
University of Oxford

Master’s thesis

Creating Semidefinite Programming
Interface for Sagemath

Author:
Ingolfur Edvardsson

Supervisor:
Dmitrii Pasechnik

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the Department of Computer Science

2014

https://www.ox.ac.uk/
https://www.cs.ox.ac.uk/)

UNIVERSITY OF OXFORD

Abstract
Department of Computer Science

Master of Science

Creating Semidefinite Programming Interface for Sagemath

by Ingolfur Edvardsson

Sagemath (also known as Sage) is a large-scale open-source Python-based computer al-
gebra/numerics toolbox which provides a seamless interface between various open-source
computer algebra and numerics systems, such as GAP, Maxima, Singular, PARI/GP,
numpy, scipy, etc. It is gaining in popularity in the research community as an open-
source alternative for Mathematica, Maple, Magma, and Matlab. Semidefinite Program-
ming (SDP) problems are a novel class of problems in convex optimisation, which prop-
erly contain such well-known problems as Linear Programming (LP), Convex Quadratic
Programming, etc, and is a very powerful modelling tool in discrete optimisation, control
theory, polynomial optimisation, etc.

The present MSc thesis seeks to explain the design and implementation of an SDP
interface for Sage, which constituted most of my MSc project, and provide the necessary
mathematical and CS background. The meta-aim was to create an interface which can
deal with optimization problems with polynomial constraints, using SDP relaxations.
An essential step was taken by this project in that direction by first writing an LP
backend, fully capable of solving various LPs, and then designing and implementing an
SDP interface. The final version of the SDP interface is capable of solving different
kinds of SDPs using at least two independent solvers, which the user can choose. Future
developers should also find it easy to add new backends for other SDP solvers.

Parts of the code written are already accepted into the main development branch of
Sage, and will appear in the upcoming release; the remaining code will be merged there
in due course, upon passing the review process.

https://www.ox.ac.uk/)
https://www.cs.ox.ac.uk/)

Acknowledgements

The project was a great chance for learning and professional development and I could not
have done it without help from several people. I first and foremost want to express my
deepest gratitude to my advisor, Dmitrii Pasechnik, for his excellent guidance through-
out the project. I also want to thank Nathann Cohen and the open-source community
of Sage for their input as well. At last, I want to thank for the great support I received
from many selfless employees here at University of Oxford. Without their support, my
project would not have been possible.

2

Contents

Abstract 1

Acknowledgements 2

Contents 3

List of Tables 5

1 Introduction 6
1.1 Intoduction . 6
1.2 The importance of an SDP interface . 6
1.3 Sagemath . 7
1.4 Linear Programming . 7
1.5 Semidefinite Programming . 8
1.6 The CVXOPT Library . 8

1.6.1 Algorithm parameters for the CVXOPT solver 9
1.6.2 Possible outcomes . 9

2 The CVXOPT LP Backend 10
2.1 Overview . 10
2.2 Solving linear Programs in Sage . 10
2.3 LP example using CVXOPT . 11
2.4 The importance of the CVXOPT solver 12

2.4.1 The difference between the Simplex method and interior point
method . 12

2.5 Parameters for the cvxopt.solvers.lp method 14
2.6 Important classes for the CVXOPT backend 14

2.6.1 The MixedIntegerLinearProgram class 14
2.6.2 The GenericBackend class . 16

2.7 The Implementation of the CVXOPT LP backend 17
2.7.1 Cython . 17
2.7.2 Class variables and the constructor 17
2.7.3 The implementation of several major methods 18

2.7.3.1 The implementation of add_linear_constraint 18
2.7.3.2 The implementation of solve() 19
2.7.3.3 The implementation of get_objective_value 21

3

Contents 4

2.7.3.4 The implementation and design of ncols() and nrows() 22
2.7.4 Documentation and Testing . 22

2.8 Results . 22
2.8.1 Benchmark . 22
2.8.2 Current status in the open-source community 23

3 The SDP Interface 24
3.1 Overview . 24
3.2 The design of the SDP interface . 24
3.3 Solving SDP example using CVXOPT . 27

3.3.1 Parameters for the cvxopt.solvers.sdp method 27
3.3.2 Example . 27

3.4 The implementation of the SDP interface 28
3.4.1 The SemidefiniteProgram class 28

3.4.1.1 The SDPVariable . 28
3.4.1.2 The SDPSolverException 29
3.4.1.3 Class variables and the constructor 30
3.4.1.4 Implementation of add_constraint 30
3.4.1.5 Implementation of solve 31
3.4.1.6 Documentation and Testing 31

3.4.2 The GenericSDPBackend class . 32
3.4.3 The CVXOPTSDPBackend class . 32

3.4.3.1 The solve() method . 33
3.4.3.2 Documentation and Testing 33

3.4.4 The DSDPSDPBackend class . 33
3.4.4.1 The DSDP solver . 34
3.4.4.2 The DSDP backend . 34

3.5 Results . 35
3.5.1 Benchmark . 35
3.5.2 Current status in the open-source community 36
3.5.3 Future work . 37

Bibliography 38

List of Tables

2.1 MixedIntegerLinearProgram’s methods table 15
2.2 GenericBackend’s / CVXOPT’s methods table 16

3.1 the SDP methods table . 26

5

Chapter 1

Introduction

1.1 Intoduction

The aim of the project is to design and implement a Semidefinite Programming (usually
abbreviated SDP) interface for Sagemath [?], known as Sage, so that Sage can deal with
optimization problems with polynomial constraints, using SDP relaxations. The project
started with theoretical reading and preparation, followed by an implementation of a
linear programming backend, cvxopt [?]. Finally the SDP interface was implemented
along the cvxopt-sdp solver backend, thus making a sizeable contribution towards the
final aim, as well as bringing new functionality.

1.2 The importance of an SDP interface

Nowadays, users who want to solve an SDP, using Sage, have to express the problem
in a very restrictive standard form which is required by the solvers, rather than in a
natural way that follows mathematical conventions. Also, the user would have to know
how to formulate the problem for each solver. Not to mention the inefficient way of
reading and writing to a file which requires the user to write a script—creating a lot of
problems—for solvers not having a Python interface. Thus it is important to have an
interface so the user doesn’t have to have a comprehensive understanding on how each
solver works. By creating an SDP interface, this can be achieved.

As far as numerics is concerned, Matlab [?] is without a doubt the most famous
alternative to Sage. Matlab has few interfaces that are capable of solving an SDP. The
two most prominent packages to solve an SDP using Matlab are YALMIP [?] and CVX
[?].

6

Chapter 1. Introduction 7

1.3 Sagemath

Sage is a open-source mathematics software which builds on top of many existing open-
source packages and libraries. They describe Sage as so:

William Stein started the Sage project in 2004 and still leads the project.
His frustration with proprietary mathematical software was his main moti-
vation to create a viable open-source alternative. Just as Firefox is an alter-
native to Internet Explorer or OpenOffice.org is an alternative to Microsoft
Office, Sage is a comprehensive open source alternative to Magma, Maple,
Mathematica, and Matlab. Sage consists of a collection of mathematical soft-
ware and a core library bundling the functionality of these components into
one consistent experience. Additionally to that it provides a framework to
express mathematical calculations and a library of mathematical algorithms.
Mathematics is very old and encompasses many very different topics. It is
hard to come up with one unique approach that suites beginners as well as
experts. Sage tries to solve this and ”is doing remarkably well at keeping
a balance between ease-of-use for beginners and high-end users.” as David
Kohel once said [?].

Open-source gives the researcher a possibility to see the code behind the methods, which
in many cases can be essential step in, for instance, a mathematical proof. This property,
along with the fact that Sage uses a general-purpose popular programming language,
Python (unlike Matlab, Mathematica, etc.) makes Sage an easy to use software and
thus we focus on developing an easy to use semidefinite programming interface, as this
is an essential and valuable by itself step towards the overall project aim.

1.4 Linear Programming

Linear programming (usually abbreviated LP) is a method to maximize or minimize
certain value in a mathematical model whose requirements are represented by linear
relationships. They can represented in the following form:

Maximize: c>x (1.1)

subject to: Ax ≤ b (1.2)

(1.3)

Chapter 1. Introduction 8

where x represents the vector of variables to be determined, c and b are vectors of
known coefficients, A is a known matrix of coefficients, and the operator (·)> is the
matrix transpose [?].

1.5 Semidefinite Programming

SDP is considered among the most powerful tools in the theory and practice of approx-
imation algorithms and methods based on semidefinite programming have been very
prominent in optimization since the 1990s. Semidefinite programs can be defined in an
equational form:

Maximize:
n∑

i,j=1

cijxij (1.4)

Subject to:
n∑

i,j=1

aijkxij = bk, k = 1 . . .m (1.5)

X � 0 (1.6)

where the xij , i ≤ i, j ≤ n are n2 variables satisfying the symmetry conditions xij = xji

for all i, j, the cij , aijk and bk are real coefficients, and X is positive semidefinite, i.e.,
all the eigenvalues of X are nonnegative.

The class of SDPs is one of the largest class of optimization problems that is possible
to solve efficiently, in practice as well in theory. SDPs play an important role in many
research areas, such as approximation algorithms, combinatorial optimization, compu-
tational complexity, graph theory, geometry, quantum computing and real algebraic
geometry. Thus it is a topic of great interest [?].

SDP can be solved efficiently in theory and practice, that is, if one uses an interior
point algorithm, such as the one CVXOPT provides. This means it can be solved in
time polynomial in the size needed to code its description provided some natural non-
degeneracy conditions hold for the input [?].

1.6 The CVXOPT Library

CVXOPT is a free software package for convex optimization based on the Python pro-
gramming language under the GNU v3 licence. It can be integrated in other software

Chapter 1. Introduction 9

via Python extension modules, like Sage for instance. The main purpose of the CVX-
OPT is to make the development of software for convex optimization as straightforward
as possible. It uses the fact that Python has a powerful standard library as well as
Python being a high-level programming language. The current version of CVXOPT is
at 1.1.7 (released in June 2014). However, we used the previous versions of CVXOPT,
namely, version 1.1.6. According to the changelog, the difference between those two
version should not affect the SDP or the LP solvers in any way [?].

1.6.1 Algorithm parameters for the CVXOPT solver

Here we have the list of algorithm control parameters that CVXOPT accepts. They are
accessible via the dictionary solvers.options. The following parameters are possible to
change:

show_progress True or False; turns the output to the screen on or off (default: True).

maxiters maximum number of iterations (default: 100).

abstol absolute accuracy (default: 1e-7).

reltol relative accuracy (default: 1e-6).

feastol tolerance for feasibility conditions (default: 1e-7).

refinement number of iterative refinement steps when solving KKT equations (default:
0 if the problem has no second-order cone or matrix inequality constraints; 1
otherwise) [?].

1.6.2 Possible outcomes

After calling any of the methods provided by the cvxopt.solvers, the solver returns a
dictionary d which can tell us if the solver successfully managed to approximate a solu-
tion. The four possible outcomes are 'optimal', which tells us if the solver successfully
managed to come up with a solution. 'primal infeasible' or 'dual infeasible'
tells us that approximate solution wasn’t found and finally 'unknown' means the algo-
rithm terminated early due to numerical difficulties or because the maximum number
of iterations was reached [?].

Chapter 2

The CVXOPT LP Backend

2.1 Overview

SDP is an extension of LP since every LP can be expressed as an SDP. Hence it was
wise to design and implement an LP backend solvers first. We created a backend for the
LP solver which was based on the open-source cvxopt solver. Not only was it important
for the community to have access to this solver but part of the code could be used for
the Semidefinite Programming part. Addition of this backend increases the number of
different LP solver backends available in Sage to six.

2.2 Solving linear Programs in Sage

Sage is capable of solving many different kinds of mathematical problems, in particular,
LPs. We assume user wants to solve the following problem:

Max: x+ y + 3z (2.1)

Such that: x+ 2y ≤ 4 (2.2)

5z − y ≤ 8 (2.3)

x, y, z ≥ 0 (2.4)

To solve it, we need to instantiate the MILP class (stands for MixedIntegerLinearPro-
gram) to create an object p, use p to create 3 variables x, y and z, set the objective, add
the constraints and finally call the solve method. The code is mostly self-explanatory:

sage: p = MixedIntegerLinearProgram(solver="GLPK")

10

Chapter 2. CVXOPT linear backend 11

sage: v = p.new_variable(real=True, nonnegative=True)
sage: x, y, z = v['x'], v['y'], v['z']
sage: p.set_objective(x + y + 3*z)
sage: p.add_constraint(x + 2*y <= 4)
sage: p.add_constraint(5*z - y <= 8)
sage: p.solve()
8.8

which means that x+ y − 3z is at maximum 8.8 for the constraint defined above.

Notice that when we create the object p we pick a solver by setting the solver argument.
In this case we picked the GLPK solver. However, our goal was to write a backend for
the CVXOPT solver so one can use the CVXOPT solver to solve the linear program by
defining the MILP object, p, in the following way:

sage: p = MixedIntegerLinearProgram(solver="CVXOPT")

To create a CVXOPT backend it is important to understand how to use the CVXOPT
solver.

2.3 LP example using CVXOPT

Let’s take an example on how the CVXOPT LP solver works. Let’s say we have the
following linear program:

Minimize: − 4x1 − 5x2 (2.5)

Subject to: 2x1 + x2 ≤ 3 (2.6)

x1 + 2x2 ≤ 3 (2.7)

x1 ≥ 0, x2 ≥ 0 (2.8)

Assuming we have set up the CVXOPT library the correct way, we can use the LP solver
of the CVXOPT library to solve the problem above in the following way:

>>> from cvxopt import matrix, solvers
>>> c = matrix([-4., -5.])
>>> G = matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])

Chapter 2. CVXOPT linear backend 12

>>> sol = solvers.lp(c, G, h)
>>> print(sol['x'])
[1.00e+00]
[1.00e+00]

This means the expression −4x1 − 5x2 takes the lowest value when x1 ≈ 1 and x2 ≈ 1

so we get −4(1) +−5(1) ≈ −9 [?].

2.4 The importance of the CVXOPT solver

Sage already has 5 LP solvers backends implemented. However, they are all based on
the Simplex method, making them very different from the CVXOPT solver which is
based on the interior point method.

2.4.1 The difference between the Simplex method and interior point
method

The Simplex method is based on the fact that the objective function’s maximum or
minimum must occur in an extreme point of the region cut out by the linear constraints.
The Simplex method is a remarkable algorithm and was for instance chosen as one of
the top 10 algorithm of the twentieth century by the journal Computing in Science and
Engineering [?].

From the beginning of 1990s until now, interior point algorithms have dominated the
research on convex optimization problems. Their popularity is mostly based on the fact
they reach a high accurate solution in a small number of iterations (from 10 to 50),
almost independent of problem size and type [?].

The main difference between those two methods is that the interior point method, which
CVXOPT is based on, runs in polynomial time [?], while the Simplex method, which the
rest of the solvers backends are based on, are not know to be able to do so. However, in
practice, some LP problems are solved significantly faster with one type of solver. Thus
it is important for the user to be able to select between solvers of both types, making
the CVXOPT solver very important in practice since it is the only solver in Sage based
on interior point method [?].

Another important difference between those two methods is that the interior point based
solvers return an interior point of the optimal face as an optimal solution, rather than
returning a vertex solution. This often gives a more desirable solution since sometimes

Chapter 2. CVXOPT linear backend 13

the user wants to average over the optimal face. The following example should give an
idea what we mean.

Lets say we have the following linear program:

Max: z (2.9)

Such that: x ≤ 100 (2.10)

y ≤ 100 (2.11)

z ≤ 100 (2.12)

x, y, z ≥ 0 (2.13)

The reader should find it pretty obvious that the solution is of course z = 100. However,
what happens to x and y? Since the Simplex based solvers pick a vertex solution, it
simply leaves the x and y as 0. However, the interior point solvers, such as CVXOPT,
gives an interior point of the optimal face and therefore the x and y get the value 50
which might be a more meaningful solution since it is the average of 100 and 0, that
is (100−0)

2 = 50. The example would look something like this when solved using Sage.
First we use the default GLPK solver, which is a Simplex method based solver:

sage: p = MixedIntegerLinearProgram(solver = "GLPK")
sage: x = p.new_variable(nonnegative=True)
sage: p.set_objective(x[2])
sage: #we create a constraint cube
sage: p.add_constraint(x[0] <= 100)
sage: p.add_constraint(x[1] <= 100)
sage: p.add_constraint(x[2] <= 100)
sage: round(p.solve(),2)
100.0
sage: round(p.get_values(x[0]),2)
0.0
sage: round(p.get_values(x[1]),2)
0.0

As we expected, we get 0.0 in both cases. Let us run the same code. However, this time
we pick CVXOPT as the solver. We get:

sage: p = MixedIntegerLinearProgram(solver = "cvxopt")
sage: x = p.new_variable(nonnegative=True)

Chapter 2. CVXOPT linear backend 14

sage: p.set_objective(x[2])
sage: #we create a constraint cube
sage: p.add_constraint(x[0] <= 100)
sage: p.add_constraint(x[1] <= 100)
sage: p.add_constraint(x[2] <= 100)
sage: round(p.solve(),2)
100.0
sage: round(p.get_values(x[0]),2)
50.0
sage: round(p.get_values(x[1]),2)
50.0

Here the x and the y get the value 50.0 as expected.

2.5 Parameters for the cvxopt.solvers.lp method

The cvxopt.solvers.lp(c, G, h[, A, b[, solver[, primalstart[, dualstart]]]])
is the method that solves the linear program from Section ??. As we can tell from the
declaration, there are three parameters we must provide c, G and h. First one is c which
is the coefficients of the objective function. The next one is G which is the coefficients
of the matrix A in Section ?? and at last the h is the b in the same section.

2.6 Important classes for the CVXOPT backend

Before we begin describing the implementation of the CVXOPT backend, it is important
to have a good understanding on some of the classes the CVXOPT backend talks to.
There are two classes worth to mention. The MixedIntegerLinearProgram (MILP) class
and the GenericBackend class.

2.6.1 The MixedIntegerLinearProgram class

Let’s look at how the LP interface is implemented in Sage.

The MixedIntegerLinearProgram (MILP) class (the LP interface class) is approximately
2300 lines where each method is fully documented and unit tested. The basic usage of
the class is described in section ??. It’s importnant to understand how it works since it

Chapter 2. CVXOPT linear backend 15

Table 2.1: MixedIntegerLinearProgram’s methods table

Function name Description of its functionality
add_constraint Adds a constraint to the “MixedIntegerLinearProgram“
base_ring Return the base ring
constraints Returns a list of constraints, as 3-tuples
get_backend Returns the backend instance used
get_max Returns the maximum value of a variable
get_min Returns the minimum value of a variable
get_values Return values found by the previous call to “solve()“
is_binary Tests whether the variable is a binary
is_integer Tests whether the variable is an integer
is_real Tests whether the variable is a real
linear_constraints_parent Return the parent for all linear constraints
linear_function Construct a new linear function
linear_functions_parent Return the parent for all linear functions
new_variable Returns an instance of “MIPVariable“ associated
number_of_constraints Returns the number of constraints assigned so far
number_of_variables Returns the number of variables used so far
polyhedron Returns the polyhedron defined by the Linear Program
remove_constraint Removes a constraint from self
remove_constraints Remove several constraints
set_binary Sets a variable or a “MIPVariable“ as binary
set_integer Sets a variable or a “MIPVariable“ as integer
set_max Sets the maximum value of a variable
set_min Sets the minimum value of a variable
set_objective Sets the objective of the “MixedIntegerLinearProgram“
set_problem_name Sets the name of the “MixedIntegerLinearProgram“
set_real Sets a variable or a “MIPVariable“ as real
show Prints “MixedIntegerLinearProgram“ in a human-readable
solve Solves the “MixedIntegerLinearProgram“
solver_parameter Return or define a solver parameter
sum Sums the sequence of LinearFunction elements
write_lp Write the linear program as a LP file
write_mps Write the linear program as a MPS file

is responsible for passing the linear program, provided by the user, to the backend to be
solved. Table ?? lists all the function and a small description of each of the function.

It is important to understand the structure of the MILP class in order to write a working
backend that talks properly to the MILP class.

Chapter 2. CVXOPT linear backend 16

Table 2.2: GenericBackend’s / CVXOPT’s methods table

Function name Description of its functionality
add_variable Adds a new variable
add_variables Adds several new variables
set_variable_type Defines the variable’s type (binary, integer or cont.)
objective_coefficient Sets or gets the coefficient of a variable in the objective
set_objective Sets the whole objective
set_verbosity Sets the log level
add_linear_constraint Adds a linear constraint
add_col Adds a column to the matrix
add_linear_constraints Adds several linear constraints
solve Solves the problem
get_objective_value Returns the value of the objective function
get_variable_value Returns the value of a variable given by the solver.
ncols Returns the number of columns
nrows Returns the number of rows
is_maximization Returns true if we are maximizing the objective function
problem_name Returns or defines the problem’s name
row Returns a row from the matrix by index
row_bounds Returns a pair (lower_bound,upper_bound) for a row
column_bounds Returns a pair (lower_bound,upper_bound) for a column
is_variable_binary Returns if True if variable is a binary
is_variable_integer Returns if True if variable is an integer
is_variable_continuous Returns if True if variable is continuous
row_name Returns the name of the row called
column_name Returns the name of the column called
variable_upper_bound Returns or define the upper bound on a variable
variable_lower_bound Returns or define the lower bound on a variable
solver_parameter Returns or define a solver parameter

2.6.2 The GenericBackend class

The GenericBackend is a parent class to all linear solver backends. The MILP class
creates an instance of the GenericBackend. Since all the backends inherits the Gener-
icBackend, the GenericBackend serves as an interface, that is, it basically lists the meth-
ods that should be defined by an LP Solver, in our case the CVXOPT solver. Almost all
the methods of the GenericBackend immediately raise “NotImplementedError“ excep-
tions when called, and are obviously meant to be replaced by the solver-specific method.
Let us look at table ?? for a list of all the methods that return “NotImplementedError“.
Remember, since the CVXOPT backend will inherit the GenericBackend, this is also a
list of all the methods we need to implement for the CVXOPT backend.

To be clear, when we talk about “the matrix“, columns or rows, we are referring to the
matrix A in Chapter ??.

Chapter 2. CVXOPT linear backend 17

It is worth to mention that The GenericBackend has the method

GenericBackend get_solver(constraint_generation = False, solver = None)

which is used by the MILP class to get a instance of the solver being used.

2.7 The Implementation of the CVXOPT LP backend

The final implementation of the CVXOPT backend was one class, exactly 999 lines, fully
documented and unit tested, capable of solving a linear program as described in chapter
??.

The MILP class (see table ??) requires you to define each variable as binary, integer or
real. Since the CVXOPT library only operates on real numbers, we implemented the
methods for CVXOPT backend with that in mind. For instance, is_variable_binary()
simply returns False since we can assume that all the variables for CVXOPT backend
operates on real numbers.

2.7.1 Cython

The class was written in Cython, the same language as the other backends were written
in. Cython combines the power of C and Python and lets you write Python code that
calls natively back and forth from and to C code. Not only does Cython therefore
extend Python by making it possible to call C functions, without the need for a lot of
boilerplate code, but we can also utilize the efficiency of C when we need to make some
of the more demanding computation as fast as possible. This is vital when writing a
solver’s backend where time is of the essence [?].

2.7.2 Class variables and the constructor

The following code shows the class variables as well as their initializations in the con-
structor of the CVXOPT backend:

self.objective_function = [] #c_matrix in the example for cvxopt
self.G_matrix = []
self.prob_name = None
self.obj_constant_term = 0
self.is_maximize = 1

Chapter 2. CVXOPT linear backend 18

self.row_lower_bound = []
self.row_upper_bound = []
self.col_lower_bound = []
self.col_upper_bound = []

self.row_name_var = []
self.col_name_var = []

self.param = {"show_progress":False,
"maxiters":100,
"abstol":1e-7,
"reltol":1e-6,
"feastol":1e-7,
"refinement":0 }

if maximization:
self.set_sense(+1)

else:
self.set_sense(-1)

Notice that the G_matrix is basically the A matrix from chapter ?? with the −b matrix
appended. The obj_constant_term is the constant term for the objective_function
and all the col and row bounds are used to bound constraints and variables. Notice
however that they can be implemented in the G_matrix variable and were mostly added
for convenience.

At last, we can see we added the default values for the algorithm parameters, as described
in Chapter ??.

2.7.3 The implementation of several major methods

The CVXOPT backend consisted of 27 methods as can be seen in Table ?? and here are
few of the more complicated methods shown.

2.7.3.1 The implementation of add_linear_constraint

Let us look at the code for the method add_linear_constraint()

Chapter 2. CVXOPT linear backend 19

cpdef add_linear_constraint(self, coefficients, lower_bound,
upper_bound, name=None):

for c in coefficients:
while c[0] > len(self.G_matrix)-1:

self.add_variable()
for i in range(len(self.G_matrix)):

self.G_matrix[i].append(0.0)
for c in coefficients:

self.G_matrix[c[0]][-1] = c[1]

self.row_lower_bound.append(lower_bound)
self.row_upper_bound.append(upper_bound)
self.row_name_var.append(name)

First of all, it was important to understand how the MILP class sent the list of coefficients
c. It came as pairs of (i, v) where i was the index and v was the value of the coefficient
for that variable. First we add as many variables as needed. Then we create a zero row
in G_matrix that is a constraint that only consists of coefficients with value 0.0. Finally
we add the relevant value from c to the corresponding row in the G_matrix.

2.7.3.2 The implementation of solve()

Let us look at the code for the method solve()

cpdef int solve(self) except -1:
from cvxopt import matrix, solvers
h = []

#for the equation bounds
for eq_index in range(self.nrows()):

h.append(self.row_upper_bound[eq_index])
#upper bound is already in G
if self.row_lower_bound[eq_index] != None:

h.append(-1 * self.row_lower_bound[eq_index])
for cindex in range(len(self.G_matrix)):

if cindex == eq_index:
after multiplying the eq by -1
self.G_matrix[cindex].append(-1)

else:

Chapter 2. CVXOPT linear backend 20

self.G_matrix[cindex].append(0)

#for the upper bounds (if there are any)
for i in range(len(self.col_upper_bound)):

if self.col_upper_bound[i] != None:
h.append(self.col_upper_bound[i])
for cindex in range(len(self.G_matrix)):

if cindex == i:
self.G_matrix[cindex].append(1)

else:
self.G_matrix[cindex].append(0)

if self.col_lower_bound[i] != None:
h.append(self.col_lower_bound[i])
for cindex in range(len(self.G_matrix)):

if cindex == i:
after multiplying the eq by -1
self.G_matrix[cindex].append(-1)

else:
self.G_matrix[cindex].append(0)

G = []
for col in self.G_matrix:

tempcol = []
for i in range(len(col)):

tempcol.append(float(col[i]))
G.append(tempcol)

G = matrix(G)

#cvxopt minimizes on default
if self.is_maximize:

c = [-1 * float(e) for e in self.objective_function]
else:

c = [float(e) for e in self.objective_function]
c = matrix(c)

h = [float(e) for e in h]

Chapter 2. CVXOPT linear backend 21

h = matrix(h)

#solvers comes from the cvxopt library
for k,v in self.param.iteritems():

solvers.options[k] = v
self.answer = solvers.lp(c,G,h)

#possible outcomes
if self.answer['status'] == 'optimized':

pass
elif self.answer['status'] == 'primal infeasible':

raise MIPSolverException("CVXOPT: primal infeasible")
elif self.answer['status'] == 'dual infeasible':

raise MIPSolverException("CVXOPT: dual infeasible")
elif self.answer['status'] == 'unknown':

raise MIPSolverException("CVXOPT: Terminated early due to \
numerical difficulties or because the maximum number of \
iterations was reached.")

return 0

The solve() method is definitely the most important method of the CVXOPT class.
The purpose of this method is to first, take the values from the bounds and add it to the
G_matrix as well as to the h variable which represents the h in chapter ??. Next we go
through the G_matrix, convert it to float type which the matrix from cvxopt package
can understand, and then convert the list G to G of type cvxopt.matrix. We multiply
the elements of c by -1 if we want to maximize since the cvxopt minimizes the objectives
by default. Finally we add the solve parameters, call the solvers.lp from the cvxopt
package and handle the errors as shown above (see chapter ??).

2.7.3.3 The implementation of get_objective_value

First let us look at the code for the method get_objective_value()

cpdef get_objective_value(self):
sum = self.obj_constant_term
i = 0
for v in self.objective_function:

sum += v * float(self.answer['x'][i])

Chapter 2. CVXOPT linear backend 22

i+=1
return sum

Here we calculate the objetive_value by going through the values, already calculated
by the solve method, multiply it with the coefficient of the objective_function and
add it to the sum. This is the method mip.solve() calls to get the desired value.

2.7.3.4 The implementation and design of ncols() and nrows()

We decided not to use the G_matrix variable to define the ncols() and nrows() since
we will run into troubles when G_matrix is small or empty. ncols() was therefore
implemented by computing the length of the objective_function list since every time
we call add_variable() in the backend, we add an integer (the coefficient) to the
objective_function list (worst case scenario, if that variable is not part of the objec-
tive function, we add 0.0 to that list. Thus ncols() returns the correct value.

The nrow() was simply implemented by computing the number of elements in the
row_upper_bounds list.

2.7.4 Documentation and Testing

Each and every method in the CVXOPT backend was thoroughly tested and docu-
mented. The class passed all the 202 unit test written and contained 720 lines of unit
tests, examples and documentation in total. These tests greatly improve the stability of
the product and ensured that the code meets its design and behaves as intended.

2.8 Results

As was mention above, the CVXOPT backend final version was a 999 line linear pro-
gram solver, capable of solving various different kind of linear programs. The backend
was designed and implemented under strict object oriented principles, fully tested and
documented.

2.8.1 Benchmark

To make sure this backend wouldn’t slow down the solving process a lot, we ran some
benchmarks using the built-in %%timeit function. We took a very simple linear program
to be solved and here is the results.

Chapter 2. CVXOPT linear backend 23

sage: %%timeit -p 4
sage: p = MixedIntegerLinearProgram(solver="cvxopt")
sage: v = p.new_variable(real=True, nonnegative=True)
sage: x, y, z = v['x'], v['y'], v['z']
sage: p.set_objective(x + y + 3*z)
sage: p.add_constraint(x + 2*y <= 4)
sage: p.add_constraint(5*z - y <= 8)
sage: round(p.solve(), 2)
1000 loops, best of 3: 1.556 ms per loop

and when we ran the same code using only the cvxopt library to solve the same problem,
we got:

%%timeit -p 4
sage: from cvxopt import matrix, solvers
sage: c = matrix([-1., -1.,-3.])
sage: G = matrix([[1., 0.,-1.,0.,0.], [2., -1.,0.,-1.,0.],[0.,5.,0.,0.,-1.]])
sage: h = matrix([4., 8.,0.,0.,0.])
sage: sol = solvers.lp(c, G, h)
sage: float(sol['x'][0])+float(sol['x'][1])+3*float(sol['x'][2])
1000 loops, best of 3: 1.232 ms per loop

As we can see, the one using the backend was 1.556−1.232 = 0.324ms slower than using
the cvxopt library straight away. Hence, using the backend to solve a small LP slows
down the process by approximately 1.556−1.232

1.232 ≈ 26.3%. That is totally acceptable and
expected since we need to recreate the G_matrix inside the cvxopt_backend.solve()
method.

2.8.2 Current status in the open-source community

After writing the backend, a ticked was created in the Sage developer community portal
(running trac server, an integrated SCM and project management tool) where the
code was pushed. After several reviews, modifications, fixes and improvements on the
backend, it got a positive review. The 26th of June, the ticket was closed. We can thus
expect to see the backend in the next release of Sage, version 6.4 [?].

Chapter 3

The SDP Interface

3.1 Overview

For the past fifteen years, SDP has become one of the most exciting developments in
mathematical programming. SDP has applications in many different fields traditional
convex constrained optimization, control theory, and combinatorial optimization. SDP
can be solved using interior-point methods such as the one CVXOPT provides and usu-
ally requires about the same amount of computational resources as linear optimization.
Hence they can usually be solved fairly efficiently in practice as well as in theory [?].

Since solving SDP has become such an important topic in the past few years, we believe
that creating an easy to use SDP interface with at least one solver in an open-source
environment like Sage (??), is a key property for both the users who want to solve
certain SDP as well as for other software developers and researchers who want to add
new solvers to an unified interface.

3.2 The design of the SDP interface

As mention before, the main goal is to design and implement an SDP interface with one
solver, capable of solving an SDP.

The first step was to understand how SDP works in general. The courses Foundation
of Computer Science and Probability and Computing help tremendously to understand
advanced topics in Linear Optimization, such as relaxation of a problem, the well known
MAX-CUT problem (covered in Probability and Computing), the relevant complexity
classes (to know what an SDP solver is capable of and what to avoid) and other topics.
This made, for instance, the reading of [?] feasible.

24

Chapter 3. The SDP Interface 25

Next step was to design the process on how the SDP interface should work. Let us give
a practical example how we want to solve an SDP (see Chapter ?? for the definition of
SDPs).

Imagine you want to minimize x0 − x1 where:[
1 2

2 3

]
x0 +

[
3 4

4 5

]
x1 �

[
5 6

6 7

]
(3.1)

[
1 1

1 1

]
x0 +

[
2 2

2 2

]
x1 �

[
3 3

3 3

]
(3.2)

where ∀xi ∈ R+. To solve the SDP above, we decided this would be the process:

• You have to create an instance of SemidefiniteProgram. We add the parameter
maximization=False since we want to minimize x0 − x1.

• Create an dictionary x of integer variables x via x = p.new_variable().

• Add those two inequalities as inequality constraints via add_constraint

(<sage.numerical.sdp.SemidefiniteProgram.add_constraint>.)

• Specify the objective function via set_objective

(<sage.numerical.sdp.SemidefiniteProgram.set_objective>). In our case it
is x0 − x1. If it is a pure constraint satisfaction problem, specify it as None.

• To check if everything is set up correctly, you can print the problem via show
(<sage.numerical.sdp.SemidefiniteProgram.show>.)

• And finally we call Solve (<sage.numerical.sdp.SemidefiniteProgram.solve>)
to solve the SDP and print the solution.

The following example shows the desired behaviour:

sage: p = SemidefiniteProgram(solver = "cvxopt", maximization = False)
sage: x = p.new_variable()
sage: p.set_objective(x[0] - x[1])
sage: a1 = matrix([[1, 2.], [2., 3.]])
sage: a2 = matrix([[3, 4.], [4., 5.]])
sage: a3 = matrix([[5, 6.], [6., 7.]])
sage: b1 = matrix([[1, 1.], [1., 1.]])
sage: b2 = matrix([[2, 2.], [2., 2.]])

Chapter 3. The SDP Interface 26

Table 3.1: the SDP methods table

Function name Description of its functionality
add_constraint Adds a constraint to the SemidefiniteProgram
get_backend Returns the backend instance used
get_values Return values found by the previous call to solve()
linear_constraints_parent Return the parent for all linear constraints
linear_function Construct a new linear function
linear_functions_parent Return the parent for all linear functions
new_variable Returns an instance of SDPVariable associated
number_of_constraints Returns the number of constraints assigned so far
number_of_variables Returns the number of variables used so far
set_objective Sets the objective of the SemidefiniteProgram
set_problem_name Sets the name of the SemidefiniteProgram
show SemidefiniteProgram in a human-readable
solve Solves the SemidefiniteProgram
solver_parameter Return or define a solver parameter
sum Sums the sequence of LinearFunction elements

sage: b3 = matrix([[3, 3.], [3., 3.]])
sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3)
sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3)
sage: print 'Objective Value:', round(p.solve(),3)
Objective Value: -3.0
sage: p.show()
Minimization:

x_0 - x_1
Constraints:

constraint_0: [1.0 2.0][2.0 3.0]x_0 + [3.0 4.0][4.0 5.0]x_1 <=
\ [5.0 6.0][6.0 7.0]

constraint_1: [1.0 1.0][1.0 1.0]x_0 + [2.0 2.0][2.0 2.0]x_1 <=
\ [3.0 3.0][3.0 3.0]

Variables:
x_0, x_1

To accomplish this, we came to the conclusion that we needed to implement the methods
listed in Table ??. The table consists of 15 methods which make it possible for the user
to solve an SDP in an easy and efficient way.

Chapter 3. The SDP Interface 27

3.3 Solving SDP example using CVXOPT

First we look at how the method cvxopt.solvers.sdp takes in its parameters and later
we look at an example on how to use the solver to solve a well defined SDP problem.

3.3.1 Parameters for the cvxopt.solvers.sdp method

The cvxopt.solvers.sdp(c[, Gl, hl[, Gs, hs[, A, b[, solver[, primalstart[,
dualstart]]]]]]) is the method that solves the SDP from chapter ??. The essential
parameters we provide are three in total, the c, Gs and hs. We also took advantage of
the parameter solver but more on that later.

The first parameter, c, is a list of the coefficients of the objective function. The Gs is
a list which has n sub-lists, where n stands for the number of constraints for the SDP.
Each sub-list is a flattened out list of type cvxopt.matrix and stands for a single matrix
coefficient. The hs is the bk in section ??.

3.3.2 Example

Let us make an example on how the CVXOPT SDP solver works. Let us say we have
the following SDP:

Minimize: x1 − x2 + x3

Subject to:

x1

[
−7 −11

−11 3

]
+ x2

[
7 −18

−18 8

]
+ x3

[
−2 −8

−8 1

]
�

[
33 −9

−9 26

]

x1

21 −11 0

−11 10 8

0 8 5

+ x2

0 10 16

10 −10 −10

16 −10 3

+ x3

−5 2 −17

2 −6 8

−17 8 6

 �

14 9 40

9 91 10

40 10 15

Assuming we have access to the CVXOPT library, we can use the SDP solver of the
CVXOPT library to solve this problem above in the following way:

>>> from cvxopt import matrix, solvers
>>> c = matrix([1.,-1.,1.])
>>> G = [matrix([[-7., -11., -11., 3.],

[7., -18., -18., 8.],
[-2., -8., -8., 1.]])]

Chapter 3. The SDP Interface 28

>>> G += [matrix([[-21., -11., 0., -11., 10., 8., 0., 8., 5.],
[0., 10., 16., 10., -10., -10., 16., -10., 3.],
[-5., 2., -17., 2., -6., 8., -17., 8., 6.]])]

>>> h = [matrix([[33., -9.], [-9., 26.]])]
>>> h += [matrix([[14., 9., 40.], [9., 91., 10.], [40., 10., 15.]])]
>>> sol = solvers.sdp(c, Gs=G, hs=h)
>>> print(sol['x'])
[-3.68e-01]
[1.90e+00]
[-8.88e-01]

This means the expression x1 − x2 + x3 takes the lowest value when x1 ≈ −0.368,
x2 ≈ 1.90 and x3 ≈ −0.888 so we get −0.368− 1.90− 0.888 ≈ −3.156 [?].

3.4 The implementation of the SDP interface

The final implementation consisted of 4 classes, SemidefiniteProgram, GenericSDPBackend,
CVXOPTSDPBackend and DSDPSDPBackend. (We also borrowed code from the ticket Add
a matrix of constraints in a LP [?]). The four classes we wrote were 2706 lines
in total.

3.4.1 The SemidefiniteProgram class

The SemidefiniteProgram class was written in Cython (see subsection ??) and when
finished, was exactly 1342 lines of code. The code was fully documented with examples,
each method was unit tested and comments were added as needed. The class was written
with table ?? in mind.

The SemidefiniteProgram class was designed to be a link between Sage, SDP and
semidefinite programming solvers. A Semidefinite Programming (SDP) consists of SDP
variables, linear tensors on these variables, and an objective function which is to be
maximised or minimised under certain constraints.

3.4.1.1 The SDPVariable

It was necessary to create a small helper class for the SemidefiniteProgram class. We
wrote a class SDPVariable which was to be used in our linear tensor functions. Each
instance of SDPVariable was linked with one instance of the SemidefiniteProgram. It

Chapter 3. The SDP Interface 29

also had a variable _name but more importantly, a variable _dict which kept the values
of the elements a single SDPVariable was capable of creating. This class was written
so after an SDPVariable has been created, and we call an element of that variable, it
doesn’t matter if it exists or not. Let us look at the following example:

sage: p = SemidefiniteProgram()
sage: v = p.new_variable()
sage: p.set_objective(v[0] + v[1])
sage: v[0]
x_0

This shows that the user can call v[0] without initiate it.

Another very important functionality is the fact we can use matrices as coefficients for
a linear function that consists of sum of SDPVariables. This makes it possible to write,
for example:

sage: a = matrix([[1,2],[2,3]])
sage: b = matrix([[3,4],[4,5]])
sage: p = SemidefiniteProgram()
sage: v = p.new_variable()
sage: a*v[0] + b*v[1]
[x_0 + 3*x_1 2*x_0 + 4*x_1]
[2*x_0 + 4*x_1 3*x_0 + 5*x_1]
sage: type(a*v[0] + b*v[1])
<type 'sage.numerical.linear_tensor_element.LinearTensor'>

This makes the interface much more user friendly and helps keeping the process as simple
as possible.

3.4.1.2 The SDPSolverException

A SDPSolverException was also created to handle different outputs from the solvers.
Most solvers give some sort of information on how well it did in solving a SDP problem.
If the solver doesn’t manage to solve a particular SDP, the solver backend is responsible
for throwing an SDPSolverException and to give information on what went wrong. For
instance, the possible outcomes for the CVXOPT solver are listed in sub-section ??.

Chapter 3. The SDP Interface 30

3.4.1.3 Class variables and the constructor

Since the class was designed to be a link between Sage, SDP and semidefinite program-
ming solvers, the most important parameter for the constructor was the name of the
solver which was to be used to solve the SDP.

The class has several class variables. However, the most important one was definitely
the _backend variable which was of type GenericSDPBackend (described in ??.) This
variable is used over and over again to talk to the SDP solver backend.

Let us now look at the implementation of several important methods.

3.4.1.4 Implementation of add_constraint

Here we see the code for the method add_constraint in the class SemidefiniteProgram:

def add_constraint(self, linear_function, name=None):
if linear_function is 0:

return

from sage.numerical.linear_tensor_constraints import \
is_LinearTensorConstraint

from sage.numerical.linear_tensor import is_LinearTensor

if is_LinearTensorConstraint(linear_function) or\
is_LinearConstraint(linear_function):
c = linear_function
if c.is_equation():

self.add_constraint(c.lhs()-c.rhs(), name=name)
self.add_constraint(-c.lhs()+c.rhs(), name=name)

else:
self.add_constraint(c.lhs()-c.rhs(), name=name)

elif is_LinearFunction(linear_function) or \
is_LinearTensor(linear_function):
l = linear_function.dict().items()
l.sort()
self._backend.add_linear_constraint(l, name)

else:

Chapter 3. The SDP Interface 31

raise ValueError('argument must be a linear function or \
constraint, got '+str(linear_function))

The add_constraint takes in an instance of a linear tensor equation (written ==) or
inequalities (written <= or >=) where the variables are of type SDPVariable and the
coefficients are matrices. An example of this is a*x[0] <= b where a and b are matrices
and x is a variable created with the SemidefiniteProgram.new_variable method.

This function was implemented as a recursive one. If we have an equation, we look
at it as two inequalities. In both cases (either the linear tensor constraint is equation
or inequality) we move the right hand side to the left hand side to create an instance
of a LinearTensor (not LinearTensorConstraint as it was before). Then we create a
dictionary and send it to the backend. If we send something else than a LinearTen-
sor (or LinearFunction, to handle some special cases) to add_constraint, we raise a
ValueError.

Notice that we call the l.sort() to make sure it is possible, when implementing a new
backend, to iterate through the constrains without worrying about if they come in the
right order or not. We can assume the constraint are few enough for the sort() method
not to slow down the process.

3.4.1.5 Implementation of solve

The solve method inside SemidefiniteProgram serves as a wrapper function, calling
first the solve method of the backend, and then returning the objective value computed.
The code simply became

def solve(self):
self._backend.solve()
return self._backend.get_objective_value()

3.4.1.6 Documentation and Testing

Each and every method in SemidefiniteProgram was thoroughly tested and docu-
mented. The class passed all the 222 unit test written and contained 741 lines of unit
tests, examples and documentation in total. These tests greatly improve the stability of
the product and ensured that the code meets its design gaols and behaves as intended.

Chapter 3. The SDP Interface 32

3.4.2 The GenericSDPBackend class

The GenericSDPBackend class was written to serve as a superclass for all the backends.
That is, when we implement a backend, it should inherit the GenericSDPBackend. This
class had to be created since then we can let SemidefiniteProgram class have a variable
_backend of type GenericSDPBackend which simplifies the code dramatically.

This class lists the methods that should be defined by a backend with an SDP Solver.
Most of the methods immediately raise NotImplementedError exceptions when called,
and are obviously meant to be replaced by the solver-specific method. However, there
are two methods implemented in the class. First it is the default_sdp_solver which
returns or sets the default SDP solver and then get_solver which returns the appro-
priate backend. This class makes it easier to implement more SDP backends in the
future.

3.4.3 The CVXOPTSDPBackend class

After we finished writing the SemidefiniteProgram and GenericSDPBackend classes,
it was important to have at least one backend solver so these classes could be used
in practice. We then decided to implement a backend for the SDP solver, provided
by CVXOPT library (see section ??). The class CVXOPTSDPBackend was based on the
CVXOPTBackend from chapter ??. This backend has the same list of methods. However,
we had to reimplement most of the methods to make it handle the fact the coefficients
were matrices and not real numbers.

One example of this is the add_linear_constraint method. Let us look at the code:

cpdef add_linear_constraint(self, coefficients, name=None):
from sage.matrix.matrix import is_Matrix
for t in coefficients:

m = t[1]
if not is_Matrix(m):

raise Exception("The coefficients must be matrices")
if not m.is_square():

raise Exception("The matrix has to be a square")
if self.matrices_dim.get(self.nrows()) != None and \
m.dimensions()[0] != self.matrices_dim.get(self.nrows()):

raise Exception("The matrces have to be of the same dimension")
self.coeffs_matrix.append(coefficients)
self.matrices_dim[self.nrows()] = m.dimensions()[0] #

Chapter 3. The SDP Interface 33

self.row_name_var.append(name)

First notice that some error handling is being done to make sure the matrices are as
expected. This was important to make sure we couldn’t add a broken constraint to the
constraint matrix. After that we append the coefficients to the variable coeffs_matrix
which contains all constraints.

3.4.3.1 The solve() method

As mention before (see Table ??), the backend contains the solve method, responsible
for solving the SDP. This function is in some sense similar to the solve() for the Linear
CVXOPT backend, described in ??. One major difference though is that we utilize the
fact CVXOPT offers to use more than its default solver. Therefore we get an additional
solver for almost free by adding this code to the solve() method:

...
if self.solver == "DSDP":

self.answer = solvers.sdp(c,Gs=G_matrix,hs=h_matrix,solver="dsdp")
else:

self.answer = solvers.sdp(c,Gs=G_matrix,hs=h_matrix)
...

This will be explained in more detail in Subsection ??.

3.4.3.2 Documentation and Testing

All the methods were thoroughly tested and documented. The class passed all the 147
unit test written and it contained 441 lines of unit tests, examples and documentation
in total.

3.4.4 The DSDPSDPBackend class

As mentioned in ??, we took advantage of the fact that the default CVXOPT SDP
solver can easily be changed to an external one called DSDP. This can be accomplished
by putting a solver parameter into the solve function described in Subsection ??. This
gives the user the ability to choose among two solvers which can be essential in practice
as well as in academic research.

Chapter 3. The SDP Interface 34

3.4.4.1 The DSDP solver

The DSDP solver is as well an interior-point solver and can in some cases be more
appropriate to use than the CVXOPT solver. The DSDP version 5 was released in 2005
and is described by the author in the following way:

Initiated in 1997, DSDP has developed into an efficient and robust general-
purpose solver for semidefinite programming. Its features include a conver-
gence proof with polynomially bounded worst-case complexity, primal and
dual feasible solutions when they exist, certificates of infeasibility when solu-
tions do not exist, initial points that can be feasible or infeasible, relatively
low memory requirements for an interior-point method, sparse and low- rank
data structures, extensibility that allows applications to customize the solver
and improve its performance, a subroutine library that enables it to be linked
to larger applications, scalable performance for large problems on parallel ar-
chitectures, and a well-documented interface and examples of its use. The
package has been used in many applications and tested for efficiency, robust-
ness, and ease of use [?].

The DSDP solver is however, not a part of Sage. Thus it is important that the CVXOPT
library is built with a DSDP support as well as the DSDP will be added to Sage.

3.4.4.2 The DSDP backend

Due to the fact we implemented the CVXOPT with the possibility to switch between
solvers, we only needed to implement one method in the DSDPSDPBackend which returns
a modified version of the CVXOPT backend. Therefore it is sufficient to have:

def return_modified_cvxopt(self):
return CVXOPTSDPBackend(solver = "dsdp")

and then the GenericSDPBackend calls this method when the user asks for the DSDP
solver.

To use the DSDP solver to solve an SDP, the user would follow the same routine as in
section ??. However, we would change

sage: p = SemidefiniteProgram(solver = "cvxopt", maximization = False)
...

Chapter 3. The SDP Interface 35

to

sage: p = SemidefiniteProgram(solver = "dsdp", maximization = False)
...

This is the ideal way for the user to switch between solvers.

3.5 Results

The final version of the SDP interface was, as mention above, 4 fully tested classes,
capable of solving various different kinds of SDP with at least two independent solvers.
Future developers should find it easy to add new backends for other SDP solvers since
the interface was clearly built with a good separation between the interface and the
backends.

We believe all the problems we encountered on the way were solved. Not only did we
implement an easy to use SDP interface as the goal was, but we also made it so the user
now has the freedom to choose between two different solvers.

3.5.1 Benchmark

Again we ran a benchmark using the %%timeit function, to make sure neither the
interface nor the backend would slow down the solving process a lot. We chose a simple
SDP to be solved and here are the results:

sage: %%timeit -p 4
sage: p = SemidefiniteProgram(solver = "cvxopt", maximization=False)
sage: x = p.new_variable()
sage: p.set_objective(x[0] - x[1] + x[2])
sage: a1 = matrix([[-7., -11.], [-11., 3.]])
sage: a2 = matrix([[7., -18.], [-18., 8.]])
sage: a3 = matrix([[-2., -8.], [-8., 1.]])
sage: a4 = matrix([[33., -9.], [-9., 26.]])
sage: b1 = matrix([[-21., -11., 0.], [-11., 10., 8.], [0., 8., 5.]])
sage: b2 = matrix([[0., 10., 16.], [10., -10., -10.], [16., -10., 3.]])
sage: b3 = matrix([[-5., 2., -17.], [2., -6., 8.], [-17., 8., 6.]])
sage: b4 = matrix([[14., 9., 40.], [9., 91., 10.], [40., 10., 15.]])
sage: p.add_constraint(a1*x[0] + a2*x[1] + a3*x[2] <= a4)

Chapter 3. The SDP Interface 36

sage: p.add_constraint(b1*x[0] + b2*x[1] + b3*x[2] <= b4)
sage: p.solve()
100 loops, best of 3: 5.604 ms per loop

and when we ran the same code using only the cvxopt library to solve the same problem,
we got:

sage: %%timeit -p 4
sage: from cvxopt import matrix, solvers
sage: solvers.options["show_progress"] = False
sage: c = matrix([1.,-1.,1.])
sage: G = [matrix([[-7., -11., -11., 3.],

[7., -18., -18., 8.],
[-2., -8., -8., 1.]])]

sage: G += [matrix([[-21., -11., 0., -11., 10., 8., 0., 8., 5.],
[0., 10., 16., 10., -10., -10., 16., -10., 3.],
[-5., 2., -17., 2., -6., 8., -17., 8., 6.]])]

sage: h = [matrix([[33., -9.], [-9., 26.]])]
sage: h += [matrix([[14., 9., 40.], [9., 91., 10.], [40., 10., 15.]])]
sage: sol = solvers.sdp(c, Gs=G, hs=h)
sage: float(sol['x'][0])-float(sol['x'][1])+float(sol['x'][2])
100 loops, best of 3: 4.524 ms per loop

We can see that when we use the backend, we are 5.604− 4.524 = 1.080ms slower than
using the cvxopt library directly. Thus, when we are solving a small SDP, it slows down
the process by approximately 5.604−4.524

4.524 ≈ 23.9%. Again, this is more than acceptable
and expected since extra computation is needed when using the SDP interface.

Notice however that when we pick a larger SDP, the percentage should get closer to zero
since then the main effort goes into solving the actual SDP instead of formulating it so
the backend understands it.

3.5.2 Current status in the open-source community

When the implementation was done and the interface, the backends and other classes
passed all their unit tests, a ticket was created in the Sage developer community portal.
The code is currently being reviewed and is under discussion by the members of the
community [?].

Chapter 3. The SDP Interface 37

3.5.3 Future work

We have now taken a major step towards dealing with optimization problems with
polynomial constraints by creating an SDP interface for Sage. It would be interesting
to use the SDP interface to create a module for sum-of-squares calculations as described
here [?].

Having access to more backends would also be helpful if the user wants to try out other
solvers. Creating backend for another modern solver such as CSDP [?] would then
give the user more freedom and might speed up the computation time for certain SDP
problems.

References

[1] #16490 (create a linear programming backend for cvxopt) – sage. http://trac.
sagemath.org/ticket/16490. [Online; accessed 28-August-2014].

[2] #16714 (add a matrix of constraints in a lp) – sage. http://trac.sagemath.org/
ticket/16714. [Online; accessed 29-August-2014].

[3] #16929 (creating sdp interface) – sage. http://trac.sagemath.org/ticket/
16929. [Online; accessed 04-September-2014].

[4] Cone programming — cvxopt user’s guide. http://cvxopt.org/userguide/
coneprog.html#algorithm-parameters. [Online; accessed 18-August-2014].

[5] Cone programming — cvxopt user’s guide. http://cvxopt.org/userguide/
coneprog.html. [Online; accessed 14-August-2014].

[6] Cython: C-extensions for Python. http://http://cython.org/. [Online; accessed
16-August-2014].

[7] Guest editors’ introduction: The top 10 algorithms. http://www.computer.org/
csdl/mags/cs/2000/01/c1022.html. [Online; accessed 13-August-2014].

[8] Home — cvxopt. http://cvxopt.org. [Online; accessed 14-August-2014].

[9] Interior-point methods for large-scale cone programming. http://www.seas.ucla.
edu/~vandenbe/publications/mlbook.pdf. [Online; accessed 13-August-2014].

[10] Linear programming - Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Linear_programming. [Online; accessed 11-August-2014].

[11] MATLAB - The Language of Technical Computing - MathWorks United King-
dom. http://www.mathworks.co.uk/products/matlab/. [Online; accessed 3-
September-2014].

[12] Sage - press - about. http://www.sagemath.org/library-press.html. [Online;
accessed 10-August-2014].

38

http://trac.sagemath.org/ticket/16490
http://trac.sagemath.org/ticket/16490
http://trac.sagemath.org/ticket/16714
http://trac.sagemath.org/ticket/16714
http://trac.sagemath.org/ticket/16929
http://trac.sagemath.org/ticket/16929
http://cvxopt.org/userguide/coneprog.html#algorithm-parameters
http://cvxopt.org/userguide/coneprog.html#algorithm-parameters
http://cvxopt.org/userguide/coneprog.html
http://cvxopt.org/userguide/coneprog.html
http://http://cython.org/
http://www.computer.org/csdl/mags/cs/2000/01/c1022.html
http://www.computer.org/csdl/mags/cs/2000/01/c1022.html
http://cvxopt.org
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_programming
http://www.mathworks.co.uk/products/matlab/
http://www.sagemath.org/library-press.html

References 39

[13] Semidefinite programming mode — CVX Users’ Guide. http://web.cvxr.com/
cvx/doc/sdp.html. [Online; accessed 3-September-2014].

[14] Semidefinite programming — cvxopt user’s guide. http://cvxopt.org/
userguide/coneprog.html#semidefinite-programming. [Online; accessed 22-
August-2014].

[15] YALMIP Wiki Tutorials/Semidefinite Programming. http://users.isy.liu.se/
johanl/yalmip/pmwiki.php?n=Tutorials.SemidefiniteProgramming. [Online;
accessed 3-September-2014].

[16] Steven J. Benson and Yinyu Ye. DSDP5: Software for semidefinite programming.
Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne, IL, 2005. Submitted to ACM
Transactions on Mathematical Software, available http://www.mcs.anl.gov/hs/
software/DSDP/DSDP5-P1289-0905.pdf.

[17] Brian Borchers. Csdp 2.3 user’s guide. Optimization Methods and Software, 11(1-
4):597–611, 1999.

[18] Bernd Gärtner and Jiri Matousek. Approximation Algorithms and Semidefinite
Programming. Springer, 2012 edition, 1 2012.

[19] Camile WJ Hol and Carsten W Scherer. Sum of squares relaxations for polynomial
semidefinite programming. In Proc. Symp. on Mathematical Theory of Networks
and Systems (MTNS), Leuven, Belgium, 2004.

[20] Mark Iwen. Introduction to semidefinite programming (sdp). http:
//www.math.msu.edu/~markiwen/Teaching/MTH995/Papers/SDP_notes_
Marina_Epelman_UM.pdf. [Online; accessed 22-August-2014].

[21] Jean-Bernard Lasserre. Moments, Positive Polynomials and Their Applications
(Imperial College Press Optimization Series). Imperial College Press, 1 edition, 10
2009.

[22] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 296–305. ACM, 2001.

http://web.cvxr.com/cvx/doc/sdp.html
http://web.cvxr.com/cvx/doc/sdp.html
http://cvxopt.org/userguide/coneprog.html#semidefinite-programming
http://cvxopt.org/userguide/coneprog.html#semidefinite-programming
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.SemidefiniteProgramming
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.SemidefiniteProgramming
http://www.mcs.anl.gov/hs/software/DSDP/DSDP5-P1289-0905.pdf
http://www.mcs.anl.gov/hs/software/DSDP/DSDP5-P1289-0905.pdf
http://www.math.msu.edu/~markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf
http://www.math.msu.edu/~markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf
http://www.math.msu.edu/~markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf

