Computer Verification of Graph Theory and

Algebraic Combinatorics Constructions

3'4 year project report for candidate 1035522
Honour School of Computer Science - Part B
Submitted as part of an MCompSci in Computer Science

Trinity term, 2021

Abstract

The extensive use of combinatorics, linear algebra and analysis has undoubtedly increased
the capabilities and efficiency of modern systems. Domains such as machine learning,
computer graphics and artificial intelligence are based on rich mathematical backgrounds
and operate with complex mathematical objects, such as regular graphs, elliptic curves
and Hadamard matrices, by taking advantage of their mathematically-proved properties.
Consequently, there is a considerable interest in having mathematical objects in computer-
ready form, together with sound and complete proofs that would ensure the correctness
of any system built upon them.

The project is centered around formalizing and contributing to the verification of two key

areas in mathematics:

e linear algebra: documentation for eigenvalues and eigenvectors of real matrices
[3].

e spectral graph theory: introduction to the incidence and Laplacian matrices of

undirected simple graphs [@].

Acknowledgements

Many thanks to my supervisor Dmitrii Pasechnik for coming up with the idea of the
project and for all the help and advice provided. Thanks also to Kevin Buzzard for
teaching a very useful introductory course on the Lean proof assistant®. Finally, many
thanks to the Lean community of developers from Zulip? for their prompt and quick
guidance with the existing Lean main library mathlib and for the constructive feedback

towards my contributions.

! https://xenaproject.wordpress.com/category/imperial/formalising-mathematics-course/
2 https://leanprover.zulipchat.com/#recent_topics

https://xenaproject.wordpress.com/category/imperial/formalising-mathematics-course/
https://leanprover.zulipchat.com/#recent_topics

Contents

Abstract

IAcknowledgements

L 2 Contributiond

Lo Requirementsot e e e e e e e e e e e e e

.4 oeq

2.

B.

Practical example : Undirected graphs

p.L Sumple graphl L e e e e e e e

p.2 Complete graph - Inhabited

b.o Neighbour set] e e e e e e

.

U2 General lemmas

o N N o o O

11
12
15

16
16
17
18
18
19
19
20
20

21
21
22

"Whenever a theorem is stated, the mathematical proof will try to resemble the Lean code solution.

B3 Symmetric mafricedo 24

b, _Incidence mafriced 30
BT Lemmasfor incidence mafriced 30
b.Z2 Towards oriented graphs : Orienfationd 33
b3 Orienfed incidence mafrix 34

b. Laplacian matrices 40
b.I Cemmas for Laplacian matriced o v v v v v v i i e e 41
B.2Z Signless Laplacian mafriy oo 44

[Caonclnsions 47
..................................... 47
[ZRefectiond o o v v v e 47
Lo 1amitaflons o e e e e e e e e e e e e e e 48
A Foture directiond L e 48

ADD d1x 50

1. Introduction

1.1 Motivation

Commonly, the most reliable (or only available) form of proof for some key areas in math-
ematics is on paper. This motivates the need of computer checkable proofs via interactive
theorem provers, one of the main areas of formal verification. The main advantage here is
the re-usability of already established facts with the purpose of expanding towards more
advanced concepts and theorems automatically.

In order to perform formal verification of the desired mathematical concepts and theo-
rems, we require a reliable and easy-to-use proof assistant™. The choice for this project
is Lean[d] as it has a clear syntax and a lot of resources available online in the form of
mathlib[2] - the entire library of definitions and theorems. Lean can also be viewed as a
functional language that is built upon type dependent theory, with automated tools for
proofs. It mainly focuses on the "verification" part of theorem proving, where each claim
is supported by a proof in a suitable (axiomatic) foundation and every step is justified by

prior definitions and theorems, coming down to basic axioms.

1.2 Contributions

«««< HEAD The main goal of this project is to formally prove theorems about the inci-
dence and Laplacian matrices of an undirected (loopless) graph. At the same time, the
author noticed that the linear algebra area can be extended with properties of eigenvalues
and eigenvectors of symmetric real matrices — and it is needed for the task at hand. The
contributions consist of pull-requests to the main library mathlib and contain new defini-
tions (which need to be consistent with the desired mathematical concepts) and new lem-
mas (which establish essential facts about the newly created objects). The contributions
are based on existing documentation for undirected graphs and their adjacency matrices,
vector and matrix operations, finite sets and unordered pairs. ======= The main goal
of this project is to formally prove theorems about the incidence and Laplacian matrices of

an undirected (loopless) graph. At the same time, the author noticed that the linear alge-

! https://en.wikipedia.org/wiki/Proof_ assistant

https://en.wikipedia.org/wiki/Proof_assistant

bra area can be extended with properties of eigenvalues and eigenvectors of symmetric real
matrices—and it is needed for the task at hand. The contributions consist of pull-requests
to the main library mathlib and contain new definitions (which need to be consistent with
the desired mathematical concepts) and new lemmas (which establish essential facts about
the newly created objects). The contributions are based on existing documentation for
undirected graphs and their adjacency matrices, vector and matrix operations, finite sets

and unordered pairs. »»»> 874c91c37e7e9bf2ef23383d78d9e8eaadeb1755

1.3 Requirements

(A) Each structure (mathematical object) must be rigorously and correctly defined and

each lemma or theorem®

must be mathematically-justified.

(B) Where possible, each definition or theorem will be as general as possible with respect
to types (the least restrictive ones) and assumptions (only non-redundant ones required).
(C) Each proof object will maximise the use of already existing documentation, as long
as this maintains the clarity and rigour of the proof.

(D) Each proof will minimise the amount of work Lean must do on its own (it is preferred

to explicitly specify how a certain goal can be reached, even when it is trivial?).

1.4 Challenges

The first parts of this project involved getting familiar with the syntax of Lean and with
the mathematical concepts that are to be proved. This was done by consulting several
sources with different approaches to theorems to be stated, because choosing the most
appropriate one was crucial in creating a documentation that is compatible with mathlib.
This compatibility implied the use of a considerable amount of imports and rewrite tactics
(concept to be fully explained later). Lastly, converting proofs between types (e.g. real
to complex and vice-versa) and explicitly stating obvious mathematical transformations

(e.g. a = b — b = a) might seem tedious, but will be necessary.

'In Lean, lemma and theorem are precisely the same thing, so we will use them interchangeably.
2We can tell Lean to solve a goal of the form a = a on its own, but we prefer to specify the lemma or
tactic that states this explicitly (i.e. reflezivity).

1.5 Structure of report

The rest of the report is structured as follows: an introduction to Lean and how it can
be used to prove “toy” lemmas is presented in Section 2. A concrete example of how
to build an undirected graph (together with essential lemmas) is described in Section 3.
The in-depth contribution to the linear algebra module is presented in Section 4. The
implementation of the incidence and Laplacian matrices is discussed in Sections 5 and
6, respectively. Finally, in Section 7, we present the conclusions, limitations and future

directions for this project.

2. Background : The Lean theorem prover

2.1 About Lean

Formal verification is the act of proving or disproving the validity of a given statement ac-
cording to a given specification. The Lean project[5][6] was launched in 2013 by Leonardo
de Moura, who was working at the Microsoft Research Redmond group. It is currently an
open-source project, allowing and encouraging people to use and extend its main library
(mathlib). The main goal is to gradually increase the quantity and quality of mathematical
proofs and concepts that can be expressed and furthermore automatically checked. Lean
can be used both as a functional language (with syntax similar to Haskell and OCaml)

and as an interactive theorem prover, the latter being the main use for the current project.

2.2 Dependent Type Theory

One way to represent the foundation of mathematics is via set theory, which relies
on the concept that all mathematical objects can be expressed by sets. Lean uses a
different approach, called type theory, where each expression has an associated type.

For instance, 1 can be seen as a natural number (type nat) or as an integer (type int):

#check 1 -- (by default 1 is considered natural)
#check (1 :) -— (we can type cast it to integers)
#check 1 + (1 :) -- (first 1 cast to integer)

The first occurrence in the code of a new piece of syntax will be highlighted, and then its
use will be explained (the explanation will also use the highlighting). When asking the
system to provide specific information, we use commands that begin with #, here #check
returns the type of a given expression.

One particular property of type theory that will be used extensively by Lean is that new
types can be derived from others. For instance, we can derive the type of functions a — 3

from the types a and [, or their Cartesian product type a x .

constant x : nat -- creates a new vartable with an assigned type ()
constant g : nat mnat -- similar to the way Haskell functions are defined
constant f : (nat mnat) nat E nat

#check g x -

#check f g -— €

#check (f g).fst -- (fst/snd - natural way to access elements of a pair)

Extending the simple type theory showed so far, the dependent type theory of Lean

treats each type (e.g. nat, bool..) as an object of type Type.

#check nat -- Type
#check bool -- Type

But what is the type of Type? It is defined to be Type 1 and the type of Type 1 is Type 2
and so on, meaning that Type (n+1) contains all objects of type Type n. Polymorphism
appears from the fact that types can have as a parameter other types, for instance the

type of lists of elements over some type «a:

constant : Type

#check list -— Type u_1 Type u_1 (u_1 is a placeholder)
#check list -- Type
#check prod -- Type u_1 Type u_2 Type (maz u_1 u_2)

A pair of two elements of type « and /3, should be part of the universe that contains both

the types of its constituent elements, that is why the maximal type is used.

There is also a familiar way to define functions, using the lambda construction () :
#check A x : , x + 5 —- , can omit :, Lean infers it from context
#reduce (x : , x) a -- a (stmplifies given expression via rTeduction)

This is how we can define a new mathematical object:

-- def function_name parameters : function_type := function_body
def compose (: Type*) (g : Y(£ Y(x) =g (fx)

The syntax shows that for a definition we can specify the parameters it applies to (in this
case 3 general types, 2 functions and a variable), the type of the object that the definition
creates () and the object itself or how to create it.

We can also create local definitions with the let..in construct:

‘1et y:=x+3iny* (y+ 1) —- equivalent to (z + 3) * (z + 4)

Since the use of the constant keyword introduces new fixed objects in our environment
and this can lead to name inconsistencies in our code, the variable syntax will be used
instead, as it has the same effect except that the instantiated objects can be constrained

to a particular section, rather than having a global effect:

section test —-- mame can be omitted

variable y :

#check y -— (defined locally to this section)

end test -- all sections must be closed before the end of file
#check y -- unknown tidentifier 'y

A similar behaviour happens in the case of definitions and namespaces, in the sense that

when a definition (inc) is created inside a namespace (test), we can refer to the definition

10

in the namespace as inc, but outside we need to use test.inc, unless we re-open the

namespace:

test
def inc (x :) =x + 1
end test
#check inc -- unknown identifier 'inc
#tcheck test.inc --
test
#check inc -

Sections and namespaces can be nested inside each other, but must be closed in the reverse
order in which they were created.

Now, consider a function cons that takes an element of type o and appends it to a list of
elements of type a. Since this function should be polymorphic, we can expect cons a to
have type o — list @ — list . But since the type of cons depends on its input, it will
have a "dependent function type" of the form Il x : «a, 5 x, which means that for each

a: «, cons a is an element of 3 a.

‘ constant cons : : Type*, list list -- Type" = fresh type
With this definition, whenever the cons function will be used, the type a that defines it
must be specified. When we have a type that can be inferred by other (explicit) types,

we surround it by {} (Lean will try to infer it via a process called elaboration):

constant cons : : Type*}, list list -- = amplicit arg
#check @cons -- list list

Supplying a function with its implicit arguments requires a @ before its name.

2.3 Propositions and proofs

Moving towards proving mathematical statements, Lean introduces the concept of Prop,
which is a special form of Type construct. Intuitively, from an object P of type Prop,
we can create a new type P which can either be empty, in the case that P is a false
statement, or can contain at least one element H_ P : P, which is a witness (proof) of
the fact that P is true. Furthermore, if there are two objects that are both of type P,
then they are equivalent, since all proofs of the same proposition should be equivalent.
Therefore, for every statement P that we want to assert, the goal will be to create an
object of type P. From now on, our task will be to construct a proposition which will

reflect the mathematical statement that we want to prove (P : Prop) and also to provide

11

Lean with an object H_P : P, which will serve as a proof that P holds.

2.4 Tactics

We will now expose the main tools for proving mathematical statements - tactics. Some
of them will gradually be introduced here via toy examples, others will appear and will
be explained as we provide the main part of the project code. Each command (tactic)
will we followed by a comma (.) after which the command will be applied to the current

goal.
section toy_examples

variable P : Prop —-- type of basic propositions

theorem not_not : P 4 A(P) :=
begin -- start of the proof

intro H. P, -—— H P : P 1AnP

have H_not : Q : Prop, i @ (Q false),

{intro Q, refl}, -- H P, Hnot : § : Prop, & § (Q false), #iP
rw H_not P, -- H P, Hnot #4(P false)

rw H_not (P false), —— H P, Hnot (P false) false

intro H_.nP, —— H P, H not, HnP : P false false

apply H.nP, -—— H P, H not, HnP P

exact H_P -— goal accomplished

end -- end of the proof

The sole purpose of a theorem in Lean is to create an object of a specific type. When
constructing a theorem of type P, we provide a witness to the fact that P can be proved.
The role of tactics is to instruct Lean on how to create such an object, starting from basic
axioms. Entering tactic mode can be signalled with a begin..end block.

We started with a statement that (for a fixed proposition P), we have P — - (= P).

e intro h can be applied to a goal P — Q and its effect is to introduce h : P as
a hypothesis to our environment and transform the goal to Q. Furthermore, if the
goal is of the form V x : «, f x, the command intro a will create a : o and the goal
will become f a (intuitively, we prove that for all x, f x by choosing an arbitrary a

and proving f a).

e have h : P will create a new subgoal of type P, and will add h : P to the current
hypotheses after the subgoal is proved; generally, we prove the subgoal in a new

proof block, delimited with {}.

12

will close any goal of the form A = B or A < B, where A and B are exactly
the same thing, in our case it will close the goal = Q > (Q — false) because this

is how — is defined by Lean.

, where h: A = B (or A + B) will rewrite all As in the goal to Bs, checking if
the resulting goal can be solved with the refl tactic, and if so, closing it. To change

all Bs into As we write

, where h is a proof of P — Q will transform any goal of the form Q into
the goal P (this is a form of backward reasoning: if we can prove P, then with the

proof of P — Q we can prove Q).

will close any goal that only consists of h.

If we notice that the statement H_not could be re-used multiple times across multiple

theorems, we can create a new T to prove H_not.
not_def {Q : Prop} : & @ (Q false) := refl
theorem not_not : P @ #A(P) := begin
intro H_ P, -—— H P : P nnP

end

{ rv not_def }, -- HP (P false) false
[H_P] -- solves the goal using H_P

is equivalent to begin h end and will be used for short proofs.

{<commands>} will repeatedly apply the entire block of commands to the
goal until it solves it, or until the block no longer makes progress (notice that Q in

not__def is substituted once for — P and once for P, depending on what Lean infers).

[h1, h2, ...] triggers an automatic procedure which will be applied to the
current goal, in which Lean uses all the already existing lemmas with the @[simp]
attribute plus the hypotheses (or definitions) hl, h2, ... to simplify the current
goal as much as possible or even close it (infinite loops are avoided). We will see
that the best practice is to explicitly tell Lean which are the tools that it can use
to solve the current goal. This way, when a helping lemma used by the simplifier is

changed, any uses of it can be easily tracked.

! As a matter of style, the main statements will be theorems and the required helping proofs will be
lemmas.

13

theorem not_not : @ A(P) P := begin

intro H_nnP, -- A nnP: AnP P

by_cases H : P, -- create two subgoals depending on the truth wvalue of
P

--H:P

{ assumption },

-—H:1nP

{ exfalso, -- we know that H and H_nnP contradict each other, so

together they imply false
apply H.nnP H } -- fii P considered as i P false, by definition
end

e by cases h: P will do a case analysis on whether the proposition P is true or false.

e assumption looks through the hypotheses in the context of the current goal, and if

there is one matching the conclusion, it closes the goal.

o exfalso transforms the goal to false (useful when hypotheses lead to a contradiction).
theorem not_not : @ 4(P) P := begin

intro hyp, -- hyp: #AfiP

by_contradiction h, -- h: @iP

exact hyp h -- use that AP is equivalent to P false, by definition
end

e by contradiction h will transform any goal P into false and will add h : — P to the
set of current assumptions (equivalent to proof by contradiction).

lemma union_self (X : set) : X X = X := begin

ext a, —a X X a X
split, ~—a X X a X/ a X a X X
{ intro h, -- h: a X X, equivalent to a X a X
cases h with ha ha; -- ha: a X
exact ha }, -- solve both goals with the command (;)
{ intro ha, -- ha : a X, goal 2s a X a X
left, -- choose to prove the left subgoal (both goals are the same)

exact ha }
end

o oxt a will transform a goal of the form A = B for two sets (or other "extensionable"
objects signalled with @[ext] as we will see in the next section) into showing that

a€ A<« acB.

e split will transform a goal of the form P A Q into two new goals : P and Q; P < Q

is definitionally equivalent to P — Q A Q — P.

e the behaviour of cases h depends on the form of h:

14

—h:PAQ-casesh hP hQ creates two new hypotheses hP : P and hQ :
Q

—h: PV Q- cases h with hP hQ will create two instances of the problem,
one where we have hP : P instead of h, and one where we have hQ : Q. We
can apply a command H to all the current goals by using ; to the previous

command (<command>; H)

. (and the corresponding) will transform a goal of the form P v Q to P
(respectively Q); we only need to prove one of them for the disjunction to hold.

theorem anything by_sorry : 1 1 :=
end toy_examples

. magically solves every theorem, because its type matches any proposition,
and it is used as an indication that the proof of the current statement is missing.
Statements that are proved with sorry can be used by other statements, but the

compiler will raise warning messages to alert that there is still work to be done.

2.5 Coercions

Throughout this project, we will work a lot with types that are restrictions on bigger

types (e.g. the type of natural numbers N is a restriction on the type of integers Z).

constants (n : nat) (z : int)
#check n + z -- "type mismatch" - z expected to have type
#check n + z -- , we specify that n is treated as integer with

We sometimes need to be explicit because Lean has restrictions on some of the operators
it uses (here the addition operation only accepts arguments with the same type). When
we have two types T and T’ and we want to coerce one element from T to T’, we need to

provide an instance from T to T, to show Lean how to do the transformation.

instance : = r, r, O
constants (r :) (c :)
#check r + ¢ ——

For instance, to coerce a real element r into a complex one, simply create a complex object

with real value r and complex value 0.

15

3. Practical example : Undirected graphs

In order to get familiarised even more with how we will work in the next sections, we will
look into a more concrete example of an already implemented library in Lean, which

will help us build our own mathematical objects in the next sections.

3.1 Simple graph

An undirected graph can be defined as a pair (V, E), where V is a set of objects
called vertices and E is a symmetric relation on V. The Lean library only considers
undirected graphs with no self-loops i.e. no edge between any vertex and itself, and calls
this construct a simple graph. The structure that defines the simple graphs is based on 4
fields:

e V - the type used for vertices.

e adj - a function that takes two elements of V and returns whether there is an edge

between them or not (relation on V).
o sym - a proof that the relation adj is symmetric (edges are bidirectional).
o loopless - a proof that the relation adj is irreflexive (no self-loops in the graph).

simple_graph (V : Type u) :=
(adj : V V Prop)

(sym : symmetric adj) -- symmetric : {z y}, = y y =z
(loopless : irreflexive adj) -- irreflezive : =z, 4 = <
. constructs a non-recursive inductive type S, together with projection func-

tions to destruct each instance of S and retrieve the values that are stored in its

fields. Its syntax follows structure <name> <parameters> : <type> := <fields>.

. is helpful when showing that two structures are equivalent by proving that
their corresponding fields are equivalent; the tactic ext will transform a goal G = G’,
where G and G’ are two simple__graphs into G.adj v w <> Gladj v w (introducing

two fresh variables v, w into the context).

The symmetric and irreflexive properties are already defined in Lean, so there is no need

to redefine them. There should be a way of constructing a graph from a given relation:

16

def simple_graph.from_rel{V : Type u}(r : V V Prop):simple_graph V :=

{adj := ab, (a b) (rab rba,
sym := a b H_adj, (H_adj.1 , H_adj.2.symm),
loopless := a hne, _, hne }
. applied to any equation a op b (with symmetric relation op) returns b op a.

e adj - starting from relation r and two elements, an edge is "created" iff the two

elements are distinct and they are in any way related by r.

e sym - the symmetric property of adj must be established: for any two elements a
and b and proof H_adj of their adjacency (a # b A (rab V r b a)), the fact that
b and a are also adjacent follows from the symmetric property .symm of the # and
V operators (if h : P A Q, we can access the proof of P via h.1 and of Q via h.2, or
we can pattern match h with (hP, hQ), where hP : P and hQ : Q).

e loopless - the irreflexive property of adj must be established: for any vertex a and
proof H_adj of adj (pattern-matched keeping only the first part hne, which states
that a # a, using an to say that we do not care about the rest), the proof is
exactly hne rfl (rfl is a proof that any object is equal to itself), which equals false

(remember — x < x is equivalent to x < x — false, and false is the goal here).

3.2 Complete graph - Inhabited

Complete graph - For any type of vertices V, we can create a (unique) undirected graph
that has an edge between any two vertices, which is called the complete graph of the

set defined by V. Since it is an instance of a simple graph (no self-loops), we can define

it:

def complete_graph (V : Type u) : simple_graph V :=

{ adj := ne, sym := a b H_adj, H_adj.symm,
loopless := a H_adj, H_adj rfl }

Two vertices are adjacent in the complete graph iff they are distinct (nc a b <» a # b),
and using the irreflexivity and symmetry of ne, the definition is complete.

Inhabited - Every type seen so far (nat, bool, list « etc.) has an underlying set of
elements. To specify that a type T corresponds to a non-empty set of elements, an

object will be used to attest that there is at least one element of type

17

T. The simple graph structure is itself a polymorphic type over V with relation adj, so a

good candidate to show that the type is non-empty is the complete__graph object:
‘instance (V : Type u) : inhabited (simple_graph V) := complete_graph V

Knowing that at least one simple graph exists, a simple graph G can be fixed for future
definitions and lemmas, all packed in a namespace. A simple (and very re-usable) example

lemma is that any two adjacent vertices are distinct in G:

namespace simple_graph —-- lemmas for a given graph G, re-use with G.lemma
variables {V : Type u} (G : simple_graph V)

lemma ne_of_adj {a b : V} (H_adj : G.adj a b) : a b := begin

intro hne, -- suppose a = b, the goal becomes "false"
rw hne at H_adj, -— H_adj becomes G.adj a a
exact G.loopless a H_adj, —— implies false

end

3.3 Neighbour set

Sets S over a type T are defined as functions T — Prop, with (a: T) € S +» S a. For
such a function f, we can extract the elements a for which f a holds using the function
U Therefore, the set of common neighbours of two vertices can be expressed as the

intersection of the two neighbouring sets:

-— creates the set of wertices that are adjacent to vertex v in G
def neighbor_set (v : V) : set V := (G.adj v)

def common_neighbors(v w : V):set V := G.neighbor_set v G.neighbor_set w

3.4 Edge set - sym2

So far we have seen the product type a x g, but this defines ordered pairs. To emphasize
that edges have no orientation, Lean has a type sym2 a of unordered pairs for elements
of type a. One can build a set of sym2 a elements from a symmetric relation using the

function (can get rid of prefix if we open the sym2 module).

def edge_set : set (sym2 V) := G.sym

Q[simp]l -- simplifier will be encouraged to transform LHS in RHS
lemma mem_edge_set {v w : V} : [(v, w)| G.edge_set G.adj v w :=

by refl -- lemma follows immediately from the definition of edge_set

An unordered pair is represented with double squared brackets | (x, v)].

' The use of this new color will become clear at the end of the section.

18

3.5 Incidence set

Having defined the edge set of the graph, the incidence set of a vertex v will only consist

of the edges that are incident to v.
‘def incidence_set (v : V) : set (sym2 V) := {e G.edge_set | v e}
Clearly, the incidence set of any vertex v is included in the edge set of the graph:

lemma incidence_set_subset (v : V) : G.incidence_set v G.edge_set :=
begin
-- when applying intro = to goal A B, goal becomes z A =z B

intros e h_e, -— h_e: e G.inctdence_set v
[incidence_set] at h_e, —- h_e: e G(G.edge_set v e
exact h_e.1
end
. uses the same mechanism as simp, but focuses on only using

definitions for simplification, in this case using incidence _set.

We can say that an element a : « belongs to an unordered pair e : sym2 «a with a € e.

The other element from the pair can be obtained using the function

def other_vertex_of_incident {v : V} {e : sym2 V}
(h : e G.incidence set v) : V := h.2.

3.6 Fintypes & finsets

In the next sections, we will define matrices indexed by the vertices or edges of a simple
graph, therefore it will be necessary to impose the constraint that the types and their
underlying set are finite. With fintype o we impose that the underlying set of « has

finitely many elements. The corresponding set will have type finset a.

def edge_finset [decidable_eq V] [fintype V] [decidable_rel G.adj]
finset (sym2 V) := G.edge_set -- to_finset : set finset

To transform a set of elements into a finset, we must make sure that the corresponding type
is finite (fintype). The extra requirements that any two elements of V can be compared
with equality (decidable__eq V'), that V is finite (fintype V') and that the adjacency relation

is decidable (decidable_rel G.adj) are sufficient to show that the type: G.edge__set is finite.

variables (v : V) [fintype (G.neighbor_set v)]
def neighbor_finset : finset V :=
(G.neighbor_set v).to_finset

def incidence_finset [decidable_eq V] : finset (sym2 V) :=
(G.incidence_set v).to_finset

19

The 1 operator is another form of coercion, in our case one that transforms a set
G.edge_set of elements of type sym2 V into the type 1 G.edge set, which only contains

the edges that appear in the graph (1 G.edge__set is a subtype of sym2 V).

3.7 Degree

Since we are under the assumption that each neighboring set of any vertex v is finite, we

can define the degree of v as the cardinality of its finite set of neighbors:

‘def degree : := (G.neighbor_finset v).card

3.8 Adjacency matrix

One last important notion that we will intensively use is the adjacency matrix® of a
simple graph G. It will be indexed on the vertex set V of the graph, and the corresponding
value of an entry (i, j) will be 1 iff i and j are adjacent in G and 0 otherwise. Since its

entries will be 0 or 1, it will be defined on a semiring? R for maximum generality.

u v —— they are used to distinguish types build from them
variables {V : Type u} [fintype V]
variables (R : Type v) [semiring R]

namespace simple_graph
variables (G : simple_graph V) (R) [decidable_rel G.adj]

def adj_matrix : matrix VV R
| i j := if (G.adj i j) then 1 else O

Together with each of the definitions above, there are a lot of already proven lemmas,
but there is no point in explicitly stating them or their proofs unless they will be useful
for what we want to achieve in the following sections. Whenever we first encounter such
a lemma, we will it and then we will state what it achieves. Lemmas that
were needed, but were absent from mathlib will be . Some of this lemmas
will have some additional requirements (e.g the type « is a monoid or ring), but unless
this information is crucial, these requirements will be intentionally omitted for simplicity
(Lean will still do the checks behind the scenes, as they are crucial for the correctness of

our solutions).

! https://en.wikipedia.org/wiki/Adjacency_matrix#
2A ring without the requirement that each element must have an additive inverse.

20

https://en.wikipedia.org/wiki/Adjacency_matrix#

4. Eigenvalues & eigenvectors of matrices

In order to make progress towards working with the eigenvalues of the adjacency or Lapla-
cian matrices of undirected graphs, we must first define what an eigenvalue represents and
then show some fundamental properties that can be generated from this concept. An in-

ventory of the theory behind what will be proven in this section can be found at [i].

4.1 Main definitions

Let M be an n x n matrix with real entries. An eigenvector of M is a complex-valued
non-zero vector x such that M x = pu x, for some complex value p. p is called the
eigenvalue of M with corresponding eigenvector x (in Lean the multiplication between
a scalar and a vector or matrix will be represented with ;1 e x and it is called smul). We
can already notice a small inconvenience that will appear very frequently in our work: we
defined M to be real-valued and x to be complex-valued. On paper, this multiplication
causes no problems because we know that all real values are also complex, however in
Lean we must be very careful with this. The solution is to use coercion to define the
product M x as the one between M coerced to a complex-valued matrix and x. This

coercion will be made element-wise and shown in Section 2.5:

instance : has coe (n) (n) := x, (i, x i, 0)
instance : has_coe (matrix mn) (matrix mn) :=
M, (ij,M1ij, 0)

In order to create a coercion between types A and B, we need to provide a function of
type A — B which will describe how the transformation will happen: in the case of the
matrix, for each real-valued M, return a matrix which when asked for entry (i, j) will
provide a complex object with real part M i j and imaginary part 0 (M i j, 0). Now that
M has the correct type, we will require the already defined vector-matrix multiplication

operators:

def [has_mul] [add_comm monoid] (vw :m) : :=

i, vi*wi

def [semiring] (M : matrixmn) (v : n) :m
| i := dot_product (j, Mi j) v -— M w
def [semiring] (v :m) (M : matrixmn) : n
| j := dot_product v (i, M1i j) ——v M

21

They are defined for a general type «, for which the minimum amount of requirements are
specified between squared brackets (here R and C have the necessary properties). Now
we are ready to define the eigenvalues and eigenvectors of a real-valued square matrix:

namespace matrix

-— coercion process described above
def (M : matrix mn) := (M : matrix m n)

variables (M : matrix n n)

def (:) (x:n) : Prop :=
x O (mul_vec M.Coe x = Xx)
def (x :n) : Prop :=

, M.has_eigenpair x

def (:) : Prop :=
X :n , Mhas_eigenpair x

4.2 General lemmas”

Lemma 4.1 Let M be a real n X n matriz, © be one of its eigenvectors, and a € C*.
Then ax is also an eigenvector of M.

Proof. Since x is an eigenvector of M, there must exist an eigenvalue p with M x = p
x and also x # 0. Then, it can be proved that ax is also an eigenvector of M using the
same eigenvalue p: first, suppose by contradiction that ax = 0. Then a = 0 or x = 0,
both cases reaching a contradiction. Secondly, M (ax) = a (M x) = a (¢ x) = u (ax),

which concludes the proof.

theorem has_eigenvector_smul (a :) (x : n) (Hna : a 0)
(H_eigenvector : has_eigenvector M x) : has_eigenvector M (a x) :=
begin
H_eigenvector with , H_nx, H_mul ,

, —— corresponding eigenvalue
split,
{ intro hyp, rw at hyp, }, —a z O
(M.Coe) .mul_vec (a x)
=a M.Coemul vec x : —— M (a z) =a M z)
by { rw }
.o=a (x): —...=a (=z
by { rw H_mul }
L= (a x) : - ... = (a z)
by { [s 13

end

"Whenever a theorem is stated, the mathematical proof will try to resemble the Lean code solution.

22

. is the recursive option of cases, in which the hypothesis h is structurally
decomposed in pieces e.g if h is of the form 3 x, P A Q, rcases h with (x, (hP, hQ)

) creates a variable x and two new hypotheses hP : P and hQ : Q.

. instantiates the first term of a goal e.g if the goal is 3 x, P(x), use p will

transform it into P(u).

. decomposes all the current hypotheses into their most simple components,

applying them in all possible combinations to the goal until in closes it.

. uses the transitivity of equality to prove a goal of the form a = b via subgoals
a=aj, a] = ag, ..., ap.1 = an, a, = b (each subgoal will be proved separately).
. simplifies the goal using only the hypotheses hl, h2,...; it is

the general standard of mathlib to use this version of simp because this way can be
seen which lemmas are actually useful to proving the goal and when modifications to

some of the lemmas are made, it will be easy to track the further changes required.

lemma {c : }{x:}:c x=0 ¢c=0 x=0
lemma (A :matrixmn) (b :n) (a:)
Amul_vec (a b) = a (A.mul_vec b)

lemma (aa:) (b :) a a b=2(a*a) b
lemma : ab:,a*b=>b"a

Lemma 4.2 Let M be a real n X n matriz and two eigenvectors v and w with the same
eigenvalue p. Then, any non-zero linear combination av + bw is also an eigenvector of
M with corresponding eigenvalue (.

Proof. First, we need to show that av + bw # 0. This comes clearly from the lemma
statement”. Secondly, we have M (av + bw) = M (av) + M (aw) =a (M v) + a (M w)

=a (uv)+a(upw)=u(av + bw), which concludes the proof.

theorem has_eigenpair_linear (ab :) (vw:n) (:) (Hne :a v+bD>
w 0) (H : has_eigenpair M v) (H : has_eigenpair M w)
has_eigenpair M (a v + b w) :=
begin
rcases H with H, H,
rcases H with H, H,
use H ne, -~—a v +b w 0

!This specification is missing from a lot of mathematical sources, Lean however never leaves room for
omissions like this, it cannot close a goal when the set of hypotheses is incomplete.

23

calc M.Coe.mul_vec (a v + b w)

= M.Coe.mul_vec(a v) + M.Coe.mul_vec(b w)
by { simp only [mul_vec, , 11}
...=a M.Coe.mul_vec v + b M.Coe.mul_vec w :
by { ext ; simp only [mul_vec,

b

, pi.add_apply, 137
.=a (v)+b (w
by { rw [H, H] }
.= (a v+b w
by { simp only [smul_smul, mul_comm, 13
end
We will often use the commands together when providing a proof that two vectors

or matrices with complex entries are equal. The goal (after ext) becomes an equality
between complex numbers, which requires the equality of their real and imaginary parts,

so two subgoals will be created, and by using ; the next command will be applied to both

goals.
lemma t(x+y)i=x1+yi - we care about vectors here
lemma (uvw:m)
dot_product u (v + w) = dot_product u v + dot_product u w
lemma (xy:):x y=x"y
lemma x:) (vw:m)
dot_product v (x w) = x * dot_product v w
lemma (s:):(xi=s xi
lemma (a:M (bb:A) :a (b+b)=a b+a b

4.3 Symmetric matrices

First, let us introduce the concept of complex conjugate applied to complex-valued vectors

(the complex conjugate of complex numbers is already defined in mathlib):
‘def (x:n):n := 1i:n, (x 1)
We will now define the concept of symmetric matrix M in Lean and prove theorems

about its eigenvalues and eigenvectors:

Lemma 4.3 Let M be a real symmetric n x n matrixz with eigenvalue p € C and corre-
sponding complez-valued eigenvector x. Then p € R.

Proof.” By assumption, (1) M x = p x. Taking the complex conjugate of both sides,
M x)* = (p x)* ie (2) M x* = p* x*. It can shown that (3) pu(x*)T x = p*(x*)T x

(details in the Lean proof below). Thus, (4) (1 - p*) (x*)T x = 0. Using (x*)Tx =0

! https://www.doc.ic.ac.uk/~ae/papers/lecture05.pdf

24

https://www.doc.ic.ac.uk/~ae/papers/lecture05.pdf

iff x = 0 ((x*)T x = sum of norms of elements, which are all non-negative) and the fact

that x # 0 (as eigenvector of M), we get p - u* =0+ p=p* < p e R.
def : Prop :=M =M

theorem symm_matrix_real_eigenvalues (H_symm : symm_matrix M)
(:), has_eigenvalue M .im = 0 := begin
- (1) Mz = =z
x, H_x, H_eq,
-— (2) Mz =* g

have H_eq : mul_vec M.Coe (vec_conj x) = (conj) (vec_conj x),
{rw [x, M. x, H_eql },

- (3 (") z) =" ((=*) z)

have H_eq : * (dot_product (vec_conj x) x) =

conj * dot_product (vec_conj x) x,

calc * dot_product (vec_conj x) x

= dot_product (vec_conj x) (x) : -- ((z*) z) = (z") (z)
by { rw (vec_conj x) x,
simp [dot_product, vec_conj, , mul_comm] }

... = dot_product (vec_conj x) (M.Coe.mul_vec x) : -- ... = () (M z)
by { rw H_eq }

.. = dot_product (M.Coe.vec_mul (vec_conj x)) x : -—— ... = ((z") M) z
by { exact ((vec_conj x) M.Coe x).symm }

... = dot_product (M.Coe.mul_vec (vec_conj x)) x :-—— ... = (M =*) z

by { rw M.Coe (vec_conj x) }

... = dot_product (M.Coe.mul_vec (vec_conj x)) x : -—— ... = (M z*) z
by { have H : M.Coe = M.Coe, { Coe, }, rw H }

.. = dot_product (conj vec_conj x) x : -—...=0(2z)z

by { rw H_eq }

... = conj * dot_product (vec_conj x) x : -— ... =" ((z*) z)
by { rw smul_dot_product (conj) (vec_conj x) x },

-— (4) (=% (@) z) =0

have H_eq : (- conj) * dot_product (vec_conj x) x = 0,
{rw , simp only [H_eq, 113,

-— -*=0 (z*) z =0

rw mul_eq_zero at H_eq,

cases H_eq with H_ H_prod,

{rw [, R 1 at H_,
cases H_ with r H_r,
rw [H_r, 13} — -*=0
{ exfalso,
exact H x (H_prod) } —- (") =z =0
‘end
. is a combination of the intro and rcases tactics which allows for destructuring

patterns while also introducing new variables to the environment.
. iteratively replaces all occurrences of defs in the goal with their equations.
. works in a similar manner to simp, but it focuses more on definitional equality

25

and has a different set of tactics which it repeatedly tries to apply to the goal (always

used for closing goals, not for simplifying them).

lemma (:) & :n)

vec_conj (x) = (conj) (vec_conj x)
lemma (x:n)

vec_conj (mul_vec M.Coe x) = mul_vec (M.Coe) (vec_conj x)
lemma x:) (w:m)

dot_product (x v) w = x * dot_product v w
lemma : abc:G, a*b*c=a*((®m"=*c)
lemma (u:m) @w:m n) (w:n)

dot_product (j, dot_product u (i, v i j)) w =
dot_product u (i, dot_product (v i) w)

lemma (A : matrixmn) (x :m)
mul vec A x = vec_mul x A
lemma (abc:):(a-b)*c=a*c-b*c
lemma (a:) :a-a=0
lemma (ab:):a-b=0 a=b
lemma {fab:}:a=b b=a
lemma {z:}:conjz=2z r:,z=r
lemma (r :) : (r :).im =0
lemma {x:n %}

‘ (H_dot : dot_product (vec_conj x) x =0) : x =0

We should now introduce the notions of real and complex parts of complex-valued vectors:

‘def (x :n) :n := i :mn, (x i).re
‘def (x :n) :n = i :n, (x i).im

Lemma 4.4 For every real eigenvalue of a symmetric matriz M, there exists a corre-
sponding real-valued eigenvector.”

Proof. Let i be an arbitrary eigenvalue of M and x its corresponding eigenvector. From
Lemma 4.3 we know that p € R. We will distinguish two cases:

1) Re(x) = 0 = ix € R. We argue that it is also an eigenvector of M. First, ix = 0 implies
that x = 0, which contradicts x being an eigenvector of M. Secondly, M (ix) =i (M x)
=1 (p x) = p (ix). Therefore, ix is a real-valued eigenvector of M with eigenvalue p.

2) Re(x) # 0 = We argue that x + x* is a real-valued eigenvector of M with correspond-
ing eigenvalue u. First, x + x* = 2 Re(x) € R. Secondly, Re(x) # 0 = x + x* # 0%

Finally, M (x + x*) = p (x + x*) (details in the Lean proof) concluding the proof.

theorem symm_matrix_real_eigenvectors (H_symm : symm_matrix M) (:)
(H_eigenvalue : has_eigenvalue M)

! https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/eigenvectors/real-mat
rix-with-real-eigenvalue-has-real-eigenvectors.html
2Unless 2 = 0 on C, which is clearly false, but it must be explicitly stated to Lean as well.

26

https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/eigenvectors/real-matrix-with-real-eigenvalue-has-real-eigenvectors.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/eigenvectors/real-matrix-with-real-eigenvalue-has-real-eigenvectors.html

X :n , has_eigenpair M x vec_im x = 0 := begin
-- We know that from before.
have H_ : .im = 0,
{ apply M.symm_matrix_real_eigenvalues H_symm H_eigenvalue 1},
rcases H_eigenvalue with x, H_nx, H_mul ,
by_cases H_re : vec_re x = 0,
-— 1) I =z will be used (I corresponds to < from mathematics)
{ use (I x),
split,
--1.1) I =z is an eigenvector
{ split,
-—-1.1.1) I = 0
{ intro hyp, rw smul_eq_zero at hyp,

have HnI : I 0, { exact },
tauto 1},
-—1.1.2) M (I z) = (I =z)
{ simp only [mul_vec_smul_assoc, H_mul, smul_smul, mul_comm] } },
-—-1.2) I =z
{ ext i,
simp only [vec_re,] at H_re,
simp only [vec_im, algebra.id.smul_eq_mul, , ,
s s , , pi.smul_apply],

exact Hre i } },
-—2) z + " will be used
{ use (x + vec_conj x),

split,

--2.1) z + 2" is an eigenvector

{ split,
—-2.1.1) z+2* 0
{ intro hyp, exact H_re (hyp) I,
—2.1.2) M (z +2) = (z+ %)

calc M.Coe.mul_vec (x + vec_conj x)
= M.Coe.mul_vec x + M.Coe.mul_vec (vec_conj x)

by { apply Y} - M (z+3) =Mz + M
... = M.Coe.mul_vec x + vec_conj (M.Coe.mul_vec x)
by { rw M.vec_conj_mul_vec_re x } — ...=Mz+ (M)
... = x +vec_conj (x)
by { rw H_mul } —...= z+ ()
...= x + (conj) (vec_conj x) :
by { rw vec_conj_smul } —...= z+* I
...= x+ (vec_conj x)
by { rw H_} —...= z+ I
... = (x + vec_conj x)
by { simp only [smul_add] } %}, -— ... = (z +z)
--22) z+12
{ ext, simp [, vec_im, 133}
‘end
lemma : (T :) O
lemma (xy:n)
(i:mn,xi)=(Ci:n,yi i:n,xi=yi
lemma : I.re =0

27

lemma : I.im = 1

lemma : a: ,1*a=a
lemma (a:):0*"a=0
lemma (zw:) :(z*w.im = z.re * w.im + z.im * w.re
lemma (a:):0+a-=a
lemma {x :n } (H: x + vec_conj x = 0): vec_re x = 0
‘lemma (A :matrixmn) (xy :n)
A.mul vec (x + y) = A.mul_vec x + A.mul_vec y
lemma {:} Him : .im = 0) : conj =
‘lemma (x :n)

X + vec_conj x = (2 :) (vec_rex :n)
lemma (x :n) {i : n} :

(vecrex :n) i=(x1i).re :)

Lemma 4.5 If v and w are eigenvectors of a symmetric real-valued matriz M with
different eigenvalues, then v and w are orthogonal.

Proof. Let p and i’ be the corresponding eigenvalues of the eigenvectors v and w. It
can be shown that (1 - ') viw = 0 (details in the Lean proof below). Since p and p’ are

distinct, we get that viw = 0 as required.

theorem dot_product_neq_eigenvalue_zero (H_symm : symm_matrix M) (':)
(vw:n) (H: has_eigenpair M v) (H : has_eigenpair M ' w)
(H.ne : /) : dot_product v w = 0 := begin

have key : (- ') * dot_product v w = 0,
calc (- ') * dot_product v w
= * dot_product v w - ' * dot_product v w :
by { apply Y- (-Dvw= (vw -'(vw
... = dot_product (v) w - dot_product v (! w)
by { simp only [dot_product_smul,
smul_dot_product] } — ... = (Ww - v(lw
. = dot_product (M.Coe.mul_vec v) w - dot_product v (M.Coe.mul_vec w)

b& { rw [H.2, H.2] } — ... =MDw - vM w

. = dot_product (M.Coe.mul_vec v) w - dot_product (vec_mul v M.Coe) w
by { rw M. vwlt—-...=M™Mvw- (v MDw
... = dot_product (M.Coe.mul_vec v) w - dot_product (vec_mul v M.Coe) w:
by { rw M H_symm } —...=MVw - (v Muw

. = dot_product (M.Coe.mul_vec v) w - dot_product (mul_vec M.Coe v) w

by { rw M.Coe v } — ... = MM Vw - MVw
... =0 :
by { simp only [sub_self] I, -— ... =0

rw mul_eq_zero at key,
cases key with H_ H_dot,

{ exfalso, rw sub_eq_zero at H_, exact Hne H_ }, - -/ =0
{ exact Hdot } —vw =20
end

28

lemma (abc:):(a-Db)*c=a*c-b*c

lemma (vw:n)

dot_product v (mul_vec M.Coe w) = dot_product (vec_mul v M.Coe) w
lemma (H_symm : symm_matrix M) : (M.Coe) = (M.Coe)
‘lemma (A : matrixmn) (x : n)

‘ vec_mul x A = mul_vec A x

29

5. Incidence matrices

Let us fix an undirected simple graph G = (V, E). The incidence matrix M of G is the
|V] x |E| matrix with M i e = 1 iff edge e is incident to vertex i, and 0 otherwise. To be as
general as possible, M is defined to have entries coming from a ring R that is nontrivial

(it has at least two elements, 1 # 0) and where equality between elements is decidable.

universe u
variables {R : Type u} [ring R] [nontrivial R] [decidable_eq R]

namespace simple_graph

universe v
variables {V : Type v} [fintype V] (G : simple_graph V) (R)
[decidable_rel G.adj] [decidable_eq V]

def : matrix V G.edge_set R
| i e :=if (e : sym2 V) G.incidence_set i then 1 else O

As seen in Section 3.4, the edge set G.edge__set for any simple graph G is a set of unordered
pairs (sym2 V). In our definition we use this particular set as one of the dimensions of
the incidence matrix, so Lean must coerce this set to the corresponding type. Although
we can write expressions like e : G.edge set, Lean internally will attribute the type

1 G.edge__set to e, which is a subtype of sym2 V. The definition of subtype in Lean is:

structure { : Sort u} (p : Prop) :=
(val :) (property : p val)

Given a set of elements of type «a, the correponding subtype has two fields:
o val® = the corresponding value of the bigger type (here e.val is an unordered pair).

e property = the proof that the corresponding value is in the set.

5.1 Lemmas for incidence matrices

Lemma 5.1 For any adjacent vertices i and j, the dot product between M i and M j is 1.
Proof. We split the proof that Y e : E, Mie®* M je =1 into two cases: if e is an edge
between i and j, then Mie=Mje=1= Mie* M je =1 ; otherwise, e is not incident
to at least one of i and j = at least one of Mieand Mjeis 0= Mie*Mje=0.

Thus, the sum reduces to the cardinality of the set containing edges that are adjacent to

!"Equivalent to coercing from 1 G.edge_set. to sym2 V

30

both i and j, which contains exactly one element, since i and j are adjacent and we do not

allow for multiple edges between the same vertices. Thus, the sum is equal to 1.

lemma adj_sum_of_prod_inc_one {i j : V} (H_adj : G.adj i j)
(e : G.edge_set), G.inc_matrix R i e * G.inc_matrix R j e = (1 : R) :=

begin
simp only [, s >
G. H_adj, 1,
-- ((filter ((z : (G.edge_set)), z.val = (i, j)) univ).card) = 1
rw at H_adj,
rcases H_adj with e, H_e,
simp only [H_e, 1,
-- ((filter ((z : (G.edge_set)), =z = e) univ).card) = 1
have H : filter ((x : G.edge_set), x = e) = {e},
{ ext, simp only [R ; s 1},
simp only [H, , ,]
end
. is the finite set of all elements of a certain type, we can write it explicitly
with

univ : finset a or, as in our case, leave Lean infer the underlying type.

‘lemma {i : V} {e : G.edge_set} :
G.inc_matrix R i e = if (e : sym2 V) G.incidence_set i then 1 else 0
lemma {P Q : Prop} [decidable P] [decidable Q]
(ite P 1 0) * (ite Q 1 0) = ite (P Q) (1 : R) O
lemma {s : finset } {p : Prop} {hp : decidable_pred p} :
(x in s, if p x then (1 :) else (0 :)) = (s.filter p).card
lemma {ij:V}r{e:sym2V} (h: G.adj i j)
e G.incidence_set i e G.incidence_set j e = (i, j)
lemma {x : subtype p} : x.1 = x —- remember that z.1 = z.val
lemma {ij:v}r:
G.adj i j (e : G.edge_set), e.val = (i, j)
lemma {e e : G.edge_set} : e.val = e.val e = e
lemma (a : Prop) : true a a
lemma {s : finset } {a : } : a s.filter p a s p a
lemma (x :) : x (univ : finset)
lemma {fab:3}:b ({a} : finset) b = a
lemma {} (s : finset) (p : Prop)
(b : decidable_pred p): @filter p h s = s.filter p
lemma @)) =1
lemma (a :) : card ({a} : finset) =1

Lemma 5.2 For any distinct® non-adjacent vertices i and j and edge e, M i e*M j e =

0.

Proof. We either have M ie = 0 or M i e = 1, the former immediately leads to the

!This detail, although essential, can easily be missed, but Lean cannot finish the proof without it.

31

conclusion. The same reasoning applies to M j e, therefore let us consider the non-trivial
case when M ie =M je = 1. These two equalities imply that e is incident to both i and
j, therefore e must be an edge between i and j. Since i and j are not the same vertex, we

obtain that i and j are adjacent in G, which leads to a contradiction.

theorem inc_matrix_prod_non_adj {i j : V} {e : G.edge_set} (Hne : i j)
(H_non_adj : i G.adj i j) : G.inc_matrix R i e * G.inc_matrix R j e = 0 :

begin
by_cases H : G.inc_matrix R i e = O,
{ rwv [H, zero mul] },

{rw [s] at H,
by_cases H : G.inc_matrix R j e = 0,
{ rw [H, 11,
{ rv [inc_matrix_not_zero, inc_matrix_one] at H,
exfalso,
apply H_non_adj,
rw [, G. Hne H, H],
| exact G. } 3
‘end
lemma {i : V} {e : G.edge_set} :
 G.inc_matrix R i e = 0 G.inc_matrix Rie=1
lemma {i : V} {e : G.edge_set}
G.inc_matrix R i e =1 e.val G.incidence_set i
lemma (a:) :a*0=0
lemma {vw:V}l: (v, w) G.edge_set G.adj v w
lemma {1 j : V) {e: sym2 V} (Hne : i j)
e G.incidence_set i e G.incidence_set j e = (i, j)
lemma {e : G.edge_set} : e.val G.edge_set

Lemma 5.3 FEwvery element of the incidence matriz is idempotent.
Proof. For any vertex i and edge e, we have two cases: if e is incident to i, (M i e)? = 12

= 1= Mie. Otherwise, Mie)?=0>=0=Mie.

theorem inc_matrix_element_power_id {i : V} {e : G.edge_set}
(G.inc_matrix R i e) * (G.inc_matrix R i e) = G.inc_matrix R i e :=
begin
by_cases H : G.inc_matrix R i e =1,
{ rv [H, 113,
{rw at H, rw [H, mul_zero] }
end
lemma i a:,a*1=a
lemma {i : V} {e : G.edge_set} :
n G.inc_matrix R i e =1 G.inc_matrix R i e =20

Lemma 5.4 The degree of any vertex i is equal to the sum of elements from its corre-

sponding row in the incidence matriz.

32

Proof. By definition, the degree of a vertex i is equal to the number of edges that are
incident to it. Furthermore, each edge e that is incident to i will have M i e = 1, so the

sum over the entire row i will return the degree of i.

theorem degree_equals_sum_of_incidence_row {i : V} :

(G.degree i : R) = (e : G.edge_set), G.inc_matrix R i e :=
begin

rw [, 1,

simp only [sum_boole, s

(G.incidence_set_subset i)],

end
lemma : G.inc_matrix R = -- dte = 2f..then..else

i e, ite ((e : sym2 V) G.incidence_set i) 1 0
lemma :

fintype.card (G.incidence_set v) = G.degree v
lemma {mn:2}: m:R =n m=n
lemma {: Sort*} {st : set } (b : s t)

fintype.card s = finset.card (finset.filter ((x : t), (x :) s)
finset.univ)

5.2 Towards oriented graphs : Orientations

In the next section we will prove that the Laplacian matrix can be decomposed into a
product of matrices, and for this we need to define the notion of orientation in graph
theory and then to derive the oriented graph of an undirected simple graph.

An orientation” is an assignment of a direction to the edges of an undirected graph.
Each edge will become unidirectional and we will call the starting vertex the head of the

edge and the ending vertex the tail of the edge. We will define this in Lean as:

Q[ext]

structure (G : simple_graph V) :=

(head : G.edge_set V)

(tail : G.edge_set V)

(consistent (e : G.edge_set) : e.val = (head(e), tail(e)))

The consistent property asserts that for each edge, we assign the head and the tail such
that together they form the edge (making sure they do not point to the same vertex).

Given an undirected graph G and an orientation o on its edges, we can then define the
oriented graph with respect to G and o as the directed graph that is formed by orienting
all edges in G according to o. Notice that every oriented graph is a directed graph, but

the reverse direction is not true, since oriented graphs do not allow cycles of size 2.

1 https://en.wikipedia.org/wiki/Orientation_(graph_theory)

33

https://en.wikipedia.org/wiki/Orientation_(graph_theory)

5.3 Oriented incidence matrix

The oriented incidence matrix N, can now be defined in terms of an undirected graph

G and an orientation o as the |V| x |E| matrix with:
e Nyie=1,ifiis the head vertex of edge e in G
e Nyie=-1,ifiis the tail vertex of edge e in G
e N, ie =0, otherwise

‘def (o : orientation G) : matrix V G.edge_set R :=
‘ i e, if i = o.head e then (1 : R) else (if i = o.tail e then -1 else 0)

Lemma 5.5 For each verter i, edge e and orientation o, (N, i e)® = M i e.

Proof. We distinguish three cases:
1. iis the head of e = Ny ie = Mie = 1 = the relation becomes 12 = 1
2. iis the tail of e = Ny ie =-1and M ie = 1 = the relation becomes (-1)? = 1
3. e is not incident toi = Ny ie = M ie = 0 = the relation becomes 02 = 0
And all the above relations clearly hold under any nontrivial ring R.
theorem oriented_inc_matrix_elem_squared {i : V} {e : G.edge_set}

G.oriented_inc_matrix R o i e * G.oriented_inc_matrix R o i e =
G.inc_matrix R i e :=

begin
by_cases H_head : i = o.head e,
-— Case 1
{ rw [G. R H_head, H head,
mul_one, eq_comm, inc_matrix_one],
exact G. },
{ by_cases H_tail : i = o.tail e,
-— Case 2
{ rv [G. R H_tail, H_tail,
, mul_one, , eq_comm, inc_matrix_one],
exact G. },
-- Case 3
{ v [(G. R) H_head, H_tail,
mul_zero, eq_comm,],
exact G. H_head H_tail } }
end
. on lemmas of the form a <+ b will retrieve ¢ — b and b — a, respectively.

34

lemma {i : V} {e : G.edge_set}
(H_head : i = o.head e) : G.oriented_inc matrix R o i e =1

lemma {e : G.edge_set} :
e.val G.incidence_set (o.head e)
lemma {i : V} {e : G.edge_set}
(H_tail : i = o.tail e) : G.oriented_inc matrix R o i e = -1
lemma (ab:):a*-b=-(a*b)
lemma (a:):--a=a
lemma {e : G.edge_set} :
e.val G.incidence_set (o.tail e)
lemma {i : V} {e : G.edge_set} :
G.oriented_inc_matrix R o i e =0 i o.head e i o.tail e
lemma {i : V} {e : G.edge_set} :
G.inc_matrix R i e = 0 e.val G.incidence_set i
lemma {i : V} {e : G.edge_set}

(H_head : i o.head e) (H_tail : i o.tail e)
e.val G.incidence_set i

Lemma 5.6 For any two adjacent vertices ¢ and j and edge e, there are two cases: if e
is between i and j in G, then N, i e * N, j e = -1, otherwise the product will be 0.

Proof. We split the proof in two (exhaustive) cases:
1. e is the edge between i and j in G (it exists since i and j are adjacent)

(a) iis the head of e = jis the tailof e = Nyie * Nyje=1*(-1) =-1.

(b) iis the tail of e = j is the head of e = Noie * Ny je = (-1) *1 = -1.
2. e is not the edge between i and j in G

(a) i and j are not the head of e = at least one of them is not the tail of e = at

least one of N, i e and N, j e is 0 = their product is 0
(b) e is not incident to i = N, i e = 0 = the product is 0
(c) e is not incident to j = N, j e = 0 = the product is 0

(d) i and j are not the tail of e = at least one of them is not the head of e = at

least one of Ny i e and Ny j e is 0 = their product is 0

theorem oriented_inc_matrix_prod_of_adj {i j : V} {e : G.edge_set}
(H_adj : G.adj i j) : G.oriented_inc_matrix R o i e *
G.oriented_inc_matrix R o j e = ite (e.val = (i, j)) (-1) 0 :=
begin
by_cases H_e : e.val = (i, j),
-- 1) e is the edge between % and j

f both would be, they would be equal, contradicting the fact that they are adjacent.

35

{ rw [H_e, if_pos rfl],

rw [o.consistent e,] at H_e,

rcases H_e with (H_head_i, H_tail_j | H_head_j, H_tail_ i),

{ rv [G.oriented_inc_matrix_head R H_head_i.symm,
G.oriented_inc_matrix_tail R H_tail_j.symm,
mul_neg_eq_neg_mul_symm, mul_one] 1},

{ rw [G.oriented_inc_matrix_head R H_head_j.symm,
G.oriented_inc_matrix_tail R H_tail_i.symm, mul_one] } },

-= 2) e is not the edge between % and j

{ simp only [H_e, 1,
rw [o.consistent e, eq_iff, 1 at H_e,
repeat { rw at H_e },

rcases H_e with (H_head_i | H_tail_j), (H_head_j | H_tail_i),
-= 2.a) both © and j are not the head of e
{ have H_tail : o.tail e i o.tail e j,
{ by_contradiction h,
rw [decidable.not_or_ iff and_not, , not_not] at h,
rcases h with h_i, h_j, rw h_i at h_j,
exact G. H_adj h_j },
cases H_tail with H_tail_i H_tail_j,
-- 2.a.1) © s not the tail of e
{ rw [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_i, ne.symm H_tail_i, zero_mul] 1},
-- 2.a.2) j is not the tail of e
{ rw [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_j, ne.symm H_tail_j, mul_zero] } },
-- 2.b) 1 is neither the head of e nor its tail
{ rw [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_i, ne.symm H_tail_i, zero_mul] },
-- 2.c) j is neither the head of e nor its tatl
{ rwv [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_j, ne.symm H_tail_j, mul_zero] 1},
-- 2.d) both i and j are not the tail of e
{ have H_head : o.head e i o.head e j,
{ by_contradiction h,
rw [decidable.not_or_ iff and not, not_not, not_not] at h,
rcases h with h_i, h_j, rw h_i at h_j,
exact G.ne_of_adj H_adj h_j },
cases H_head with H_head_i H_head_j,
-- 2.d.1) © is not the head of e
{ rw [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_i, ne.symm H_tail_i, zero_mul] 1},
-- 2.d.2) j is not the head of e
{ rw [(G.oriented_inc_matrix_zero R).mpr
ne.symm H_head_j, ne.symm H_tail_j, mul_zero] } } }

end
lemma xyzw:?}

x,y) =@, w =z y=w) E=w y=2)
lemma { : Sort u} (t e :) : (ite false t e) = e
lemma (pgq:Prop) : A (p q dp Agq
lemma (pq:Prop) : d(p q @Ap g
lemma : hifia a

36

| lemma {ab: V} (hab : G.adj ab) : a b

Lemma 5.7 For any distinct non-adjacent vertices i, j and edge e, N, i e * N, j e = 0.

Proof. We distinguish the following cases:
1. Noie=0or Ny je =0 = the product is 0
2. Ny i e and N, j e are both non-zero = e is incident to both i and j:

(a) iand j are the head of e = contradiction to the fact that they are distinct
(b) iis the head, jis the tail = contradiction to the fact that they are non-adjacent
(c) iis the tail, j is the head = contradiction to the fact that they are non-adjacent

(d) iand j are the tail of e = contradiction to the fact that they are distinct

Therefore, the product will always be 0.

theorem oriented_inc_matrix_prod_non_adj {i j : V} {e : G.edge_set}
(H_ij : i j) (H_not_adj : & G.adj 1 j)

G.oriented_inc_matrix R o i e * G.oriented_inc_matrix R o j e = 0 :=
begin

by_cases H : G.oriented_inc_matrix R o i e = 0,

-— Case 1.a

{ rv [H, zero mul] },

{ by_cases H : G.oriented_inc_matrix R o j e = 0,

-— Case 1.b
{ rw [H, mul_zero] 1},
{ rcases ((G. R) .mp H)

with (H_head_i | H_tail_i) ;
rcases ((G.oriented_inc_matrix_non_zero R).mp H)
with (H_head_j | H_tail_j),
-— Case 2.a
{ rw [H_head_i, H_head_j] at H_ij, tauto },
-— Case 2.0
{ exfalso, apply H_not_adj,
rw [H_head_i, H_tail_j, mem_edge_set, o.consistent e],

simp only [, 13,
-- Case 2.c
{ exfalso, apply H_not_adj, apply (G. i j).mpr,

rw [H_tail_i, H_head_j, mem_edge_set, o.consistent e],
simp only [subtype.coe_prop, subtype.val_eq_coe] 1},

-- Case 2.d

{ rw [H_tail_i, H_tail_j] at H_ij, tauto } } }

end
lemma {i : V} {e : G.edge_set} :

n G.oriented_inc_matrix R o i e =0 1i = o.head e 1i = o.tail e
lemma {S : set Y} (a:{a// a S} : a S := a.property

37

lemma {x : subtype p} : x.1 = x —— z.1 is equivalent to z.val
lemma (uv : V) : Giadj uv G.adj vu

Lemma 5.8 Let be a vector indexed on V with values from R. Then, (7 N,). = x
head,(e) - x tail,(e), where the functions head, and tail, take an edge e and return the
corresponding verter according to the orientation o.

Proof. The LHS is equivalent to X (i: V), xi* Ny ie. On every column e of the oriented
incidence matrix, there are exactly two entries that are non-zero, which correspond to the
two ends of the edge: the entry with row head,(e) will have a 1 and the entry with row

tail,(e) will have a (-1). Thus, the LHS becomes x head,(e) - x tail,(e), as desired.

theorem vec_mul_oriented_inc_matrix {o : orientation G} (x : V R)
(e : G.edge_set)
vec_mul x (G.oriented_inc_matrix R o) e = x (o.head e) - x (o.tail e)

begin
simp only [vec_mul, dot_product, oriented_inc_matrix, ,
mul_one, mul_neg_eq neg mul_symm, mul_zero],

rw [, sum_ite,)) ,
F]]’

simp only [mem_univ, 1,

have key :

filter ((a : V), fia = o.head e a = o.tail e) univ = {o.tail e},
{ ext,
simp only [mem_filter, mem_singleton, true_and,
, mem_univ],
rintro rfl,

exact ne.symm (G.) 3,
rw [key, 1,
end
lemma {3 (P : Prop) (@abc :)
a * (if P then b else c) = if P then a * b else a * ¢
lemma {s : finset } {p : Prop} (f g :)

(x in s, if p x then f x else g x) =
(x in s.filter p, f x) + (x in s.filter (x, i p x), g X)

lemma (p : Prop) (£ :)

(a in s.filter p, f a) = (a in s, if p a then f a else 0)
lemma (s : finset) (a :) (b :)

(x in s, (ite (x = a) (b x) 1)) = ite (a s) (b a) O
lemma {} {s : finset } : (xins, (0 :)) =0
lemma :a: ,a+0=a
lemma (s : finset)

(s.filter p).filter q = s.filter (a, p a q a)
lemma { : Sort u} (t e :) : (ite true t e) = ¢t
lemma {a b : Prop} : (& b) b)) (b a)
lemma {e : G.edge_set} : o.head(e) o.tail(e)

38

lemma : (x in (singleton a), f x) = f a

. simplifies expressions in the language of commutative (semi)rings, which

rewrites all ring expressions into a normal form and then checks if they are equal.

39

6. Laplacian matrices

Let us fix an undirected simple graph G = (V, E). The Laplacian matrix? L is the |V]|

X |V| matrix with
o Lij=degree(i),if i =]
e Lij=-A1ij, otherwise (A is the adjacency matrix of G)

To be as general as possible, we will define M to have entries in a commutative ring R
(combining the ring property of R from incidence matrices with the commutative property

of R from the adjacency matrices) that is nontrivial and with decidable equality relation.

universes u v
variables {V : Type u} [fintype V] [decidable_eq V]
variables {R : Type v} [comm_ring R] [nontrivial R] [decidable_eq R]

namespace simple_graph
variables (G : simple_graph V) (R) [decidable_rel G.adj]
def : matrix VV R

‘I i j :=1if i = j then G.degree i else - G.adj_matrix R i j
Most of the lemmas presented in this section can also be found at [8].

Lemma 6.1 For every vertex i € V, degree(i) = the sum of elements from row i of A.

Proof. Using the definition of A, the sum of its elements from a particular row i is
composed of ones (for entries (i, j) where i and j are adjacent) and of zeroes (for entries
(i, j) where i and j are not adjacent). Therefore, the sum on row i is equal to the total

number of vertices that are adjacent to i, which is precisely the degree of i.

theorem degree_eq_sum_of_adj_matrix_row { : Type*} [semiring] {i : V} :
(G.degree i :) = (j : V), G.adj_matrix i j :=
by { rw [mul_one (G.degree i :)],
simp only [, mul_vec,
dot_product, s 11}

lemma {r : R} {v : }:
(G.adj_matrix R).mul_vec (function.const _ r) v = G.degree v * r
lemma {} [semiring] (P : Prop) (a :)
(if P then 1 else 0) * a = if P then a else O
lemma vw:)
G.adj_matrix R v w = if (G.adj v w) then 1 else 0

! https://en.wikipedia.org/wiki/Laplacian_matrix

40

https://en.wikipedia.org/wiki/Laplacian_matrix

6.1 Lemmas for Laplacian matrices

Lemma 6.2 The Laplacian matriz L is symmetric.
Proof. Our goal is to show that i j = L j i for any two distinct vertices i and j. Using
the definition of the Laplacian matrix, we restrict the proof to A ij = A ji. This clearly

holds from the definition of the adjacency matrix A (adjacency is bidirectional).

theorem transpose_laplace_matrix :
(G.laplace_matrix R) = G.laplace_matrix R :=

begin
ext i j,
by_cases H : (i = j),
{ simp only [H, 11,
{ rwv [transpose_apply, G. R H,

G.laplace_matrix_neq R (ne.symm H)],
simp [edge_symm] 2

end

lemma (M : matrix mn) (i j)
M.transpose j i =M i j

lemma {ij : V} (Hneq : i j)

‘ G.laplace_matrix R i j = - G.adj_matrix R i j

Lemma 6.3 For every vertex i € V, the sum of elements from row i of L is 0.

Proof. The sum is equal to Lii+ ¥ (j: V \ {i}), A i j = degree(i) - degree(i)" = 0.

theorem sum_of_laplace_row_equals_zero {i : V} :
(j + V), G.laplace_matrix R i j = 0 :=

begin
rw [(mem_univ i), 1,
‘ simp only [, sum_ite, ,

, adj_matrix_apply],
rw [, sum_boole, s ,
, zero_add, degree_eq_sum_of_adj_matrix_row],
have H: filter ((x:V), G.adj i x) (univ\{i}) = filter (G.adj i) univ,
{ ext,
simp only [true_and, mem_filter, s
and_iff_right_iff_ imp, mem_univ, mem_singleton],
intro hyp,
exact ne.symm (G.ne_of_adj hyp) },
simp only [H, adj_matrix_apply, sum_boole,

b],
end
lemma {s : finset } {i : } (b : i)
(f :) : xins, fx=f1i+ x in s \ {i}, f x
lemma {ij :V}y (Heq:1i-=3j)

‘ G.laplace_matrix R i j = G.degree i

!Using Lemma 6.1.

41

| lemma {ij v}y :
G.laplace_matrix R i j = ite (i = j) (G.degree i) (- G.adj_matrix R i
j)
lemma {i : vV} : filter (eq i) (univ \ {i}) =
lemma {i : V} :
filter ((x : V), Ai = x) (univ \ {i}) = C(univ \ {i})
lemma (xins, - (fx)) =-(xins, f x)
lemma (o :) (x in s, b) = s.card b
lemma : card (: finset) =0
lemma (m : M) (0O:R) m=0
lemma {a : } {s s : finset } :
a s\s a s a s
lemma (a:) :a+-a=0
lemma { : Sort u} (a :) (a = a) true

Lemma 6.4 (Laplacian decomposition) For any orientation o, L = N, N,T.

Proof. First, let us prove the equality on the diagonal: for any vertex i, L ii = degree(i).

Now, (No NT)ii=X (e:

E), (N, i e)?. Using Lemma 5.5, the sum becomes X (j : V),

M i e and then Lemma 5.4 closes the goal.

Secondly, to prove the equality for non-diagonal elements, let us take two distinct vertices

i and j. Our goal now is to prove that L i j = (N, N,T) i j. From the definition of the

Laplacian matrix, the LHS becomes - A i j. The RHS can be rewritten as ¥ (e : E), Ng i

e * N, j e. We can consider now two cases:

1. i and j are adjacent = the LHS becomes -1 and from Lemma 5.6 the RHS becomes

Y (e:

E), if e is the edge between i and j then (-1) else 0. Since there is exactly one

edge between i and j, the RHS sum will be -1 as required.

2. i and j are not adjacent = the LHS becomes 0 and from Lemma 5.7 the RHS

becomes a sum of zeroes, which reduces to 0, as required.

At case 1, we will require a new definition of a function which inputs two vertices i and j

and a proof that they are adjacent in G and returns the bidirectional edge between them.

| def (i

G.oriented_inc_matrix R o
begin

ext i j,

by_cases H_ij : i

-- diagonal : 71 =

=j,
j

theorem laplace_decomposition (o :
(G.oriented_inc_matrix R o)

: V) (H_adj
(i, j), G.mem_edge_set.mpr H_adj

: G.adj 1 j) : G.edge_set :=

orientation G) : G.laplace_matrix R =

42

{ rw [G.laplace_matrix_eq R H_ij, , Hij,
G.degree_equals_sum_of_incidence_row R],
simp only [transpose_apply, G.oriented_inc_matrix_elem_squared R] 1},
-— non-dtagonal : % J
{ rwv [G.laplace_matrix_neq R H_ij, mul_applyl],
by_cases H_adj : G.adj i j,
-— Case 1 : 4 and j are adjacent

{

simp only [G. R H_adj, transpose_apply,
G.oriented_inc_matrix_prod_of_adj R H_adjl,
have key : (e : G.edge_set),
ite (e.val = (i, j)) (-1 : R) 0 = - ite (e.val = (i, j)) 1 O,
{ intro e,
((x:R, x) (e.val = (4, j)) 1 0).symm,
™ },
have sum : (e : G.edge_set), ite (e.val =
(e : G.edge_set), - ite (e.val
{ simp only [key] },
rvw [sum, R , sum_boole],
have key : filter ((e : G.edge_set), e.val = (i, j)) univ =
{G. i j H_adj},

(i, j9) (-1 : R) 0 =
= (i, j)) (1 : R) O,

{ ext,
simp only [true_and, mem_filter, mem_univ, mem_singleton],
v G. H_adj 1,

rw key,

simp only [nat.cast_one, card_singleton] },

-— Case 2 : 1 and j are not adjacent

{

end

lemma
M
lemma

simp only [G. R H_adj, transpose_apply,
G.oriented_inc_matrix_prod_non_adj R H_ij H_adj,
sum_const_zero, neg_zero] } }

{M : matrix 1 m } {N : matrix m n } {i k} :
N) ik= j,Mij*Njk
{ij : V} (H.adj : G.adj i j)

G.adj_matrix R i j =1

lemma

{ : Sort*} (f :) (P : Prop) (xy :)

f (ite P x y) = ite P (f x) (f y)

lemma
lemma

(x
lemma
lemma

e
lemma

nG
The

:-0=(0 :)
(s : finset) {f : } (g :):
ins, g x)) =g (xins, f x)
:—a=-b a=>
{ij : V} {e : G.edge_set} (H_adj : G.adj i j)

G.edge_from_verts i j H_adj e.val = (i, j)
{i j : V} (H_not_adj

.adj i j) : G.adj_matrix Ri j =0

tactic takes the current goal and creates all the subgoals required in order to

transform the goal in the expression denoted by e. It replies with all the tasks remaining

to perform in order to solve the current goal using e.

43

Lemma 6.5 (Laplacian quadratic form) L is a quadratic form: for any real-valued
vector « and orientation o, x L ¥ =X (e : E), (x head,(e) - x tail,(e))?.

Proof. Using Lemma 6.4, we can rewrite x L xT as x (Ny N,T) xT, which in turn is

(xT No) (NoT x) (details in the Lean proof below). Using Lemma 5.8, we reach the desired

result ¥ (e : E), (x head,(e) - x tail,(e))?.

theorem laplace_quadratic_form {o : orientation G} (x : V R)
dot_product (vec_mul x (G.laplace_matrix R)) x =
e : G.edge_set, (x (o.head e) - x (o.tail e)) ~ 2 :=
by calc dot_product (vec_mul x (G.laplace_matrix R)) x
= dot_product (vec_mul x (G.oriented_inc_matrix R o
(G.oriented_inc_matrix R o0))) x :
—z L =z @W() N()) =z
by { rw laplace_decomposition }
dot_product (vec_mul (vec_mul x (G.oriented_inc_matrix R o))
(G.oriented_inc matrix R o)) x :
by { rw } ——...=(x N()) N() =z
dot_product(j,dot_product(vec_mul x(G.oriented_inc_matrix R o))
(i, (G.oriented_inc_matrix R o) i j)) x :

by { }
.. = dot_product (vec_mul x (G.oriented_inc_matrix R o))
((e : G.edge_set), dot_product ((G.oriented_inc_matrix R o) e) x)
by { rw dot_product_assoc }
. = dot_product (vec_mul x (G.oriented_inc_matrix R 0))
((G.oriented_inc_matrix R o) .mul_vec x)
by { congr’ } -—— ... =(z N@)) () =z)
dot_product (vec_mul x (G.oriented_inc_matrix R o))
(vec_mul x (G.oriented_inc_matrix R o))

by { rw mul_vec_transpose } -- ... = (z N(o)) (z N(o))
... = e : G.edge_set, (x (o.head e) - x (o.tail e)) ~ 2 :
by { simp only [dot_product, vec_mul_oriented_inc_matrix],
ring nf } -— ... = e,(z head(e)-z tail(e)) 2
lemma (v :m) (M: matrixmn) (N : matrix n o)

vec_mul (vec_mul v M) N = vec_mul v (M N)

The tactic breaks down the goal (which is generally an equality between terms)
into equality of sub-terms depending on the level of recursive applications n (in case n is
omitted, its implicit value is 1) . For instance, when proving f (g (z + v)) = f (9 (y +
z)), congr’ produces the goals z = y and y = x, whereas congr’ 2 produces the goal z +

y =y + z, so n affects the depth of dividing the terms into sub-terms.

6.2 Signless Laplacian matrix

Let G = (V, E) be an undirected simple graph. The Signless Laplacian matrix Q is

defined as the |V| x |V| matrix with

44

o Qij = degree(i),ifi=]j
e Qij=Aij, otheriwse

It mimics the behaviour of the Laplacian matrix, but it contains only positive elements.

‘def : matrix VV R
‘I i j :=1if i = j then G.degree i else G.adj_matrix R i j

Lemma 6.6 Q = A + D, where D is the diagonal matriz containing the degrees of
vertices in G.

Proof. Let i and j be two vertices:
1. ifi =j, then Qij=Dij= degree(i), whereas Aij=0=Qij=Aij+ Dij
2. ifi#£j,thenQij=Aij,whereasDij=0=Qij=Aij+Dij

lemma signless_laplace_eq_degree_plus_adj : G.signless_laplace_matrix R =
G.adj_matrix R + (v, G.degree v) :=
begin
ext,
by_cases H : (i = j),
-- Case 1
{ v [G. R H, ,
| G. R H, zero_add, H, 13,
-- Case 2
{ rw [G. R H, dmatrix.add_apply,
H, add_zero] }
end

The function diagonal takes a vector d and returns the diagonal matrix that has on the

diagonal the entries of d in order.

def (d:n) : matrixnn :=
ij, if i = j then d i else O

lemma {ij:V}y (Heq:1i=3j)
G.signless_laplace_matrix R i j = G.degree i

lemma (M N : dmatrix mn) (i j)
M+N)ij=Mij+Nij

lemma {ij :V}) (Heq:1i=3j): G.adjmatrix Ri j =0

lemma {d:n } @A :mn): (diagonal d) i i =4d i

lemma {ij : V} (H_.neq : i j)
G.signless_laplace_matrix R 1 j = G.adj_matrix R i j

lemma {d:n }{ij:nrt:1

(diagonal d) i j = 0

45

Lemma 6.7 (Signless Laplacian decomposition) @ = M MT.

Proof. Let us prove the equality on the diagonal first: for a vertex i, Q i i = degree(i),
whereas (M MT)ii=3 (e: E), (M ie)?. Using Lemma 5.3, the RHS can be reduced to
Y (e: E), M ie, which according to Lemma 5.4 is equal to degree(i).

Secondly, to prove the equality for non-diagonal elements, let us take two distinct vertices
i and j. Our goal now is to prove that Q i j = (M MT) i j. By the definition of Q, the
LHS will be A i j, whereas the RHS can be rewritten as X (e : E), Mie) * (M je). We

can consider now two cases:

1. i and j are adjacent = the LHS becomes 1 and from Lemma 5.1 the RHS becomes

1 as well, as required

2. i and j are not adjacent = the RHS becomes 0 and from Lemma 5.2 the RHS

becomes a sum of zeroes, which is equivalent to 0, as required.

theorem signless_laplace_decomposition :
G.signless_laplace_matrix R = G.inc_matrix R (G.inc_matrix R) :=
begin
ext,
by_cases H_ij : i = j,
{ rv [signless_laplace_eq_degree_plus_adj, dmatrix.add_apply,
G.adj_matrix_eq R H_ij, zero_add, mul_apply],
simp only [H_ij, diagonal_apply_eq,
degree_equals_sum_of_incidence_row,
transpose_apply, inc_matrix_element_power_id] },
{ rv [signless_laplace_eq_degree_plus_adj, dmatrix.add_apply,
diagonal_apply_ne H_ij, add_zero, mul_applyl,
by_cases H_adj : G.adj i j,
{ simp only [G.adj_matrix_adj R H_adj, transpose_apply,
G.adj_sum_of_prod_inc_one R H_adj] 1},
{ simp only [G.adj_matrix_not_adj R H_adj, transpose_apply,
G.inc_matrix_prod_non_adj R H_ij H_adj, sum_const_zero]
T}

end

46

7. Conclusions

7.1 Summary

The project has largely achieved the desired goals outlined in the project description. We
have gradually introduced the reader to the Lean background and concepts needed to
build a reliable and backwards compatible documentation in domains like linear algebra
and graph theory. We managed to go through important, but not yet developed areas such
as the properties of the eigenvalues and eigenvectors of symmetric real-valued matrices,
contributing (for instance) with helper lemmas to the matrix-vector multiplication API.
We can now add two key concepts from graph theory in the library of mathlib: the
incidence and Laplacian matrices, together with key theorems about their behaviour which

will certainly be useful for future development.

7.2 Reflections

One important lesson learnt from this project is the necessity of formal verification of as
many mathematical concepts and statements as possible. There were various occasions
when the author discovered that the majority of sources used with the intention to prove
several lemmas had missed crucial details (corner cases) or had added unnecessary re-
strictions. The author also became aware throughout this project of the importance of
rigorously motivating the use of mathematically-overloaded operations (e.g multiplication,
where we distinguished between scalar-vector, vector-matrix, matrix-vector instances and
also between real and complex cases) and providing APIs even for the most common-sense
uses of them, in order to facilitate expanding to more complicate statements and also to

avoid ambiguity.

47

7.3 Limitations

Naturally, a mathematical proof can follow different styles and ideas in order to achieve a
certain goal. They can differ considerably in length, clarity, re-usability and they can use a
wide variety of already established concepts. Mostly, Lean proofs are based on equivalent
mathematical demonstrations, but they must adopt the ones that maximally use the
already existing tools from the main library and this can bring challenges on its own.
One goal of this project was to avoid creating unnecessary which would
subsequently be used just for the current goal, but this greatly depends on the solution
approach and on the current available APIs in Lean. On the other hand, creating new
helping lemmas can uncover gaps in the core libraries, which consequently was the source

of some small contributions of the project (e.g matrix-vector multiplication operations).

7.4 Future directions

The intention of the project was to establish the basis for the described key mathematical
concepts. One extension in Section 4 can be to describe and implement the eigendecom-
position of a symmetric matrix, together with concepts such as positive (semi)definiteness
and the Perron-Frobenius theorem. Another extension can appear in Section 6, where the
spectrum of an undirected simple graph can be defined, based on the work from Section 4,
together with implications on bipartite graphs or on the chromatic numbers. Extensions

exist as long as there exist mathematical concepts emerging from the existing libraries.

48

References

1]
2]

Lean official website. https://leanprover-community.github.io/

Lean core library mathlib. https://leanprover-community.github.io/mathIlib d

ocs/
Lovasz, Laszld. Eigenvalues of graphs. Citeseer 2007, p. 1-7.

Brouwer, Andries E and Haemers, Willem H. Spectra of graphs. Springer Science &

Business Media 2011, p. 1-3.

Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in Lean.
https://leanprover.github.io/theorem proving in lean/theorem proving i

n_lean.pdf

Jeremy Avigad, Kevin Buzzard, Robert Y. Lewis, Patrick Massot. Mathematics in
Lean. https://leanprover-community.github.io/mathematics_in_lean/mathem

atics_1n lean.pdf

Jonathan Kelner. Linear algebra review, adjacency and Laplacian matrices associated
with a graph, example Laplacians. https://ocw.mit.edu/courses/mathematics/18
-409-topics-1n-theoretical-computer-science-an-algorithmists-toolkit

-fall-2009/1ecture—-notes/MIT18 409F09 scribel.pdf

Jonathan Kelner. Properties of the Laplacian, positive semidefinite matricies, spectra
of common graphs. https://ocw.mit.edu/courses/mathematics/18-409-topics—
in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/1ec

ture-notes/MIT18 409F09_scribe2.pdf

49

https://leanprover-community.github.io/
https://leanprover-community.github.io/mathlib_docs/
https://leanprover-community.github.io/mathlib_docs/
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover-community.github.io/mathematics_in_lean/mathematics_in_lean.pdf
https://leanprover-community.github.io/mathematics_in_lean/mathematics_in_lean.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe1.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe1.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe1.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe2.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe2.pdf
https://ocw.mit.edu/courses/mathematics/18-409-topics-in-theoretical-computer-science-an-algorithmists-toolkit-fall-2009/lecture-notes/MIT18_409F09_scribe2.pdf

Appendix

symm__matrix.lean

import data.complex.basic
import data.complex.module
import data.fintype.basic
import data.real.basic
import linear_algebra.matrix

/-1

Symmetric Matrices

This module defines symmetric matrices, together with key properties
about their eigenvalues & eigenvectors.

It uses a more restrictive definition of eigenvalues & eigenvectors,
together with helping lemmas for vector-matriz

operations and tools for complex numbers/vectors.

Main definitions

* ‘yec_conj € - the complex conjugate of a complex wvector 'z
* ‘vec_re = - the wvector containing the real parts of elements from z

*

‘vec_im ' - the wector containing the imaginary parts of elements from z

‘has_eigenpair M z' - matriz ‘M has non-zero eigenvector ‘'z with corresponding
. AN
eigenvalue

‘has_eigenvector M « - matriz ‘M has non-zero eigenvector 'z

* AN

‘has_eigenvalue M ' - matriz ‘M has eigenvalue
* ‘symm_matriz M - ‘M is a symmetric matriz
Main statements

1. If = is an eigenvector of matriz M, then a = is an eigenvector of M, for any
non-zero a :

2. If there are two etigenvectors of M that have the same correspoding eigenvalue, then
any linear combination of them

75 also an eigenvector of M with the same eigenvalue .

3. All eigenvalues of a symmetric real matriz M are real.

4. For every real etgenvalue of a symmetric matrixz M, there exists a corresponding
real-valued eigenvector.

5. If v and w are eigenvectors of a symmetric matrixz M with different eigenvalues, then
v and w are orthogonal.

-/

open_locale matrix big_operators
open fintype finset matrix complex

universes u
variables { : Type u}
variables {mn : Type"} [fintype m] [fintype n]

lemma vec_eq_unfold (xy:n):(i:n,xi)=(i:n,y1i)
irn,xi=yi:=

begin
split,
{ intros hyp i, exact congr_fun hyp i },

{ intro hyp, ext, apply hyp }
end

-— ## Coercions

instance : has_coe (n) (n):= x, (i,x1,0)
instance : has_coe (matrixmn) (matrixmn) :=

50

M, (ij,Mij,0)
-— ## Lemmas on

lemma conj_of_zero_im {: } (H_im: .im = 0) : conj = :=
by { ext; simp only [conj_re, conj_im, H_im, neg_zero] }

lemma sum_complex_re {x :n }:(1i:n,xi)re=
i:n, (x i).re := complex.re_lm.map_sum

lemma sum_complex_im {x:n }:(i:mn,x1i).im=
i:n, (x i).im := complex.im_lm.map_sum

-- The real and complex parts of a complex vector
def vec_re (x:n) (i:n): := (x1i).re
def vec_im (x:n) (i :n): := (x i).im

-- Defining the complex conjugate of a complex vector
section vec_conj

def vec_conj (x:n) (i:m): := conj (x i)

lemma vec_conj_smul (:) (x:n):
vec_conj (x) = (conj) (vec_conj x) :=
by { ext ; simp only [vec_conj, algebra.id.smul_eq_mul, pi.smul_apply, ring_hom.map_mul] }

—A44i7==017%7
lemma coe_matrix_coe_elem (i :m) (j:n) (A:matrixmn): (A:matrixmn)ij=(A1ij) :=rfl

— (A T =4 z*
lemma vec_conj_mul_vec [decidable_eq n] [nonempty n] (A : matrixmn) (x:n):
vec_conj ((A : matrix mn).mul_vec x) = (A : matrix mn).mul_vec (vec_conj x) :=
begin
ext,
simp only [vec_conj, mul_vec, dot_product, conj_re, coe_matrix_coe_elem, sum_complex_re,
mul_re, of _real_im, zero_mul],
simp only [vec_conj7 mul_vec, dot_product, conj_im, coe_matrix_coe_elem, sum_complex_im,
mul_im, add_zero, of _real_im,
zero_mul, sum_neg_distrib, mul_neg_eq_neg_mul_symm]
end

lemma vec_norm_sq_zero {x :n } (H_dot : dot_product (vec_conj x) x =0) :x=0:=
begin
unfold dot_product at H_dot,
simp only [vec_conj7 mul_comm, mul_conj, complex.ext_iff, sum_complex_re, zero_re, o:f_real_re]
at H_dot,
cases H_dot with H_re H_im,
have key : i in (univ : finset n), norm_sq (x i) =0 i (univ : finset n), norm_sq(x i) = 0,
{ apply sum_eq_zero_iff_of_nonneg, intros i h_univ, exact norm_sq_nonneg (x i) },
simp only [forall_prop_of_true, mem_univ, monoid_with_zero_hom.map_eq_zero] at key,
rw key at H_re,
ext i;
{ specialize H_re i, simp only [H_re, pi.zero_apply]| }
end

lemma coe_vec_re (x:n){i:n}:(vec_rex:n)i=((xi)re:):=
by simpa only [vec_re]

lemma vec_add_conj_eq_two_re (x:n):x + vec_conjx=(2:) (vec_rex:n):=
begin

ext,

{ simp [vec_conj, coe_vec_re x|, linarith },

{ simp [vec_conj, coe_vec_re x| }
end

o1

lemma vec_conj_add_zero {x:n } (H:x + vec_conj x =0) : vec_re x = 0 :=

begin
rw [vec_add_conj_eq_two_re, smul_eq_zero| at H,
cases H with H_20 H_x,
{ exfalso, simp at H_20, assumption }, == 2 = 0
{ rw function.funext_iff at H_x,
ext i,
specialize H_x i,
rw coe_vec_re at H_x,
simp only [of_real_eq_zero, pi.zero_apply| at H_x,
simp only [vec_re, H_x, pi.zero_apply]| }
end

end vec_conj

namespace matrix

variables (M: matrixnn)

def Coe (M: matrixmn):= (M: matrixmn)

/-
Matriz definitions

Let ‘M be a square real matriz. An ‘eigenvector' of ‘M is a complex wector 'z with ‘M =z

\

T
for some ' ', which is called the ‘eigenvalue' of ‘M corresponding to the ‘eigenvector .
-/
def has_eigenpair (:) (x:n) :Prop:=

x 0 (mul_vec M.Coe x = x)

def has_eigenvector (x :n) : Prop :=
:, Mhas_eigenpair x

def has_eigenvalue (:) : Prop :=
x:n , Mhas_eigenpair x

def symm_matrix : Prop :(=M =M
-— ## Matriz : Helping lemmas

- (M) =M

lemma coe_transpose_matrix : (M.Coe) = (M).Coe := by { unfold Coe, ext, tidy }

—Migj=M™1ij3)
lemma coe_matrix_coe_elem (i j:n): (M.Coe)i j=(M1ij):=rfl

-— M z)" =M<z
lemma vec_conj_mul_vec_re (x :n):
vec_conj (mul_vec M.Coe x) = mul_vec (M.Coe) (vec_conj x) :=
begin
ext ;
simp only [vec_conj7 mul_vec, dot_product, coe_matrix_coe_elem],
{ simp only [sum_complex_re, of _real_im, zero_mul, conj_re, mul_re| },
{ simp only [sum_complex_im, add_zero, of _real_im, zero_mul,
sum_neg_distrib, conj_im, mul_neg_eq_neg_mul_symm, mul_im] },
end

lemma symm_matrix_coe (H_symm : symm_matrix M) : (M.Coe) = (M.Coe) :=
begin

unfold symm_matrix at H_symm,

rw [coe_transpose_matrix, H_symm]|
end

— v Mw) = (vMw

lemma dot_product_mul_vec_vec_mul (vw:n):
dot_product v (mul_vec M.Coe w) = dot_product (vec_mul v M.Coe) w :=

52

begin
have key : vec_mul v M.Coe = j, dot_product v (i, M.Coe i j),
{ ext ; unfold vec_mul },
rw [key, dot_product_assoc v M.Coe w],
ext ; simp only [dot_product, mul_vec],
end

-— 1. If = is an eigenvector of M, then a =z is an etgenvector of M, for any non-zero a :

theorem has_eigenvector_smul (a:) (x:n) (H_na:a 0) (H_eigenvector : has_eigenvector M x) :
has_eigenvector M (a x) :=
begin
rcases H_eigenvector with , H_nx, H_mul,
use , —— corresponding eigenvalue
split,
{ intro hyp, rw smul_eq_zero at hyp, tauto }, -- a z 0
calc (M.Coe).mul_vec (a x)
=a MCoemul vecx:—-M (a z)=a M z)
by { rw mul_vec_smul_assoc }

..=a (x): —...=a (z)
by { rw H_mul }

o= (a x): -—...= (a z)
by { simp only [smul_smul, mul_comm] }

end

-- 2. If there are two etigenvectors that have the same correspoding eigenvalue ,
-- then any non-zero linear combination of them is also an eigenvector with the same
eigenvalue .
theorem has_eigenpair_linear (ab:)(vw:n)(:) (Hne:a v+b w 0)
(H: has_eigenpair M v) (H: has_eigenpair M w) : has_eigenpair M (a v+ b w):=
begin
rcases Hwith H, H,
rcases H with H, H,
use H ne, —a v +b w 0
calc M.Coemul_vec (a v+b w) - M (a v+b w =¥ (a v)+M (b w
= M.Coemul_vec(a v) + M.Coemul_vec(b w) :
by { ext ; simp only [mul_vec, pi.add_apply, dot_product_add] }
.—a MCoemul_vecv+ b MCoemul vecw: —— ... =a (M v) +b (M w)
by { ext ; simp only [mul_vec, algebra.id.smul_eq_mul,
dot_product_smul, pi.add_apply, pi.smul_apply] }

...=a (v)+b (w): —...=a (wW+b (w
by { xw [, H] }

.= (av+b w: —...= (a v+tbd w
by { simp only [smul_smul, mul_comm, smul_add] }

end

-— 3. All eigenvalues of a symmetric real matriz M are real.
theorem symm_matrix_real_eigenvalues (H_symm : symm_matrix M) :
(:), has_eigenvalue M .im =0 :=
begin
— (1M z= =
rintro x, H_x, H_eq,
-— @) M =" g
have H_eq : mul_vec M.Coe (vec_conj x) = (conj) (vec_conj x),
{ rw [vec_conj_smul x, M.vec_conj_mul_vec_re x, H_eq] },
= (3 () z) =" () z)

have H_eq : * (dot_product (vec_conj x) x) = conj * dot_product (vec_conj x) x,

calc * dot_product (vec_conj x) x
= dot_product (vec_conj x) (x): -- ((z*) z) = (') (=)
by { rw smul_dot_product (vec_conj x) x,
simp [dot_product, vec_conj, mul_assoc, mul_comm| }
... = dot_product (vec_conj x) (M.Coe.mul_vecx): —- ... = (z") (M z)
by { rw H_eq }
... = dot_product (M.Coe.vec_mul (vec_conj x)) x: -- ...
by { exact (dot_product_assoc (vec_conj x) M.Coe x).symm }

((z*) M) z

23

. = dot_product (M.Coe.mul_vec (vec_conj x))x: - ... = (M z") =
by { rw mul_vec_transpose M.Coe (vec_conj x) }

= dot_product (M.Coe.mul_vec (vec_conj x))x: -- ... = (M z") z
by { have H : M.Coe = M.Coe, { unfold Coe, tldy } v H }
= dot_product (conj vec_conj x) x)z
by {rwH_eq}
. = conj * dot_product (vec_conj x) x : -— ... =" (") =)

by { rw smul_dot_product (conj) (vec_conj x) x },

— () (=) ((&) z) =

have H_eq : (— conj) * dot_product (vec_conj x) x = 0,

{ rw sub_mul, simp only [H eq, sub_self] },
- -"=0 (") z=

rw mul_eq_zero at H_eq7

cases H_eq with H_ H_prod,

{ rv [sub_eq_zero, eq_comm, eq_conj_iff_real] at H_,
cases H_ withr H_r,

w [H_r, of _real_im| }, - - " =0
{ exfalso,
exact H_x (vec_norm_sq_zero H_prod) }, -- (z") =z = 0
end

-— 4. For every real etgenvalue of a symmetric matrixz M, there exists a corresponding
real-valued eigenvector.
theorem symm_matrix_real_eigenvectors (H_symm : symm_matrix M) (:) (H_eigenvalue :
has_eigenvalue M) :
x:n , has_eigenpair M x vec_imx = 0 :=

begin
-- We know that from before.
have H_ : .im = 0,

{ apply M.symm_matrix_real_eigenvalues H_symm H_eigenvalue },
rcases H_eigenvalue with x, H_nx, H_mul,
by_cases H_re : vec_re x = 0,
-— 1) I =z will be used
{ use (I x),
split,
--1.1) I =z is an etgenvector
{ split,
--1.1.1) I = 0
{ intro hyp, rw smul_eq_zero at hyp,
have H_nI : I 0, { exact I_ne_zero },

tauto },
—1.1.2) M (I z) = (I z)
{ simp only [mul_vec_smul_assoc, H_mul, smul_smul, mul_comm| } },
-—-1.2) I =z
{ ext i,

simp only [vec_re, vec_eq_unfold| at H_re,
simp only [vec_im7 algebra.id.smul_eq_mul, I_re, one_mul,
I_im, zero_mul, mul_im, zero_add, pi.smul_apply],
exact H_re i } },
--2) z + " will be used
{ use (x + vec_conj x),
split,
--2.1) z + ¥ 4is an eigenvector
{ split,
-—2.1.1) z +z2" 0
{ intro hyp, exact H_re (vec_conj_add_zero hyp) },
-—-2.1.2) M (z +2*) = (z+z)
{ calc M.Coe.mul_vec (x + vec_conj x)
= M.Coe.mul_vec x + M.Coe.mul_vec (vec_conj x) :
by { apply mul_vec_add } == ¥ (z +) =Mz + M z*
. = M.Coe.mul_vec x + vec_conj (M.Coe.mul_vec x) :

by { rw M.vec_conj_mul _vec_ rex} - ... =Mz + (M)"
= x + vec_conj (x):
by{ermul} —...= z+ (z)

.= x+ (conj) (vec_conj x) :

54

by { rw vec_conj_smul } -—...= T+ T
.= x+ (vec_conjx):
by { rw conj_of_zero_im H_ } -— ... = z+ =z
= (x + vec_conj x) :

by { simp only [smul_add] } } }, = ... = (z+d)
- 22 z+z
{ ext, simp [vec_add_conj_eq_two_re, vec_im, coe_vec_re] } }

end

-— 5. If v and w are eigenvectors of a symmetric matriz M with different eigenvalues,
then v and w are orthogonal.

theorem dot_product_neq_eigenvalue_zero (H_symm : symm_matrix M) (vw:n) (' :)
(H.ne: ') (H:has_eigenpair M v) (H: has_eigenpair M’ w) : dot_product v w = 0 :=
begin

have key : (— ') * dot_product v w = 0,

calc (—') * dot_product v w

= * dot_product vw — ' * dot_product v w :

by { apply mul_sub_right_distrib }-—— (- Dv w = (v w) - (v w)

... = dot_product (v) w — dot_product v (' w):

by { simp only [dot_product_smul,

smul_dot_product] } — .= Ww-v(w
... = dot_product (M.Coe.mul_vec v) w — dot_product v (M.Coe.mul_vec w) :
by { rw [H.2, H.2] } — ... =Mvw - vMw
... = dot_product (M.Coe.mul_vec v) w — dot_product (vec_mul v M.Coe) w :
by { rw M.dot_product_mul_vec_vec_mulvw }-- ... = (M vw - (v Muw
... = dot_product (M.Coe.mul_vec v) w — dot_product (vec_mul v M.Coe) w:
by { rw symm_matrix_coe MH_symm } -- ... = (M vw - (v Muw
... = dot_product (M.Coe.mul_vec v) w — dot_product (mul_vec M.Coe v) w :
by { rw vec_mul_transpose M.Coe v } — .= M Ww - M Vuw
by { simp only [sub_self] }, -—...=0

rw mul_eq_zero at key,
cases key with H_ H_dot,

{ exfalso, rw sub_eq_zero at H_, exact HneH_}, - -' =0
{exactH dot } - v w =0
end

end matrix

5}

incidence.lean

import algebra.big_operators.basic
import combinatorics.simple_graph.basic
import data.fintype.basic

import data.sym2

import linear_algebra.matrix

/-1

Incidence matrices

This module defines the incidence matriz ‘inc_matriz of an undirected graph '
simple_graph', and provides

theorems and lemmas connecting graph properties to computational properties of the
matriz. It also

defines the notion of ‘orientation' for a ‘simple_graph', picking a direction for each
undirected

edge in the graph and then defining the oriented incidence matriz ‘oriented_inc_matriz
based on that.

Main definitions
* V“inc_matric' is the incidence matriz ‘M of a ‘simple_graph' with coefficients in a given
ring R.
* ‘orientation' is a structure that definmes a choice of direction on the edges of a '
simple_graph'.
* ‘oriented_inc_matriz is the oriented incidence matriz ‘N(o)' of a \simple_g'raph\ with
respect to a given ‘orientation .

Main statements

e :E, Mie*Mje=1, for any two adjacent vertices i and j.
Mie™Mgje=0, for any two distinct non-adjacent vertices i, j and edge e.
Every element from M is idempotent.
For any vertex %, the sum on the ith row of M is equal to the degree of 4.
(N(o) i e) ~2=M=1< e, for any orientation o, vertexr ¢ and edge e.
For any adjacent vertices % j and edge e, N(o) i e * N(o) j e = if e = (i, j) then -1
else 0.
For any non-adjacent distinct wvertices 41 j and edge e, N(o) i e ™ N(o) j e = 0.
(z N(o)) e =z o.head(e) - z o.tail(e).

SO LD~

®

-/

open_locale big_operators matrix
open finset matrix simple_graph sym2

universe u
variables {R: Type u} [ring R| [nontrivial R] [decidable_eq R]

@[simp]

lemma ite_prod_one_zero {P Q : Prop} [decidable P] [decidable Q] :
(iteP(1:R)0) " (iteQ10) =ite (P Q) 10 :=

by { by_cases h : P; simp [h] }

lemma fintype.card_coe_filter { : Sort”} {s t : set } [fintype s] [fintype t]
[decidable_pred ((x:t),(x:) s)] (h:s t):
fintype.card s = finset.card (finset.filter ((x:t), (x :) s) finset.univ) :=
begin
refine finset.card_congr _
{ rintros e, he he’,
exact e, h he },
{ rintros e, he he’,
simpa only [true_and, finset.mem_univ, finset.mem_filter] using he},
{ rintros el, hel e2, he2 hel’ he2’ hr,
ext,
simp only [subtype.mk_eq_mk] at hr,

- -

o6

simp only [hr] },
{ rintros e, he he’,
use [e],
{ simpa only [true_and, finset.mem_univ, finset.mem_filter| using he'},
{ simp only [finset.mem_univ, exists_prop_of_true| } }
end

namespace simple_graph

universe v
variables {V : Type v} [fintype V] (G : simple_graph V) (R) [decidable_rel G.adj] [decidable_eq V]

-— ## Incidence matriz M

/-- ‘inc_matriz G R is the matriz ‘M such that ‘M i e = 1' if vertez ‘i’ is an
endpoint of the edge ‘e in the simple graph ‘G, otherwise 'M i j = 0. -/
def inc_matrix : matrix V G.edge_set R

| i e:=if (e: sym2 V) G.incidence_set i then 1 else 0

Q[simp]
lemma inc_matrix_apply {i: V} {e : G.edge_set} :
G.inc_matrix R i e = if (e : sym2 V) G.incidence_set i then 1 else 0 := rfl

lemma inc_matrix_def : G.inc_matrix R = i e, ite ((e : sym2 V) G.incidence_set i) 10 :=
by { ext, simp only [inc_matrix_apply| }

-— ### Relation between inc_matrixz elements and incidence_set property

@[simp]
lemma inc_matrix_zero {i: V} {e: G.edge_set} : G.inc_matrixRi e =0 e.val G.incidence_set i :

by simp only [inc_matrix, ite_eq_right_iff, subtype.val_eq_coe, decidable.not_imp_not,
forall_true_left, not_false_iff, one_ne_zero|

Q[simp]

lemma inc_matrix_one {i : V} {e : G.edge_set} : G.inc_matrixRi e =1 e.val G.incidence_set i :=

by simp only [inc_matrix, ite_eq_left_iff, subtype.val_eq_coe, decidable.not_imp_not,
set.not_not_mem, forall_true_left, not_false_iff, zero_ne_one]

-— ### One - zero properties

Q[simp]

lemma inc_matrix_not_zero {i : V} {e : G.edge_set} : 1l G.inc_matrix Ri e =0 G.inc_matrixRie
=1 :=

by simp only [inc_matrix_zero, inc_matrix_one, set.not_not_mem}

Q[simp]
lemma inc_matrix_not_one {i : V} {e : G.edge_set} : N G.inc_matrixRie =1 G.inc_matrixRie =
0:=

by simp only [inc_matrix_zero, inc_matrix_one]

lemma inc_matrix_zero_or_one {i : V} {e : G.edge_set} :
G.inc_matrixRie =0 G.inc_matrixRie=1:=
by { rw [inc_matrix_zero, inc_matrix_one], exact (em (e.val G.incidence_set i)).symm }

@[simp]
lemma inc_matrix_elements_product_one {i j : V} {e : G.edge_set} :
G.inc_matrix R i e " G.inc_matrix R je =1 G.inc_matrixRie =1 G.inc_matrixRje=1:=
begin
cases G.inc_matrix_zero_or_one R with H H,
{ rw H, simp only [if_t_t, mul_boole, inc_matrix_apply, zero_ne_one, false_and] },
{ rv H, simp only [true_and, mul_boole, inc_matrix_apply, eq_self_iff_true] }
end

-— ### Helping lemmas for edges

Y

Q[simp]
lemma edge_val_equiv {e e : G.edge_set} : e.val = e.val e = e :=
begin

split,

{ exact subtype.eq },

{ intro hyp,

v hyp }
end

lemma edge_val_in_set {e : G.edge_set} : e.val G.edge_set :=
by simp only [subtype.coe_prop, subtype.val_eq_coe]

lemma edge_set_ne {uv:V} {e: G.edge_set} (h:eval = (u,v)) :u v:=
begin

apply G.ne_of_adj,

simp only [G.mem_edge_set, h, edge_val_in_set],
end

lemma incidence_equiv {i : V} {e : G.edge_set} : e.val G.incidence_set i i e.val :=
by simp only [incidence_set, true_and, set.mem_sep_eq, edge_val_in_set]

lemma incidence_set_iff_any_vertex {iuv:V} (h: (u, v) G.edge_set):
(u, v) G.incidence_seti i=u i=v:=
by simp only [mem_iff, h, incidence_set, true_and, set.mem_sep_ecﬂ

lemma edge_in_two_incidence_sets {i j : V} {e : sym2 V} (H_ne: i j):
e G.incidence_set i e G.incidence_set j e = (i, j) :=
begin
refine quotient.rec_on_subsingleton e (p, _),
rcases p with v, w,
rw eq_iff,
rintros _, H_i, _, H_j,
cases (mem_iff.mp H_i) with H_i H_i;
cases (mem_iff.mp H_j) with H_j H_j,
{ exfalso, apply H_ne, rw [H_i,H_j] }, - 7 = v, j = v

{ left, use [H_i.symm, H_j.symm| }, -- i =9, j =uw

{ right, use [H_j.symm, H_i.symm] }, -- 4 =w, 5 =v

{ exfalso, apply H_ne, rw [H_i,H_j| } —— i =w, 7 =w
end

lemma mem_incidence_sets_iff_eq {i j : V} {e : sym2 V} (h: G.adj i j) :
e G.incidence_set i e G.incidence_set j e = (i, j) :=
begin
refine quotient.rec_on_subsingleton e (p, _),
rcases p with v, w,
rw eq_iff,
simp only [incidence_set],
tidy,
end

lemma adj_iff_exists_edge_val {i j : V}:G.adjij (e:G.edge_set), eval = (i, j) :=
by simp only [mem_edge_set, exists_prop, set_coe.exists, exists_eq_right, subtype.coe_mK|

- 1. e:E, Mie”™ Mje=1, where © and j are adjacent.
theorem adj_sum_of_prod_inc_one {i j : V} (H_adj : G.adj i j) :

(e : G.edge_set), G.inc_matrix Ri e * G.inc_matrix R je = (1 :R) :=
begin

simp only [inc_matrix_apply, ite_prod_one_zero, sum_boole,

G.mem_incidence_sets_iff_eq H_adj, subtype.val_eq_coe]7

rw adj_iff_exists_edge_val at H_adj,

rcases H_adj with e, H_e,

simp only [H_e, edge_val_equiv],

have H : filter ((x : G.edge_set), x = e) univ = {e},

{ ext, simp only [true_and, mem_filter, mem_univ, mem_singleton] },

simp only [H, filter_congr_decidable, nat.cast_one, card_singleton]
end

o8

——2. Mie* Mje=0, where i, j distinct non-adjacent vertices, e an edge.
theorem inc_matrix_prod_non_adj {i j : V} {e : G.edge_set} (Hne : i j) (H_non_adj : 1 G.adj i j) :
G.inc_matrix R i e " G.inc_matrix R je =0 :=
begin
by_cases H: G.inc_matrix Ri e = 0,
{ rw [H, zero_mul] },
{ rvw [inc_matrix_not_zero, inc_matrix_one] at H,
by_cases H: G.inc_matrix R j e =0,
{ rw [H, mul_zero] },
{ rvw [inc_matrix_not_zero, inc_matrix_one] at H,
exfalso,
apply H_non_adj,
rw [mem_edge_set, G.edge_in_two_incidence_sets Hne H, H],
exact G.edge_val_in_set } }
end

-—— 3. (Mie) “2=M1e; with 1 a vertex, e an edge.

Q[simp]

theorem inc_matrix_element_power_id {i : V} {e : G.edge_set} :
(G.inc_matrix R i e) * (G.inc_matrix R i e) = G.inc_matrix R i e :=

by simp [inc_matrix_apply]

-- 4. degree(i) = e : E, M © e; where % is a vertez.
theorem degree_equals_sum_of_incidence_row {i : V}:
(G.degree i : R) = (e : G.edge_set), G.inc_matrix R i e :=
begin
rw [inc_matrix_def, card_incidence_set_eq_degree],
simp only [sum_boole, nat.cast_inj, fintype.card_coe_filter (G.incidence_set_subset i)],
end

-— ## Orientations

/-- Define an ‘orientation' on the undirected graph G as a structure that defines
(consistently)

for each edge a ‘head' and a ‘tail'. -/

Q[ext]

structure orientation (G : simple_graph V) :=

(head : G.edge_set V)

(tail : G.edge_set V)

(consistent (e : G.edge_set) : e.val = (head(e),tail(e)))

-— ## Oriented Incidence Matriz N(o)

/-- An ‘oriented incidence matriz N(o) is defined with respect to the orientation of the
edges and is defined to be

‘1" for entries ('i',‘e') where ‘i’ is the head of ‘e', ‘-1' where ‘i’ is the tail of ‘e', and
0" otherwise. -/

def oriented_inc_matrix (o : orientation G) :matrix V G.edge_set R :=

i e, if i = o.head e then (1 : R) else (if 1 = o.tail e then —1 else 0)

\

variables {o : orientation G}

@[simp]
lemma oriented_inc_matrix_apply {i : V} {e : G.edge_set} :
G.oriented_inc_matrix Ro i e = if i = o.head e then 1 else (if i = o.tail e then (—1 :R) else
0) := rfl

lemma head_neq_tail {e : G.edge_set} : o.head(e) o.tail(e) := G.edge_set_ne (o.consistent e)

@[simp]

lemma oriented_inc_matrix_head {i: V} {e : G.edge_set} (H_head : i = o.head e) :
G.oriented_inc _matrixRoie=1:=

by simp only [H_head, if_true, eq_self_iff_true, oriented_inc_matrix_apply]

Q[simp]

29

lemma oriented_inc_matrix_tail {i: V} {e : G.edge_set} (H_tail: i = o.taile):
G.oriented_inc_matrixRoie = —1:=
by simp only [H_tail, oriented_inc_matrix, (G.head_neq_tail).symm, if_false, if_true,
eq_self_iff_true]

@[simp]
lemma oriented_inc_matrix_zero {i: V} {e : G.edge_set} :
G.oriented_inc matrixRoie =0 i oheade i o.tail e:=
begin
by_cases H: i = o.head e,
{ simp only [oriented_inc_matrix, H, if_true, eq_self_iff_true, not_true,
ne.def, one_ne_zero, false_and] },
{ by_cases H: i = o.tail e,
{ simp only [H7 oriented_inc_matrix_tail, eq_self_iff_true, not_true,
ne.def, neg_eq_zero, one_ne_zero, and_false| },
{ simp only [H, H, eq_self_iff_true, if_false, ne.def,
not_false_iff, and_self, oriented_inc_matrix_apply| } }
end

Q[simp]
lemma oriented_inc_matrix_non_zero {i : V} {e : G.edge_set} :
n G.oriented_inc_matrixRoie =0 i =oheade i = o.tail e :=
begin
by_cases H: 1 = o.head e,
{ simp only [H, if_true, true_or, eq_self_iff_true, ne.def,
not_false_iff, one_ne_zero, oriented_inc_matrix_apply] },
{ by_cases H: i = o.tail e,
{ simp only [H, oriented_inc_matrix_tail, eq_self_iff_true, ne.def, or_true,
not_false_iff, neg_eq_zero, one_ne_zero| },
{ simp only [H, H, eq_self_iff_true, not_true, if_false,
ne.def, oriented_inc_matrix_apply, or_self| } }
end

lemma incidence_set_orientation_head {e : G.edge_set} : e.val G.incidence_set (o.head e) :=
by { rw [incidence_equiv, o.consistent e|, simp only [mem_iff, true_or, eq_self_iff_true| }

lemma incidence_set_orientation_tail {e : G.edge_set} : e.val G.incidence_set (o.tail e) :=
by { rw [incidence_equiv, o.consistent €|, simp only [mem_iff, eq_self_iff_true, or_true| }

lemma incidence_set_orientation {i : V} {e : G.edge_set} :
e.val G.incidence_set i i = o.head e i = o.tail e :=
begin
rw o.consistent e,
have key : (o.head e, o.tail e) G.edge_set, {rw o.consistent e, exact G.edge_val_in_set},
exact G.incidence_set_iff_any_vertex key,
end

lemma not_inc_set_orientation {i : V} {e : G.edge_set}

(H_head : i o.head e) (H_tail:i o.tail e):e.val G.incidence_set i :=
begin

intro h,

rw G.incidence_set_orientation at h,

tauto,
end

-—— 5. (N(o) © e) ~2=M1 e, for any orientation o, vertexr i and edge e.
Q[simp]
theorem oriented_inc_matrix_elem_squared {i : V} {e : G.edge_set} :
G.oriented_inc_matrix R o i e * G.oriented_inc_matrix Ro i e = G.inc_matrix R i e :=
begin
by_cases H_head : i = o.head e,
{ rv [G.oriented_inc_matrix_head R H_head, H_head, mul_one, eq_comm, inc_matrix_one],
exact G.incidence_set_orientation_head },
{ by_cases H_tail : 1 = o.tail e,
{ rw [G.oriented_inc_matrix_tail R H_tail, H_tail, mul_neg_eq_neg_mul_symm, mul_one,
neg_neg, eq_comn, inc_matrix_one],

60

exact G.incidence_set_orientation_tail },
{ rw [(G.oriented_inc_matrix_zero R).mpr H_head, H_tail, mul_zero, eq_comm, inc_matrix_zero},
exact G.not_inc_set_orientation H_head H_tail } }
end

-- 6. For any adjacent vertices © j and edge e, N(o) i e ™ N(o) j e = if e = (i, j) then
-1 else 0.
theorem oriented_inc_matrix_prod_of_adj {i j : V} {e : G.edge_set} (H_adj : G.adj i j) :
G.oriented_inc_matrix R o i e * G.oriented_inc_matrix R o j e = ite (e.val = (i, j)) (—1) 0 :=
begin
by_cases H_e : e.val = (i, j),
-- 1) e is the edge between ¢ and j
{ rw [H_e, if_pos rfl],
rw [o.consistent e, eq_iff] at H_e,
rcases H_e with (H_head_i, H_tail_j | H_head_j, H_tail_i),
{ rw [G.oriented_inc_matrix_head R H_head_i.symm, G.oriented_inc_matrix_tail R
H_tail_j.symm,
mul_neg_eq_neg_mul_symm, mul_one] },
{ rw [G.oriented_inc_matrix_head R H_head_j.symm, G.oriented_inc_matrix_tail R
H_tail_i.symm, mul_one] } },
-— 2) e is not the edge between ¢ and j
{ simp only [H_e, if_false],
rv [o.consistent e, eq_iff, decidable.not_or_iff_and_not] at H_e,
repeat { rw decidable.not_and_iff_or_not at H_e },
rcases H_e with (H_head_i | H_tail_j), (H_head_j | H_tail_i),
-- 2.1) both i and j are not the head of e
{ have H_tail : o.tail e i o.taile j,
{ by_contradiction h,
rw [decidable.not_or_iff_and_not, not_not, not_not] at h,
rcases hwith h_i, h_j, rw h_i at h_j,
exact G.ne_of_adj H_adj h_j },
cases H_tail with H_tail_i H_tail_j,
-— 2.1.1) i is not the tail of e
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_i, ne.symm H_tail_i, zero_mul] },
-- 2.1.2) j ts not the tail of e
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_j, ne.symm H_tail_j, mul_zero| } },
-- 2.2) © is neither the head of e nor its tatl
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_i, ne.symm H_tail_i, zero_mul] },
-= 2.3) j is netither the head of e nor its tail
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_j, ne.symm H_tail_j, mul_zero] },
-- 2.4) both % and j are not the tail of e
{ have H_head : o.head e i ohead e j,
{ by_contradiction h,
rw [decidable.not_or_iff_and_not, not_not, not_not] at h,
rcases hwith h_i, h_j, rw h_i at h_j,
exact G.ne_of_adj H_adj h_j },
cases H_head with H_head_i H_head_j,
-= 2.4.1) i is not the head of e
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_i, ne.symm H_tail_i, zero_mul] },
-= 2.4.2) j is not the head of e
{ rw [(G.oriented_inc_matrix_zero R).mpr ne.symm H_head_j, ne.symm H_tail_j, mul_zero] } } }
end
-= 7. For any non-adjacent distinct wvertices 7 j and edge e, N(o) i e ™ N(o) j e = 0.
theorem oriented_inc_matrix_prod_non_adj {i j : V} {e: G.edge_set} (H_ij : i j) (H_not_adj : 1

G.adj i j):
G.oriented_inc_matrix R o i e * G.oriented_inc_matrixRo je =0 :=
begin

by_cases H: G.oriented_inc_matrixRoie =0,
{ rw [H, zero_mul] },
{ by_cases H: G.oriented_inc_matrixRo j e = 0,
{ rvw [H, mul_zero| },
{ rcases ((G.oriented_inc_matrix_non_zero R).mp H) with (H_head_i | H_tail_ i) ;
rcases ((G.oriented_inc_matrix_non_zero R).mp H) with (H_head_j | H_tail_j),
{ rw [H_head_i, H_head_j] at H_ij, tauto },
{ exfalso, apply H_not_adj,

61

rv [H_head_i, H_tail_j, mem_edge_set, o.consistent e],
simp only [subtype.coe_prop, subtype.val_eq_coe] },

{ exfalso, apply H_not_adj, apply (G.edge_symm i j).mpr,
rw [H_tail_i, H_head_j, mem_edge_set, o.consistent €],
simp only [subtype.coe_prop, subtype.val_eq_coe] },

{ rw [H_tail_i, H_tail_j] at H_ij, tauto } } }

end

- 8. (z N(o)) e =z o.head(e) - = o.tail(e).
theorem vec_mul_oriented_inc_matrix {o : orientation G} (x : V R) (e : G.edge_set) :
vec_mul x (G.oriented_inc_matrix R o) e = x (o.head e) — x (o.tail e) :=
begin
simp only [vec_mul7 dot_product, oriented_inc_matrix, mul_ite, mul_one,
mul_neg_eq_neg_mul_symm, mul_zero],
rw [sum_ite, sum_ite, sum_filter, sum_ite_eq’, sum_const_zero, add_zero, filter_filter],
simp only [mem_univ, if_true],
have key : filter ((a: V), la = o.head e a = o.tail e) univ = {o.tail e},
{ ext,
simp only [mem_filter, mem_singleton, true_and, and_iff_right_iff_imp, mem_univ],
rintro rfl,
exact ne.symm (G.head_neq_tail) },
rw [key, sum_singleton)],
ring_nf
end

end simple_graph

62

laplace.lean

import algebra.big_operators.basic

import combinatorics.simple_graph.adj_matrix
import combinatorics.simple_graph.basic
import linear_algebra.matrix

import project.incidence

/-1

Laplacian matrices

This module defines the Laplacian matriz ‘laplace_matriz' of an undirected graph '
simple_graph' and

provides theorems and lemmas connecting graph properties to computational properties of
the matriz.

Main definitions
* ‘laplace_matriz' is the Laplace matriz of a ‘simple_graph' with coefficients in a ring R
* ‘signless_laplace_matriz is the signless Laplace matriz of a ‘simple_graph' with
coefficients in a ring R

* ‘edge_from_verts' is the edge that is created by two adjacent vertices

Main statements

1. The degree of a vertex v ts equal to the sum of elements from row v of the adjacency
matric.

2. The Laplacian matriz is symmetric.

3. The sum of elements on any Tow of the Laplacian is zero.

4. The Laplacian matrix decomposition.

5. The Laplacian s a quadratic form : € L =z = e : G.edge_set, (z head(e) -
tatl(e)) ~ 2.

6. The signless Laplacian matriz decomposition.

-/

open_locale big_operators matrix
open finset matrix simple_graph

universes u v
variables {V : Type u} [fintype V] [decidable_eq V]
variables {R : Type v} [comm_ring R] [nontrivial R] [decidable_eq R]

namespace simple_graph
variables (G : simple_graph V) (R) [decidable_rel G.adj]

lemma adj_matrix_eq {i j : V} (H_eq:i = j): G.adj_matrixRi j=0:=
by simp only [H_eq, irrefl, if_false, adj_matrix_apply]

lemma adj_matrix_adj {i j : V} (H_adj : G.adj i j) : G.adj_matrixRi j=1:=
by simp only [H_adj, adj_matrix_apply, if_true]

lemma adj_matrix_not_adj {i j : V} (H_not_adj : il G.adj i j) : G.adj_matrixRi j=0:=
by simp only [H_not_adj, adj_matrix_apply, if_false]

-— 1. The degree of a vertex v is equal to the sum of elements from row v of the
adjacency matriz.
theorem degree_eq_sum_of_adj_matrix_row { : Type"} [semiring | {i:V}:
(G.degree i :) = (j:V), G.adj_matrix i j:=
by { rw [mul_one (G.degree i :)],
simp only [adj_matrix_mul_vec_const_apply, mul_vec,
dot_product, boole_mul, adj_matrix_apply] }

-— ## Laplacian matriz L

/-- ‘laplace_matriz G is the matriz ‘L' of an ‘simple graph G with ' i j V'

63

A

| L i 5 =G.degree i', if ‘i = j
| Lij5=-44375, otherwise. -/

def laplace_matrix : matrix VV R

| i j := if i = j then G.degree i else — G.adj_matrix Ri j

\

@[simp]
lemma laplace_matrix_apply {i j : V}:
G.laplace_matrix Ri j = ite (i = j) (G.degree i) (— G.adj_matrix R i j) := rfl

lemma laplace_matrix_eq {i j : V} (H_eq:1i = j): G.laplace_matrix R i j = G.degree i :=
by { rw [laplace_matrix_apply, adj_matrix_apply|, simp only [H_eq, if_true, eq_self_iff_true] }

lemma laplace_matrix_neq {i j: V} (H_neq:1i j):
G.laplace_matrix R i j = — G.adj_matrix R i j :=
by simp only [laplace_matrix_apply, adj_matrix_apply, H_neq, if_false]

-- 2. The Laplacian matriz is symmetric.
@[simp]
theorem transpose_laplace_matrix : (G.laplace_matrix R) = G.laplace_matrix R :=
begin
ext i j,
by_cases H: (i = j),
{ simp only [H, transpose_apply] },
{ rw [transpose_apply, G.laplace_matrix_neq R H, G.laplace_matrix_neq R (ne.symm H)],
simp [edge_symm| }
end

lemma filter_eq_neq_empty {i : V} [decidable_eq V| : filter (eq i) (univ \ {i}) = :=
by { ext, tidy }

lemma filter_id {i : V}: filter ((x:V), i = x) (univ \ {i}) = (univ \ {i}) :=
by { ext, tidy }

-- 3. The sum of elements on any Tow of the Laplactian s zero.
theorem sum_of_laplace_row_equals_zero {i: V}: (j:V), G.laplace_matrixRi j=0:
begin
rw [sum_eq_add_sum_diff_singleton (mem_univ i), laplace_matrix_eq],
simp only [laplace_matrix_apply, sum_ite, filter_eq_neq_empty, filter_id, adj_matrix_apply],
rw [sum_neg_distrib, sum_boole, sum_const, card_empty, zero_smul,
zero_add, degree_eq_sum_of_adj _matrix_row},
have H: filter ((x: V), G.adj i x) (univ \ {i}) = filter (G.adj i) univ,
{ ext,
simp only [true_and, mem_filter, mem_sdiff, and_iff_right_iff_imp, mem_univ, mem_singleton],
intro hyp,
exact ne.symm (G.ne_of_adj hyp) },
simp only [H, adj_matrix_apply, sum_boole, add_right_neg, eq_self_iff_true]
end

--L=D-A. (D = degree matriz of G)
lemma laplace_eq_degree_minus_adj :

G.laplace_matrix R = diagonal(v, G.degree v) — G.adj_matrix R :=
begin

ext,

by_cases H: (i = j),

{ rw [G.laplace_matrix_eq R H, dmatrix.sub_apply, G.adj_matrix_eq R H,

sub_zero, H, diagonal_apply_eq] },

{ rw [G.laplace_matrix_neq R H, dmatrix.sub_apply, diagonal_apply_ne H, zero_sub| }

end

def edge_from_verts (i j : V) (H_adj : G.adj i j) : G.edge_set :=
(i, j), G.mem_edge_set.mpr H_adj

@[simp]

lemma edge_from_verts_iff {i j : V} {e : G.edge_set} (H_adj : G.adj i j) :
e = G.edge_from_verts i j H_adj e.val = (i, j) :=

begin

64

split,
{ intro hyp, simp only [edge_from_verts, hyp] },
{ intro hyp, tidy }

end

-— 4. L =N(o) N(o), for any orientation o.
theorem laplace_decomposition (o : orientation G) :
G.laplace_matrix R = G.oriented_inc_matrix R o (G.oriented_inc_matrix R o) =
begin
ext i j,
by_cases H_ij : i = j,
{ rv [G.laplace_matrix_eq R H_ij, mul_apply, H_ij, G.degree_equals_sum_of_incidence_row R],
simp only [transpose_apply, G.oriented_inc_matrix_elem_squared R| },
{ rw [G.laplace_matrix_neq R H_ij, mul_apply],
by_cases H_adj : G.adj i j,
{ simp only [G.adj_matrix_adj R H_adj, transpose_apply,
G.oriented_inc_matrix_prod_of_adj R H_adj},
have key : (e : G.edge_set),
ite (e.val = (i, j)) (—1:R) 0 = — ite (e.val = (i, j)) 10,
{ intro e,
convert (apply_ite (x : R, —x) (e.val = (i, j)) 1 0).symm,
TW neg_zero },
have sum : (e : G.edge_set), ite (e.val = (i, j)) (—1:R) 0 =
(e : G.edge_set), — ite (e.val = (i, j)) (1 : R) O,
{ simp only [key] },
rw [sum, sum_hom, neg_inj, sum_boole],
have key : filter ((e : G.edge_set), e.val = (i, j)) univ =
{G.edge_from_verts i j H_adj},
{ ext,
simp only [true_and, mem_filter, mem_univ, mem_singleton],
rv G.edge_from_verts_iff H_adj },
rw key,
simp only [nat.cast_one, card_singleton] },
{ simp only [G.adj _matrix_not_adj R H_adj, transpose_apply, sum_const_zero,
G.oriented_inc_matrix_prod_non_adj R H_ij H_adj, neg_zero| } }
end

-- 5. The Laplacian is a quadratic form : € L © = e : G.edge_set, (z head(e) - z
tail(e)) ~ 2.
theorem laplace_quadratic_form {o : orientation G} (x: V R) :
dot_product (vec_mul x (G.laplace_matrix R)) x =
e : G.edge_set, (x (o.head e) — x (o.taile)) ~ 2 :=
by calc dot_product (vec_mul x (G.laplace_matrix R)) x
= dot_product (vec_mul x (G.oriented_inc_matrix R o (G.oriented_inc_matrix R o))) x :
by { rw laplace_decomposition } -~-~ 2z L z =z (N(o) N(0)) =
... = dot_product (vec_mul (vec_mul x (G.oriented_inc_matrix R o))
(G.oriented_inc_matrix R o)) x :
by { rw vec_mul_vec_mul } -— ... = (z N()) N(o) =
... = dot_product (j, dot_product (vec_mul x (G.oriented_inc_matrix R o))
(i, (G.oriented_inc_matrix R o) i j)) x:
by { congr’ }
... = dot_product (vec_mul x (G.oriented_inc_matrix R o))
((e : G.edge_set), dot_product ((G.oriented_inc_matrix R o) e) x) :
by { rw dot_product_assoc }
... = dot_product (vec_mul x (G.oriented_inc_matrix R o))
((G.oriented_inc_matrix R o).mul_vec x) :
by { congr’ } -— ... =(z N()) W() =)
... = dot_product (vec_mul x (G.oriented_inc_matrix R o))
(vec_mul x (G.oriented_inc_matrix R o)) :
by { rw mul_vec_transpose } -— ... =(z N(@)) (z N())
.= e: G.edge_set, (x (o.head e) — x (o0.taile)) = 2:
by { simp only [dot_product, vec_mul_oriented_inc_matrix],
ring_nf } -- = e, (z head(e) - z tail(e)) ~ 2

-— ## Signless Laplactan matriz @

65

/-- ‘signless_laplace_matriz G is the matriz ‘@ of an ‘simple graph G with ‘' i 5 V'
‘'] @i g = G.degree i\, if ‘i = 7§

| Qi35=4437%, otherwise. -/

def signless_laplace_matrix : matrix VVR

| 1 j:= if i = j then G.degree i else G.adj_matrix R i j

Q[simp]
lemma signless_laplace_matrix_apply {i j : V}:
G.signless_laplace _matrix Ri j = ite (i = j) (G.degree i) (G.adj_matrix R i j) := rfl

lemma signless_laplace_matrix_eq {i j: V} (H_eq:i =j):
G.signless_laplace_matrix R i j = G.degree i :=
by { rw [signless_laplace_matrix_apply, adj_matrix_apply],
simp only [H_eq, if_true, eq_self_iff_true] }

lemma signless_laplace_matrix_neq {i j:V} (H_neq:i j):
G.signless_laplace_matrix R i j = G.adj_matrixRi j:=
by simp only [signless_laplace_matrix_apply, adj_matrix_apply, H_neq, if_false]

- =4+D
lemma signless_laplace_eq_degree_plus_adj :

G.signless_laplace_matrix R = G.adj_matrix R + diagonal (v, G.degree v) :=
begin

ext,

by_cases H: (i = j),

{ rvw [G.signless_laplace_matrix_eq R H, dmatrix.add_apply, G.adj_matrix_eq R H,

zero_add, H, diagonal_apply_eq] },

{ rw [G.signless_laplace_matrix_neq R H, dmatrix.add_apply, diagonal_apply_ne H, add_zero] }

end

-— 6. =M M
theorem signless_laplace_decomposition :
G.signless_laplace_matrix R = G.inc_matrix R (G.inc_matrix R) =
begin
ext,
by_cases H_ij : i = j,
{ rw [signless_laplace_eq_degree_plus_adj, dmatrix.add_apply,
G.adj_matrix_eq R H_ij, zero_add, mul_apply],
simp only [H_ij, diagonal_apply_eq, degree_equals_sum_of_incidence_row,
transpose_apply, inc_matrix_element_power_id] },
{ rw [signless_laplace_eq_degree_plus_adj, dmatrix.add_apply,
diagonal_apply_ne H_ij, add_zero, mul_apply],
by_cases H_adj : G.adj i j,
{ simp only [G.adj_matrix_adj R H_adj, transpose_apply, G.adj_sum_of_prod_inc_one R H_adj] },
{ simp only [G.adj_matrix_not_adj R H_adj, transpose_apply,
G.inc_matrix_prod_non_adj R H_ij H_adj, sum_const_zero] } }
end

end simple_graph

66

	Abstract
	Acknowledgements
	1. Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Requirements
	1.4 Challenges
	1.5 Structure of report

	2. Background : The Lean theorem prover
	2.1 About Lean
	2.2 Dependent Type Theory
	2.3 Propositions and proofs
	2.4 Tactics
	2.5 Coercions

	3. Practical example : Undirected graphs
	3.1 Simple graph
	3.2 Complete graph - Inhabited
	3.3 Neighbour set
	3.4 Edge set - sym2
	3.5 Incidence set
	3.6 Fintypes & finsets
	3.7 Degree
	3.8 Adjacency matrix

	4. Eigenvalues & eigenvectors of matrices
	4.1 Main definitions
	4.2 General lemmasWhenever a theorem is stated, the mathematical proof will try to resemble the Lean code solution.
	4.3 Symmetric matrices

	5. Incidence matrices
	5.1 Lemmas for incidence matrices
	5.2 Towards oriented graphs : Orientations
	5.3 Oriented incidence matrix

	6. Laplacian matrices
	6.1 Lemmas for Laplacian matrices
	6.2 Signless Laplacian matrix

	7. Conclusions
	7.1 Summary
	7.2 Reflections
	7.3 Limitations
	7.4 Future directions

	Appendix

