurately and efficiently. This project aims to investigate how

the theory of association schemes can be applied in order to formulate bounds on

the size of codes and how these bounds can then be implemented for an open-source

library, SageMath, so that they can be used for further research in a great variety

of fields. The starting point for these is the derivation of the Linear Programming

bound, as it was put forth first by Delsarte [8]. This bound is then enhanced with

further constraints, obtaining 40 improved bounds on the size of binary constant

weight codes. Finally, we generalize the bound to other schemes, demonstrating its

application on the association scheme of Hermitian dual polar graphs.
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1 Introduction

1.1 Motivation

In the age of the internet, huge amounts of information are constantly being trans-

mitted around us, encoded using some sort of a coding system. The distance and

the mediums that information has to go through causes loss of information to be a

common issue. Using more technical terminology, information channels are usually

noisy. Coding theory is an area of mathematics that deals with the reliable and

efficient transmission of information over noisy channels. The constructions we use

to achieve this are called codes. An obvious criterion to judge the practicality of a

code is its size, meaning the number of distinct codewords it contains, as this depicts

the amount of information we can encode using it. Therefore, it is important to be

able to reason about bounds on the sizes of codes. This constitutes the first aim

of this project, while the second goal is to implement the bounds discussed above

in SageMath. SageMath is a free, open-source mathematics software system, which

covers a great variety of fields. Its mission is to "create a viable free open source

alternative to Magma, Maple, Mathematica and Matlab."[21]. It is built using

Python, and it allows coding in Python as well as in a language (sage) which is an

extension of Python.

1.2 Problem Statement and Related Work

The main theme of the project, which is then improved and extended, is Delsarte’s

Linear Programming Bound. First derived in P.Delsarte’s 1973 paper “An algebraic

approach to the association schemes of coding theory”[8], the connection between

association schemes and certain codes has already been used in a variety of papers,

along with numerous improvements, aiming to provide tighter bounds to the size

of codes. Two classes of such codes are the Hamming Codes and the Binary Con-

stant Weight Codes, with the corresponding association schemes being the Hamming
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scheme and the Johnson scheme. SageMath already contained work for the former,

therefore the first problem solved by this project is the derivation and implementa-

tion of the Linear Programming bound for Binary Constant Weight Codes. The first

question that immediately arises is where else this bound could be applied. For this

reason, we provide a more generic formulation of the Linear Programming bound,

which can be used to calculate bounds on Q-polynomial association schemes. We

proceed by employing this generic function to the Q-polynomial association scheme

of Hermitian dual polar graphs.

1.3 Project Structure

We begin by providing some theoretical background on coding theory, which is

essential in order to introduce the different types of codes and, subsequently, their

properties. Next, we introduce the theory of association schemes, and we use their

properties to derive the Linear Programming bound.

The first application of the bound is on Binary Constant Weight Codes, which

correspond to the Johnson association scheme. We provide an enhanced bound by

considering an Integer Linear Program, since we can reason that the domain of the

variables of our objective function consists only of integers. Having implemented

the established bounds, we can then test our results compared to the best known

bounds in the relevant bibliography. This yields an improved bound in 40 cases, as

demonstrated in section 4.7.

In section 5 we generalize this result further, providing an implementation that

calculates similar bounds given the parameters of any Q-polynomial association

scheme, and in section 6 we demonstrate its application to the association scheme

of Hermitian dual polar graphs.
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2 Coding Theory Foundations

2.1 Key Definitions

Before presenting the main results of this project, it is important to provide some

basic definitions. A field is a set on which addition and multiplication behave

similarly to how they behave for rational and real numbers. Denote Fq to be a

field, the elements of which create an alphabet of size q = pk, for p a prime number.

We then define a word to be an element v ∈ Fn
q , where n is a fixed natural number.

A code C is a subset of Fn
q . Every word v ∈ C (for come code C ⊆ Fn

q ) is called a

codeword of that code. The weight of a codeword v, denoted as w(v), is the number

of nonzero entries of v. It is useful to define a distance function between any two

codewords. One of the most widely used distance functions is the Hamming distance

(dH(u, v) for some codewords u, v), which measures the number of positions in which

two words differ: dH(u, v) = |{i | ui 6= vi}|. [22]

2.2 Further Properties

One important property of codes is their minimum distance. We define theminimum

distance dmin(C) of a code C to be the minimum distance between any pair of

distinct codewords in C. To appreciate why this property is useful, we can consider

the transmission of a codeword v that belongs in some code C. As discussed in the

introduction, it is important for codes to be reliable, therefore any errors in their

transmission should be recognizable and we should be able to recover the original

codeword, assuming a reasonable number of transmission errors. In the case where v

is transmitted but v′ 6= v is received, we should have a method to try and reconstruct

the codeword that was intended to be sent.

A typical approach for achieving that is by using the method of Nearest Neigh-

bour decoding. In our example, the method would calculate the distances between

v′ and all c ∈ C, and return the codeword c′ that is closest to v′. We can easily see
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that the number of errors that are detectable and correctable are somehow related to

the minimum distance of the code [17]. As mentioned earlier, our goal is to establish

upper bounds on the size of codes.

We define A(n, d) to be the maximum size of a code (which is a subset of some

Fn
q ) of minimum distance at least d, and A(n, d, w) to be the maximum size of such

a code with the additional property of each codeword having weight w.

Before proceeding to specific types of codes and their bounds, it is also important

to introduce the theory of association schemes and their connection with some codes.

This is what we are going to use later to derive the linear programs, which will give

us the bounds on the size of the codes.
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3 Association Schemes

3.1 Definition

An association scheme with d classes consists of a finite set X together with a set

R of d+ 1 relations R0, R1, ..., Rd on X with the following properties:

(i) R partitions X 2

(ii) R0 is defined as R0 = {(x, x)|x ∈ X}

(iii) if (x, y) ∈ Ri, then also (y, x) ∈ Ri for all x, y ∈ X and i ∈ {0, ..., d}, which is

equivalent to saying that for any Ri ∈ R the inverse relation R−1i also belongs

to R

(iv) For any i, j, k ∈ {0, 1, ..., d}, there exists a number pki,j = pkj,i such that for all

(x, y) ∈ Rk:

|{z ∈ X |(x, z) ∈ Ri, (z, y) ∈ Rj}| = pki,j

The numbers pki,j are called the intersection numbers of the association scheme. It

is then convenient to define the intersection matrices L0, ...Ld which satisfy (Li)kj =

pkij. [5]

3.2 The Bose-Mesner Algebra

It is convenient to describe the members of R by their adjacency matrices:

(Ai)xy =


1 if (x, y) ∈ Ri

0 otherwise

We can now rewrite the axioms of association schemes in the following way:

(i)
∑d

i=0Ai = J , where J is the matrix of all 1s

(ii) A0 = I, where I is the identity matrix
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(iii) Ai = AT
i , for all i ∈ {0, 1, ..., d}

(iv) AiAj =
∑

k p
k
i,jAk, for all i, j, k ∈ {0, ..., d}

We can see that the matrices Ai are linearly independent from axiom (i). To proceed,

it is useful to define the concept of an algebra over a field. An algebra is a vector

space together with a bilinear product operation (which combines elements of two

vector spaces to return an element of a third vector space, being linear in all its

arguments). Furthermore, we see that the above axioms (ii)-(iv) can generate a

commutative (since axiom (iv) and the fact that pki,j = pkj,i yield that AiAj = AjAi)

(d+1)-dimensional algebra A of symmetric matrices (from axiom (iii)) with constant

diagonal, since A0’s diagonal consists only of 1s, and all other Ais’ diagonals consist

only of 0s. This particular algebra was first studied by Bose and Mesner and it is

called the Bose-Mesner algebra. [5]

Since the Ai matrices commute, they can be diagonalized simultaneously [9],

that is, there exists a matrix S such that for each Ai ∈ A, S−1AiS is a diagonal

matrix. By the spectral theorem of linear algebra[15], A has a unique basis of

minimal idempotents E0, ..., Ed, which satisfy:

EiEj = δijEi,
d∑

i=0

Ei = I

3.3 The matrices P and Q

Let P and 1
n
Q be the matrices which relate the two bases for A as follows:

Aj =
d∑

i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi

or equivalently in matrix form:

A = EP, E =
1

n
AQ
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Then:

PQ = (E−1A)(nA−1E) = nI

and similarly:

QP = nI

Furthermore, we note that

AjEi = (
d∑

i=0

PijEi)Ei =
d∑

k=0

PkjEkEi =
d∑

k=0

PkjδkiEi = PijEi

which shows that Pij are the eigenvalues of Aj and that the columns of Ei are

the corresponding eigenvectors. We can compute the matrices P and Q from the

intersection numbers of the scheme. To achieve this, we first show another property

of the above-defined P matrix as follows:

We know that AjAk =
∑d

i=0 p
k
i,jAk. Using the definition of Pij we then have:

AjAk =
d∑

l=0

plj,kAl ⇔ AjAkEi = (
d∑

l=0

plj,kAl)Ei ⇔ AjPikEi =
d∑

l=0

plj,kAlEi

⇔ PikAjEi =
d∑

l=0

plj,kPilEi ⇔ PijPik =
d∑

l=0

plj,kPil

We can now show that the intersection matrix Lj has eigenvalues Pij:

(PLjP
−1)im =

d∑
k=0

d∑
l=0

Pil(Lj)lk(P−1)km =
d∑

k=0

d∑
l=0

Pilp
l
j,k(P−1)km =

=
d∑

k=0

(
d∑

l=0

Pilp
l
j,k)(P−1)km =

d∑
k=0

PijPik(P−1)km = Pij

d∑
k=0

Pik(P−1)km = δimPij

This means that PLjP
−1 = diag(P0j, ..., Pdj), so the Pij are the eigenvalues of Lj.

Hence, we can easily now compute P and Q = 1
n
P−1. We also notice that the rows

of P are left eigenvectors and the columns of Q are right eigenvectors.
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3.4 The Linear Programming Bound

We have introduced association schemes as a resource to be used to derive upper

bounds for the size of substructures. What we describe next is the derivation of

Delsarte’s Linear Programming Bound.[8]

First, define Y to be some nonempty subset of X, and its inner distribution to be

the vector a given by ai = |(Y×Y )∩Ri|
|Y | . This can be thought of as the average number

of elements of Y that are related in Ri to some other (given) element in Y . Let y

be the characteristic vector of Y . Then, we can rewrite ai = 1
|Y |y

TAiy. Delsarte’s

theorem states that aQ ≥ 0. To prove this, consider the quantity |Y |(aQ)j. This is

nonnegative if and only if aQ ≥ 0, since |Y | is just a positive constant. Then, we

have:

|Y |(aQ)j = |Y |
d∑

j=0

aiQij = yT

(
d∑

j=0

QijAi

)
y = nyTEjy ≥ 0

since Ej is by definition positive semidefinite. Therefore, we have proved that aQ ≥

0. To relate this to codes, we can think of the relations of the association scheme to

be Ri = {(x, y)|x, y ∈ C and d(x, y) = i}, where d is some distance metric and C is

the code we are considering. Let a be the distribution vector of the code. Then, if

the code has minimum distance r, it should satisfy |C| ≤ max(
∑d

i=0 ai), where the

maximum is taken over all possible {a0, ..., ad} that satisfy:

• a0 = 1 (every word has distance 0 only from itself)

• ai = 0 for 1 ≤ i ≤ r (since r is defined to be the minimum distance)

• ai ≥ 0 for all i

• aQ ≥ 0 (by Delsarte’s theorem)

We will now proceed to apply this to a specific class of codes, that of Binary Constant

Weight Codes.
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4 Bound for Binary Constant Weight Codes

4.1 Definition of Binary Constant Weight Codes

An (n, d) binary code is a subset of Fn
2 , where F = {0, 1}, whose codewords have

minimum distance d. An (n, d, w) constant weight binary code is a code satisfying

the above, with the additional property that all its codewords have the same weight

(w), which in our case means that each codeword has w ones and n− w zeros. We

are looking to calculate bounds on the maximum size of the code, which we denote

as A(n, d, w).

4.2 The Johnson Scheme

Earlier, we defined the Hamming distance to be the number of entries in which

two codewords differ. In the case of binary constant weight codes, we can realize

that this distance will always be even. We define the Johnson distance (named

after S.M.Johnson, who first considered these codes) to be dJ(x, y) = 1
2
dH(x, y)

for all x, y ∈ X .[12] Now we can define the relations for the association scheme as

R = {R0, R1, ..., Rn} where:

Ri = {(x, y) ∈ X 2 | dJ(x, y) = i}

which, as we can easily notice, form a partition of X 2. Therefore, this yields an

association scheme with n classes, which we will use to reason about the bounds of

binary constant weight codes. It is also useful to notice the valence of each of the

Ri, which is equal to the following:

vi =

(
w

i

)(
n− w
i

)
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4.3 Properties of Binary Constant Weight Codes

Before proceeding to build the LP, it is convenient to introduce some useful proper-

ties of Binary Constant Weight Codes [16], which we can then turn into constraints

for our LP, to achieve a tighter bound:

(i) A(n, d, w) = A(n, d+ 1, w), if d is odd

(ii) A(n, d, w) = A(n, d, n− w)

(iii) A(n, 2, w) =
(
n
w

)
(iv) A(n, 2w,w) = b n

w
c

(v) A(n, d, w) = 1 if 2w < d

We can then always assume (using (i) and (iii)) that d is even and d ≥ 4. Further-

more, using (ii),(iv),(v), we can assume that d < 2w ≤ n. [13]

4.4 Deriving the Linear Program

To apply the theory discussed in section 4, we have to find formulas for the eigen-

matrices P and Q. These can be computed using a result in combinatorics that

produces the Eberlein polynomial (or dual Hahn polynomial), which is defined in

the following way:

Ek(x) =
k∑

j=0

(−1)j
(
x

j

)(
w − x
k − j

)(
n− w − x
k − j

)

Then, as proved by Delsarte in [8]:

Pk(i) = Ek(i), Qi(k) = µiv
−1
k Ek(i)

where

µi =

(
n

i

)
−
(

n

i− 1

)
=
n− 2i+ 1

n− i+ 1

(
n

i

)
10



We can now construct the Linear Program as described in the last section. This

will be similar to what was derived in section 4, with the additional constraints of

section 5.3. The result is the following LP:

maximize
n∑

i=0

Ai

subject to A0 = 1

Aj = 0 for j s.t. 0 < j < d

Aj = 0 for j s.t. 2w < j

Aj = 0 for odd j∑n
j=0Qk(j)Aj ≥ 0 for k = 1, ..., w

Aj ≥ 0 for all j ≥ d/2

In order to make implementation easier and more efficient, it is important to simplify

the LP by reducing the number of variables and constraints. We can eliminate the

first five constraints by simply rewriting the objective function, yielding the following

LP:

maximize

 w∑
i=d/2

A2i

+ 1

subject to
∑w

j=d/2Qk(j)A2j ≥ 0 for k = 1, ..., w

A2j ≥ 0 for d/2 ≤ j ≤ w

which now has w − d
2

+ 1 variables and (w − d
2

+ 1)(w + 1) constraints. This is

significantly more efficient than the original version which had n + 1 variables and

d+ (n− 2w) + n
2

+ w(n+ 1) + n− d
2

+ 1 constraints.

We can now proceed to implement this for SageMath.

4.5 Implementation in SageMath

SageMath already contained code for calculating Delsarte bounds for Hamming

codes [20], so it was clear where in the codebase the new additions belonged, as
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well as what the coding conventions and paradigms followed by SageMath were.

The first function to implement was the one defining the Eberlein polynomials:

def eberlein(n,k,l,x):

from sage.arith.all import binomial

from sage.arith.srange import srange

return sum([(-1)**j*binomial(x,j)*binomial(n-x,k-j)

*binomial(l-n-x,k-j) for j in srange(0,k+1)])

Of course, the above is a simplified version of the actual code, which includes

sanity checks on the values of the arguments as well as many lines of documentation,

which contain examples, tests and references justifying the correctness of what is

being implemented. Notice that we are using other tools from SageMath at the same

time, such as binomial and srange, in order to achieve consistency and potentially

more efficient code.

We are now ready to build the linear program, before we use a prebuilt solver to

get a solution. The version of the LP that we implement is based on Delsarte’s theory

as we discussed, and a simplification of the formulation to make it more suitable for

coding by Kang [13]. We build the LP using the following helper function:

def _delsarte_cwc_LP_building(n,d,w,solver,isinteger):

from sage.numerical.mip import MixedIntegerLinearProgram

from sage.arith.all import binomial

p = MixedIntegerLinearProgram(maximization=True, solver=solver)

A = p.new_variable(integer=isinteger, nonnegative=True)

p.set_objective(sum([A[2*r] for r in range(d//2,w+1)])+1)

def _q(k,i):

v_i = binomial(w,i) * binomial(n-w,i)

return eberlein(w,i,n,k)/v_i

for k in range(1,w+1):

p.add_constraint(sum([A[2*i]*_q(k,i) for i in range(d//2,w+1)]),

12



min=-1)

return A, p

In the above code, we take advantage of SageMath’s MixedIntegerLinearProgram

class to build the LP. Following the documentation, one can see that the solver and

isinteger arguments that are passed to the function are used to specify whether

the variables of the LP can be restricted to integers (in which case we have an

Integer Linear Program, which is an NP-Hard problem) or not, and what solver

we would like to use. Finally, we create the main function that gets exported,

namely delsarte_bound_constant_weight_code. This simply calls the above helper

function with some default values for solver and isinteger, and makes sure the correct

exceptions are thrown when they should, for example in case of invalid input. The

details of all three functions can be found in Appendix I.

4.6 Results and Comparison to Prior Art

Having implemented the code to build the Linear Program, we make use of Sage-

Math’s sophisticated LP solvers to calculate the bounds. To evaluate the outcome

of our approach, we compare our results to the best previously known upper bounds.

To this end, the tables by A.E.Brouwer [3] proved very helpful. In order to scrape

and clean the data from the tables (as they contained both lower and upper bounds

as well some references to the papers establishing them), a Python script was writ-

ten, which can be found in Appendix II. Having extracted the data, we can create

a script that automatically tests our approach, taking advantage of the fact that it

is possible to import our local version of SageMath (including the above changes)

in any Python file by running a sage shell built using the local version of Sage. The

testing module iterates over possible values for n and w and in the cases where the

bounds are defined, it checks how the new derived bound compares to the previ-

ously known one, keeping track of the number of better, equal, and worse bounds

achieved, as well as of the cases where the new bound is an improvement. Run-
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ning this showed that we match the best known bound in 40 cases, and we get an

overestimation in the remaining 32 cases.

4.7 Improving the Bound

It is important to realize that the variables of the optimization problem should be

integers. That is because what these variables represent is the number of words

at a specific distance from a fixed word. Therefore, instead of using an LP solver

for the optimization problem, we could use an Integer Linear Programming solver.

However, as ILP is an NP-Hard problem [6], this is going to be computationally

challenging. Testing using the ILP on a personal computer produced a solution for

certain n, d, w. More specifically, in the cases where d = {4, 6, 8}, the processes had

to be manually interrupted after some point before continuing with the next value

for d. This means that the results of solving the ILP remain unknown for some of

these cases. The interesting outcome is that in 40 out of the cases in which the

algorithm terminated, it produced an improved bound (see table of improvements

on the next page).
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n d w previous improved
17 4 3 44 43
23 4 3 83 81
20 6 9 1363 1335
20 6 10 1420 1413
21 6 10 2685 2604
23 10 10 116 115
23 10 11 135 134
24 10 10 170 168
24 10 11 222 217
25 10 9 157 154
25 10 10 262 261
25 10 11 379 377
26 10 9 213 208
28 10 12 1977 1967
28 10 13 2438 2425
28 10 14 2628 2626
29 10 12 3091 3981
27 12 12 139 138
27 12 13 155 154
28 12 11 147 146
28 12 12 198 196
29 12 11 197 193
29 12 12 298 296
29 12 14 492 486
30 12 10 159 157
30 12 12 492 486
31 12 10 229 194
31 12 11 415 375
31 12 12 679 678
32 12 10 300 243
32 12 11 573 568
32 12 14 2140 2133
32 12 15 2641 2496
32 12 16 2870 2642
29 14 12 47 46
31 14 14 167 165
31 14 15 183 182
32 14 13 183 181
32 14 14 233 232
32 14 15 277 274

Table 1: List of Improved Bounds for Binary Constant Weight Codes
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5 P- and Q- Polynomial Association Schemes

Next, we look to generalize these bounds to other types of codes. To do this, we will

consider a specific class of association schemes, namely the P− and Q− polynomial

association schemes.

5.1 The Krein parameters

The Bose-Mesner algebra A is also closed under componentwise (Hadamard) matrix

multiplication (denoted as ◦). We can then define

Ei ◦ Ej =
1

n

d∑
k=0

qkijEk

where the numbers qkij are called the Krein parameters. An important property of

the Krein parameters is that for all i, j, k ∈ {0, ..., d} they satisfy qkij ≥ 0. This

shows a dual behaviour between on the one side ordinary multiplication, the inter-

section numbers pkij and the matrices Ai and P and on the other side Hadamard

multiplication, the Krein parameters qkij and the matrices Ei and Q. [5]

We are now able to define P− and Q− polynomial association schemes as we

discussed earlier.

5.2 Definition

Association schemes in which the relations Ri represent two elements having distance

i are called metric. Metric schemes are characterized by the fact that pkij is zero

whenever one of i, j, k is larger than the sum of the other two (we can think of this

as a form of a triangle inequality), and nonzero in the case where i = j + k. As we

would expect, a cometric scheme is defined dually, by qkij = 0 when i > j + k and

qijk > 0 when i = j + k.

An association scheme is called P−polynomial if there exist polynomials fk of

degree k with real coefficients, and real numbers zi such that Pik = fk(zi). Dually,
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an association scheme is called Q−polynomial when the above holds for Q instead

of P .

There is an interesting relation between metric association schemes and a no-

tion that we will introduce in section 6.2, that of distance-regular graphs. Namely,

both represent the same object. An important theorem which can be found in [5]

(Theorem 11.6.1) states that an association scheme is metric (resp. cometric), and

thus can be thought of as a distance-regular graph, if and only if it is P -polynomial

(resp. Q-polynomial).

5.3 Generalization of LP Bound to Q-polynomial schemes

In section 3.4, we showed how to derive a Linear Programming Bound given an

association scheme. The resulting LP depends only in the Q-matrix of the scheme

as well as its minimum distance. Therefore, it makes sense to implement a more

general function for SageMath, which given the Q-matrix and the minimum distance

d returns the LP bound on the corresponding association scheme. We can then

test this function by producing the Q-matrix, using the Q-polynomial of the Q-

polynomial scheme. The resulting code to build the LP is similar to that for Binary

Constant Weight codes:

def _delsarte_Q_LP_building(q,d,solver,isinteger):

from sage.numerical.mip import MixedIntegerLinearProgram

n, _ = q.dimensions()

p = MixedIntegerLinearProgram(maximization=True,solver=solver)

A = p.new_variable(integer=isinteger,nonnegative=True)

p.set_objective(sum([A[i] for i in range(n)]))

p.add_constraint(A[0]==1)

try:

for i in range(1,d):

p.add_constraint(A[i]==0)
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except:

for i in d:

p.add_constraint(A[i]==0)

for k in range(n):

p.add_constraint(sum([q[k][i]*A[i] for i in range(n)]),min=0)

return A, p

An additional feature of the above code is that it allows for the option of having

a list of indices such that A[i]s will be set to 0 in the LP, which proves to be useful

for some association schemes. We use the try-except block to achieve this form of

polymorphism (d can be either an integer - the minimum distance - or a list of

integers), which is consistent with Python’s conventions.

Indeed, we verify that this procedure works by testing it against the ones already

implemented in SageMath, the one for the Hamming scheme [20] and the one we

just derived for the Johnson scheme. The code producing the Q matrices for both

schemes can be found in Appendix IV.

In the next chapter, we are going to show how this function can be applied

to other problems that have the structure of an association scheme, such as the

Hermitian Dual Polar graphs.
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6 Application to Hermitian Dual Polar Graphs

We begin by defining some basic terms that are essential to establishing what Her-

mitian Dual Polar Graphs are.

6.1 Definitions

Let V (n, q) denote the vector space of dimension n over the field Fq. Consider also

a Hermitian form, which we can think of as an inner product, defined as a function

h : V × V → C such that h(w, z) = h(z, w). A subspace U of V (n, q) is called

totally isotropic if the restriction to U of the Hermitian form above is identically

zero, meaning that h(z, w) = 0 for all z, w ∈ U . Then, a Hermitian polar space P is

the collection of all totally isotropic subspaces of V (n, q). Define the Witt index d of

V (n, q) to be the dimension of the largest totally isotropic subspace of V (n, q), which

we often call the rank of P . All maximal isotropic subspaces are called generators

of the polar space. We can now define the Hermitian Dual Polar Graph on P to

be the graph whose vertices are the generators of P and where two generators are

adjacent if and only if their intersection has dimension d− 1. [1]

6.2 Deriving the matrix Q

We are looking for bounds on the constant distance codes of generators on Hermitian

polar spaces of type H(2d−1, q2). This means that the vector space in the definition

of the specific Hermitian polar space has dimension 2d−1 and the size of the field is

q2, as it also includes complex numbers. For generators of Hermitian polar spaces,

constant distance codes are sets of subspaces which pairwise intersect in codimension

i (so in dimension d − i where d is the Witt index of the polar space). We define

partial spreads as constant distance codes with i = d. [11] Let X be the set of all

the above Hermitian forms and define Ri relations as follows:

(x, y) ∈ Ri ⇔ (x, y) intersect in codimension i
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Then, Y = (X, {Ri}0≤i≤d) is a (P and Q)-polynomial association scheme.[2] The

following are the intersection numbers of the distance-regular 1 graph Γ = (X,R1):

bi = bi(d, q) =
q2d − q2i

q + 1

ci = ci(d, q) =
qi−1(qi − (−1)i)

q + 1

ai = ai(d, q) =
q2i − qi−1(qi − (−1)i)− 1

q + 1

It is important to consider the meaning of these intersection numbers. Let the

partition V0, V1, ..., Vd of the set of vertices X (of graph Γ) with respect to the

distances from some v ∈ X. Define ki = |Vi|. Now, the bj is the number of edges

going from vj ∈ Vj to Vj+1 and cj is the number of edges going from vj ∈ Vj to

Vj−1. Due to distance-regularity, the subgraph Gj of edges between Vj and Vj+1 is

biregular (Vj, Vj+1 partition the vertices in two sets the vertices of which are not

connected with each other, making Gj a bipartite subgraph), for any vertex of Gj

in Vj the number of edges on it is bj and for any vertex of Gj in Vj+1 this number is

cj+1. Therefore, counting the number of edges of Gj in two different ways we get:

bj|Vj| = cj+1|Vj+1| ⇒ bjkj = cj+1kj+1 ⇒ kj+1 =
bj
cj+1

kj

Note that k0 = 1, since only one vertex has distance 0 from v (itself), thus we can

compute kj+1 recursively, as we already know the bj and cj+1. This is implemented

in the function Hdpgk (returning the value of k for Hermitian dual polar graph)

below:

def Hdpgk(p,f,d,j):

q = p^f
1A connected graph Γ is called distance-regular if it is regular of valency (degree of vertices)

k and for any two points γ, δ ∈ Γ at distance i = d(γ, δ), there are precisely ci neighbours of δ
in Γi−1(γ) and bi neighbours of δ in Γi+1(γ). The array of integers ({b0, b1, ..., bd−1; c1, c2, ..., cd},
where d is the diameter of Γ) characterizing a distance-regular graph is known as its intersection
array.[4]
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def b(i):

return q^(2*i)*(q^(2*(d-i))-1)/(q+1)

def c(i):

return q^(i-1)*(q^i-(-1)^i)/(q+1)

if j==0: return 1

return b(j-1)*Hdpgk(p,f,d,j-1)/c(j)

There was preexisting work from my supervisor in implementing the Q-matrix

for Hermitian dual polar graphs, which with the addition of the above calculation

of the values of k gives a complete implementation of theorem 9.4.3 in [4]. The

resulting sage code producing the Q-matrix which we are going to use as input to

the procedure defined in section 5.3 can be found in Appendix V.

Having completed this, it remains to test it for different values of q and d and

compare it to the best known bounds so far.

6.3 Results and Comparison to Prior Art

In F.Ihringer’s paper "A new upper bound for constant distance codes of generators

on Hermitian polar spaces of type H(2d − 1, q2)"[10], a table of bounds on the

maximum size of partial spreads in H(2d− 1, q2) is given, depending on the values

of d (where d is even) and q. As discussed in the paper, it is not known whether

these bounds are sharp or not, so it would be worth testing our approach in deriving

them. We can then test the generalized procedure that was defined in section 5.3

for all Q-polynomial schemes, using as input the matrix Q derived in the previous

section. The code for testing this and comparing with the best known bounds for

each case can be found in Appendix VI.

All the bounds that were produced by the code were less tight than the best

known ones discussed in [10]. However, this still verifies that our construction is

correct and indeed provides an upper bound in all cases. This could be revisited

when further improvements to the bound on association schemes are implemented,
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as we will discuss later in the future work section of the conclusion.

Similarly to the case of binary constant weight codes, in which we only got

improvements in a limited number of cases, here also we see that there are other

approaches that outperform our method. This is logical, because most of these

approaches further exploit the structure of the specific problem, whereas ours applies

a generic method using only the Q-polynomiality of the schemes. However, the

ability of our method to generalize proves to be very useful and worth exploring,

since a potential breakthrough in bounds forQ-polynomial association schemes could

instantly lead to improvements on a variety of problems.
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7 Conclusion

7.1 Evaluation

This project served two purposes; firstly, providing rigorous mathematical proofs

to derive the bounds, and, secondly, discussing their implementation for SageMath

and the results of their testing. To this end, we formulated the Linear Programming

Bound, using properties of the structure of Association Schemes, around which the

core of the project revolved.

This bound was first implemented specifically for the case of Binary Constant

Weight Codes, for which the Integer Linear Program produced improvements to the

previously best known bounds in 40 cases, using the fact that the variables of the

objective function all represent integers. Consequently, we generalized the function

to be applicable to all types of Q-polynomial association schemes, which, after being

deployed in SageMath - an open-source framework-, will facilitate research in a vari-

ety of topics. Even in the specific project, other than the field of coding theory, there

were applications to graph theory, information theory, geometry, and combinatorics.

There is even an interesting instance of a quantum information theory problem to

which similar bounds can be applied, discussed in [14].

Finally, we demonstrated how this generalized code could be applied to a different

setting, by considering the association scheme corresponding to Hermitian Dual

Polar Graphs. After deriving the Q-matrix for these, we compared the upper bounds

of our implementation to the best known ones, which unfortunately in this case did

not show any improvements, but still verified the fact that the upper bounds are

correct (they do indeed provide a close overestimation).

7.2 Future Work

An obvious way to apply the results of this project would be to use the generic

function on other Q-polynomial association schemes in the literature, similarly to
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what we did for Hermitian dual polar graphs. An example of that could be partial

ovoids [7], such as the Ree-Tits octagon O(2t) [11]. The book "Algebraic Combi-

natorics I"[2] provides an extensive list of other examples of P - and Q- polynomial

association schemes in chapter 3.6.

Another opportunity for extension of this project would be in deriving even

tighter bounds. There has already been work on that, with an example of such an

improvement being the use of Semidefinite Programming (cf. Schrijver’s paper "New

Code Upper Bounds From the Terwillger Algebra and Semidefinite Programming"[19]).

Clearly, an improvement on that could yield tighter bounds in all of the above-

discussed association schemes. Furthermore, an improvement to the more specific

bound for binary constant weight codes is discussed in the paper "Delsarte’s Linear

Programming Bound for Constant-Weight Codes"[13] in section III.B, and another

one was given by Polak in "Semidefinite programming bounds for constant weight

codes" [18], based on the work of Schrijver.
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8 Appendices

8.1 Appendix I: Code for Binary Constant Weight Codes

def eberlein(n, w, k, u, check=True):

r"""

Compute ``E^{n,l}_k(x)``, the Eberlein polynomial.

Equal to

.. MATH::

E^{w,n}_k(u)=\sum_{j=0}^k (-1)^j \binom{u}{j} \binom{w-u}{k-j}

\binom{n-w-u}{k-j},

INPUT:

- ``w, k, x`` -- arbitrary numbers

- ``n`` -- a nonnegative integer

- ``check`` -- check the input for correctness. ``True`` by

default. Otherwise, pass it as it is. Use ``check=False`` at

your own risk.

EXAMPLES:

sage: codes.bounds.eberlein(24,10,2,6)

-9

"""

from sage.arith.all import binomial

from sage.arith.srange import srange

if check:

from sage.rings.integer_ring import ZZ

n0 = ZZ(n)

if n0 != n or n0 < 0:

raise ValueError('l must be a nonnegative integer')

n = n0
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if 2*w>n:

return eberlein(n,n-w,k,u)

return sum([(-1)**j*binomial(u,j)*binomial(w-u,k-j)

*binomial(n-w-u,k-j) for j in srange(0,k+1)])

def _delsarte_cwc_LP_building(n, d, w, solver, isinteger):

"""

LP builder for Delsarte's LP for constant weight codes, used in

delsarte_bound_constant_weight_code; not exported.

INPUT:

- ``n`` -- the code length

- ``w`` -- the weight of the code

- ``d`` -- the (lower bound on) minimal distance of the code

- ``solver`` -- the LP/ILP solver to be used. Defaults to

``PPL``. It is arbitrary precision, thus there will be no

rounding errors. With other solvers (see

:class:`MixedIntegerLinearProgram` for the list), you are on

your own!

- ``isinteger`` -- if ``True``, uses an integer programming solver

(ILP), rather that an LP solver. Can be very slow if set to

``True``.

"""

from sage.numerical.mip import MixedIntegerLinearProgram

from sage.arith.all import binomial

p = MixedIntegerLinearProgram(maximization=True, solver=solver)

A = p.new_variable(integer=isinteger, nonnegative=True)

p.set_objective(sum([A[2*r] for r in range(d//2,w+1)])+1)

def _q(k,i):

v_i = binomial(w,i)*binomial(n-w,i)
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return eberlein(n,w,i,k)/v_i

for k in range(1,w+1):

p.add_constraint(sum([A[2*i]*_q(k,i) for i in range(d//2,w+1)]),min=-1)

return A, p

def delsarte_bound_constant_weight_code(n, d, w, return_data=False,

solver="PPL", isinteger=False):

"""

Find the Delsarte bound on a constant weight code of weight ``w``,

length ``n``, lower bound on minimal distance ``d``

INPUT:

- ``n`` -- the code length

- ``d`` -- the (lower bound on) minimal distance of the code

- ``w`` -- the weight of the code

- ``return_data`` -- if ``True``, return a triple

``(W,LP,bound)``, where ``W`` is a weights vector, and ``LP``

the Delsarte upper bound LP; both of them are Sage LP data.

``W`` need not be a weight distribution of a code.

- ``solver`` -- the LP/ILP solver to be used. Defaults to

``PPL``. It is arbitrary precision, thus there will be no

rounding errors. With other solvers (see

:class:`MixedIntegerLinearProgram` for the list), you are on

your own!

- ``isinteger`` -- if ``True``, uses an integer programming solver

(ILP), rather that an LP solver. Can be very slow if set to

``True``.

"""

from sage.numerical.mip import MIPSolverException

if d<4:
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raise ValueError("Violated constraint d>=4 for

Binary Constant Weight Codes")

if d>=2*w or 2*w>n:

raise ValueError("Violated constraint d<2w<=n for

Binary Constant Weight Codes")

# minimum distance is even => if there is an odd lower bound on d we can

# increase it by 1

if d%2: d+=1

A, p = _delsarte_cwc_LP_building(n, d, w, solver, isinteger)

try:

bd = p.solve()

except MIPSolverException as exc:

print("Solver exception: {}".format(exc))

if return_data:

return A,p,False

return False

if return_data:

return A,p,bd

else:

return int(bd)

8.2 Appendix II: Testing for Binary Constant Weight Codes

Code for scraping Brouwer’s page to get the bounds into csv files in order to automate

testing:

import pandas as pd

import numpy as np

import json

tables = pd.read_html('https://www.win.tue.nl/~aeb/codes/Andw.html#d4')
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d_tables = {

4:tables[1], 6:tables[4], 8:tables[8], 10:tables[15],

12:tables[19], 14:tables[23], 16:tables[26],

18:tables[28]

}

d_vals = [4,6,8,10,12,14,16,18]

def format_data(x):

# check for nan

if pd.isna(x):

return None

# get upper bounds only (eliminate -)

if '-' in str(x):

x = x[(x.index('-')+1):]

# get rid of references etc

if not str(x).isdigit():

i = 0

while i<len(str(x)):

if not str(x)[i].isdigit():

x = str(x)[:i]

break

i += 1

# cases where only lower bound given

if x == '': return None

return int(x)

# make first col index, drop last row, apply format_data, create csv

for key in d_vals:

d_tables[key] = d_tables[key].set_index('n\w')[:-1].applymap(format_data)

d_tables[key].to_csv(f'd{key}.csv')
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Code for testing (both LP and ILP):

from sage.all import *

def cwc_tests(ilp=False):

print('Testing')

import pandas as pd

d_vals = [4,6,8,10,12,14,16,18]

# uncomment below accordingly to get computationally feasible subproblems

# if ilp:d_vals=[16,18]

d_tables = {i:pd.read_csv(f'd{i}.csv',index_col=0) for i in d_vals}

for d in d_vals:

print(20*'*')

print(f'd={d}')

print(20*'*')

curr = d_tables[d]

leq = eq = geq = 0

improved = []

for n in curr.index:

for w in list(curr):

b = curr.at[n,w]

if not pd.isna(b):

print(f'n={n}, d={d}, w={w}, exp={curr.at[n,w]}')

if not ilp:

exp = codes.bounds.delsarte_bound_constant_weight_code(

int(n),int(d),int(w))

else:

exp = codes.bounds.delsarte_bound_constant_weight_code(

int(n),int(d),int(w),isinteger=True)

print(f'Got:{exp}')
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if exp<b:

print('IMP')

leq+=1

improved.append(f'A({n},{d},{w})={exp} --- was {b}')

elif exp>b:geq+=1

else:eq+=1

print('RESULTS')

print(f'leq={leq},eq={eq},geq={geq}')

print('******IMPROVED*****')

for imp in improved:print(imp)

if __name__=="__main__":

cwc_tests()

8.3 Appendix III: Code for Q-matrix LP Building

def _delsarte_Q_LP_building(q,d,solver,isinteger):

from sage.numerical.mip import MixedIntegerLinearProgram

n, _ = q.dimensions() # Q is a square matrix

p = MixedIntegerLinearProgram(maximization=True, solver=solver)

A = p.new_variable(integer=isinteger, nonnegative=True)

p.set_objective(sum([A[i] for i in range(n)]))

p.add_constraint(A[0]==1)

try:

for i in range(1,d):

p.add_constraint(A[i]==0)

except:

for i in d:

p.add_constraint(A[i]==0)

for k in range(1,n):
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p.add_constraint(sum([q[k][i]*A[i] for i in range(n)]),min=0)

return A, p

def delsarte_bound_Q_matrix(q,d,return_data=False, solver="PPL",

isinteger=False):

"""

Find the Delsarte bound on a code with Q matrix ``q`` and lower

bound on minimal distance ``d``.

INPUT:

- ``q`` -- the Q matrix

- ``d`` -- the (lower bound on) minimal distance of the code

- ``return_data`` -- if ``True``, return a triple

``(W,LP,bound)``, where ``W`` is a weights vector, and ``LP``

the Delsarte upper bound LP; both of them are Sage LP data.

``W`` need not be a weight distribution of a code.

- ``solver`` -- the LP/ILP solver to be used. Defaults to

``PPL``. It is arbitrary precision, thus there will be no

rounding errors. With other solvers (see

:class:`MixedIntegerLinearProgram` for the list), you are on

your own!

- ``isinteger`` -- if ``True``, uses an integer programming solver

(ILP), rather that an LP solver. Can be very slow if set to

``True``.

"""

from sage.structure.element import is_Matrix

from sage.numerical.mip import MIPSolverException

if not is_Matrix(q):

raise ValueError("Input to delsarte_bound_Q_matrix should be

34



a sage Matrix()")

A, p = _delsarte_Q_LP_building(q, d, solver, isinteger)

try:

bd=p.solve()

except MIPSolverException as exc:

print("Solver exception: {}".format(exc))

if return_data:

return A,p,False

return False

if return_data:

return A,p,bd

else:

return bd

8.4 Appendix IV: Testing Code for Q-matrix LP Building

from sage.all import *

def hamming_scheme_q_matrix(n,q):

"""

n length, q alphabet size, returns sage Matrix() representing the Q matrix

"""

rows = []

for i in range(n+1):

row = []

for j in range(n+1):

row.append(codes.bounds.krawtchouk(n,q,i,j))

rows.append(row)

q_matrix = Matrix(rows)

return q_matrix
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def johnson_scheme_q_matrix(n,w):

rows = []

for i in range(w+1):

row = []

for j in range(w+1):

row.append(codes.bounds.eberlein(n,w,i,j,inef=True))

rows.append(row)

p_matrix = Matrix(rows)

q_matrix = binomial(n,w)*p_matrix.inverse()

return q_matrix

8.5 Appendix V: Hermitian dual polar graphs Q-matrix gen-

eration

# (a_1,a_2,...,a_k;q)_n:=prod_{j=1}^k(a_j;q)_n

def brlist_n(q,n,*a):

def br(x): return prod([1-x*q**k for k in range(n)])

return prod([br(aj) for aj in a])

def q_hyper(q,z,a,b,ulim=oo):

s = len(a)

if s-1 == len(b):

if ulim==oo: # do a symbolic summation

var('kkk')

return sum(z**kkk*brlist_n(q,kkk,*a)/

brlist_n(q,kkk,*(b+[q])), kkk, 0, ulim)

else:

return reduce(lambda x,y: x+y, [z**k*brlist_n(q,k,*a)/

brlist_n(q,k,*(b+[q])) for k in range(ulim+1)])

# P and Q for the Hermitian dual polar graph of dimension d
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# over the field GF(p^f)

# multiplicites - j's multiplicity, starting from 0, e=1/2

# implement [BCN] Thm 9.4.3

def Hdpgm(p,f,d,j):

q=p^(2*f)

return q^j*prod([(q^(d-t+1)-1)/(q^t-1) for t in range(1,j+1)]) * \

(1+q^(d-2*j)*p^f) * prod([(1+q^(d-i)*p^f)/(1+q^i/p^f)

for i in range(1,j+1)])/(1+q^(d-j)*p^f)

# Calculation of valencies

def Hdpgk(p,f,d,j):

q = p^f

def b(i):

return q^(2*i)*(q^(2*(d-i))-1)/(q+1)

def c(i):

return q^(i-1)*(q^i-(-1)^i)/(q+1)

if j==0: return 1

return b(j-1)*Hdpgk(p,f,d,j-1)/c(j)

# (1st ordering), returns Q-matrix for Hdpg

def Hdpg(p,f,d):

q=p^(2*f)

def ff(i,j):

return Hdpgk(p,f,d,j)*q_hyper(q,q,[q^-i,q^-j,-p^-f*q^(j-d)],

[q^-d,0],ulim=i)

return matrix(d+1,d+1,ff)

8.6 Appendix VI: Hermitian dual polar graphs Testing

def hdpg_test():

improvements = 0
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prime_powers = [2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,

43,47,49,53,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,

113,121,125,127,128,131,137,139,149,151,157,163,167,169]

# tests for d = 2

d = 2

for q in prime_powers[1:]:

Q = Hdpg(q,1,2*d-1)

A,p,bd = codes.bounds.delsarte_bound_Q_matrix(Q.transpose(),2*d-1,

return_data=True,isinteger=True)

best = (q^3+q+2)/2

if bd<best: improvements += 1

print(f"q={q},d={d},new bound = {int(bd)}, best known = {best},{bd>best}")

# tests for d = 4

d = 4

for q in prime_powers:

Q = Hdpg(q,1,2*d-1)

A,p,bd = codes.bounds.delsarte_bound_Q_matrix(Q.transpose(),2*d-1,

return_data=True,isinteger=True)

best = q^(2*d-1)-q^(3*d/2)*(q^(0.5)-1)

if bd<best: improvements += 1

print(f"q={q},d={d},new bound = {int(bd)}, best known = {int(best)},

{bd>best}")

# tests for d>4

for d in [6,8]:

for q in prime_powers:

Q = Hdpg(q,1,2*d-1)

A,p,bd = codes.bounds.delsarte_bound_Q_matrix(Q.transpose(),2*d-1,

return_data=True,isinteger=True)
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best = q^(2*d-1)-q*(q^(2*d-2)-1)/(q+1)

if bd<best: improvements += 1

print(f"q={q},d={d},new bound = {int(bd)}, best known = {int(best)},

{bd>best}")

print(f"Total improvements: {improvements}")
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