
University Of Oxford, Somerville College

Final Honour School of Mathematics and

Computer Science

Constructing Distance-Regular

Graphs in SageMath

Ivo Maffei

Supervisor: Dr Dmitrii Pasechnik

Trinity Term 2020

Abstract

Graphs are combinatorial objects that are widely studied and used in almost every field of

computer science. However, many graphs are described via mathematical objects and lack

concrete implementations. The aim of this project is to build a database of distance-regular

graphs in the computer algebra system SageMath.18 We explore the definitions of those

graphs and translate them into practical algorithms that are subsequently implemented

within SageMath. Throughout this process we will meet various combinatorial objects

related to distance-regular graphs and, when needed, implement them as well.

Acknoledgements

I would like to thank my parents for their immense support that made this four-year

dream possible. Without their help, none of this would have happened and I will always

be immensely grateful to them. I want to thank my siblings for their moral support

during this long journey and especially my sister for the great help during the application

process. I thank my grandparents for always caring about me. They took upon themselves

the responsibility to restore my strengths after each exhausting term and they succeeded

brilliantly. I would like to thank all of my friends for their support during the hard periods

and the great memories we collected throughout this unforgettable journey.

Finally, I would like to thank my supervisor for guiding me through this project and my

tutors at Somerville for helping me choose my academic path.

To my parents

Contents

1 Introduction 6

1.1 Report Structure . 7

2 Background knowledge and notation 8

2.1 Graph Theory . 8

2.2 Design Theory . 11

2.3 Linear Algebra . 13

3 Project Approach 15

3.1 Other combinatorial objects . 16

3.2 Efficiency . 16

3.3 Testing . 17

4 New constructions 18

4.1 Graphs with Unbounded Diameter . 22

4.1.1 Double, Half and Fold . 22

4.1.2 Dual Polar graphs . 23

4.1.3 Doubled Odd graph . 25

4.1.4 Bilinear, Alternating and Hermitian form graphs 25

4.1.5 Halved Cube . 26

4.1.6 Grassmann and Doubled Grassmann graphs 26

4.2 Graphs with Unbounded Order . 27

4.2.1 Generalised Polygons . 27

4.2.2 Generalised Quadrangles . 29

4.2.3 Unitary Nonisotropic graph . 34

4.2.4 Hermitian cover . 35

4.2.5 Pasechnik and Brouwer-Pasechnik 36

4.2.6 Transversal Designs . 37

4.2.7 BIBD graphs . 39

4

4.2.8 Taylor graphs . 40

4.2.9 Denniston graphs . 41

4.2.10 Association Schemes . 43

4.2.11 Preparata graph . 44

4.2.12 Symplectic covers . 45

4.2.13 Coset Graphs of Linear Codes . 46

4.2.14 Kasami codes . 47

4.2.15 AB graph . 50

5 Conclusion 51

5.1 Future work . 51

6 References 53

A Code 55

5

1 Introduction

Graphs are among the most widely used and studied concepts in combinatorics, and

distance-regular graphs are a peculiar class of graphs with many symmetric properties.

In particular, they are symmetric with respect to distances, i.e. given a pair of vertices

the number of vertices at distance i from the first and j from the second only depends

on the distance between the chosen pair. However, distance-regular graphs are not only

important within graph theory because, as we will see throughout this report, many other

combinatorial objects are closely linked to them. It follows that many researchers study-

ing combinatorics, coding theory, design theory, finite geometry or even representation

theory will meet distance-regular graphs. Among the first concerns for such researchers

will be whether a distance-regular graph exists for a given set of parameters and if so to

construct an example for further analysis. However, not many resources for such prob-

lems are available. One can find an online database of feasible intersection arrays,4 yet

no graphs are given and for many entries existence has not been proven. Alternatively,

distanceregular.org1 is the only database where graphs are given together with their pa-

rameters, yet it is limited in size. As a result, a dedicated researcher will likely have to

consult the monograph ‘Distance-Regular Graphs’ by Brouwer et al. (1989)5 or the one by

van Dam et al. (2016).19 This project aims to ease such burden by providing a database

of constructions for distance-regular graphs in the open-source computer algebra system

SageMath.18 Moreover, this report describes most constructions in their entirety without

relying on expertise in any field of combinatorics. In this regard, we go beyond what

is available in the two aforementioned monographs and also provide a variety of graphs

which goes much further than the online database distanceregular.org.1 However, building

a complete database of distance-regular graphs is a herculean task so we had to limit the

scope of this project. The first restriction we impose is to construct a graph per set of

parameters. That is, when more examples are known we will not try to enumerate them

all, but only provide one. This design choice emulates SageMath’s approach to generating

other combinatorial objects. Despite this seeming a huge limitation, the sheer number of

distance-regular graphs left is still beyond what one can hope to accomplish during an

6

academic year. As such we limited ourselves to construct all infinite families of graphs

described in the monographs by Brouwer et al. (1989)5 and by van Dam et al. (2016).19

Nevertheless, the reader should be pleased to know that we went further and also con-

structed many “sporadic” examples.

1.1 Report Structure

1. Chapter 2 provides the reader with the background material needed for the remainder

of this report;

2. Chapter 3 describes the broad design choices that lead to the current structure of

our SageMath module;

3. Chapter 4 contains descriptions for the constructions implemented;

4. Chapter 5 summarises the results achieved and includes a reflection on future work.

7

2 Background knowledge and notation

In this chapter we cover the most important definitions that will be used across many

constructions. However, we do assume some very basic knowledge of graphs, linear algebra,

group theory and finite fields. Throughout this report we try to minimise the amount

of theory required for understanding our constructions and so we often develop ad-hoc

definitions and theorems, which therefore may not appear as “standard” to experts in the

field.

2.1 Graph Theory

In this section we will follow the approach of Brouwer et al. (1989).5

Let Γ be a graph. Here we will only deal with connected graphs, so from now on assume

Γ is connected. We denote its set of vertices by VΓ and its set of edges by EΓ. We will

only deal with unordered graphs and write u ∼ v to mean (u, v), (v, u) ∈ EΓ. We call |VΓ|

and |EΓ| respectively the order and size of Γ. Moreover, if Γ is regular, then the degree

of its vertices is called the valency of Γ. We define Γi(v) = {w ∈ VΓ | d(v, w) = i} where

d(v, w) denotes the distance between the two vertices.

Definition 2.1. We say that Γ is a distance-regular graph with diameter d if it has an

intersection array, i.e. there are numbers [b0, ...bd−1; c1, ..., cd] such that given any two

vertices u, v at distance i we have bi = |Γ1(u) ∩ Γi+1(v)| and ci = |Γ1(u) ∩ Γi−1(v)|.

From the above definition, we note that c1 = 1 and that b0 is the valency of Γ. The

numbers bi, ci together with ai = b0 − bi − ci are called the intersection numbers of Γ.

If Γ is distance-regular with diameter 1, then it is a complete graph, while if it has diameter

2, it is called strongly regular. Strongly regular graphs are often studied separately from

other distance-regular graphs and here we will always assume that the diameter is greater

than 2.

We now define a few ways to create new graphs from old ones.

8

Definition 2.2. Given a graph Γ its bipartite double DΓ is defined as follow

VDΓ = VΓ × {0, 1}

EDΓ = { ((u, a), (v, b)) | (u, v) ∈ EΓ ∧ a 6= b }

Similarly,

Definition 2.3. The extended bipartite double EDΓ is

VEDΓ = VDΓ

EEDΓ = { ((u, a), (u, b)) | u ∈ VΓ ∧ a 6= b } ∪ EDΓ

As the name says, both DΓ and EDΓ are bipartite. Quite a few distance-regular graphs

are the (extended) bipartite double of other distance-regular (or strongly regular) graphs.

Conversely to the above definition, one has

Definition 2.4. Let Γ be a bipartite graph where VΓ = X ∪ Y such that X,Y are the two

parts of Γ. The half of Γ is 1
2Γ defined by

V 1
2

Γ = X

E 1
2

Γ = { (x, y) | d(x, y) = 2 in Γ }

If Γ is distance-regular, Brouwer et al. (1989)5 prove that so is 1
2Γ. Note that halving and

(extended) bipartite doubling are not inverses of each other.

A more general approach is the to consider the distance graph.

Definition 2.5. Given a graph Γ the distance-i graph Γi is defined by

VΓi = VΓ

EΓi = { (u, v) | d(u, v) = i in Γ }

With the above definition we can talk about antipodal graphs:

9

Definition 2.6. A graph Γ of diameter d is called antipodal if Γd is a disjoint union of

cliques.

Definition 2.7. Given an antipodal graph Γ of diameter d, its antipodal quotient (or

folding) is Γ̂ where

VΓ̂ = {c | c is a maximal clique of Γd}

EΓ̂ = {(c1, c2) | there is an edge between c1, c2 in Γ}

The relation between Γ and Γ̂ is quite important, so we have a special name for it

Definition 2.8. Let Γ be a regular antipodal graph of diameter d and assume all maximal

cliques in Γd have size r. If Γ̂ is regular with the same valency of Γ, then we call Γ an

antipodal r-cover of Γ̂.

There isn’t any complete classification of distance-regular graphs, but Brouwer et al.

(1989)5 identify three important subclasses and they state that all known graphs of diam-

eter greater than 8 belong to at least one of those. This may not hold true to this day,

but we confirm the result for all known families with unbounded diameter.

Definition 2.9. We say that Γ has classical parameters (d, b, α, β) if it has diameter d

and

bi =

([
d

1

]
b

−
[
i

1

]
b

)(
β − α

[
i

1

]
b

)
(2.1.1)

ci =

[
i

1

]
b

(
1 + α

[
i− 1

1

]
b

)
(2.1.2)

where

[
i

j

]
b

=

j−1∏
l=0

bi − bl

bj − bl
b 6= 1(

i

j

)
b = 1

10

Definition 2.10. We call Γ a psuedo partition graph of diameter d if there are numbers

α and m ∈ {2d, 2d+ 1} such that

bi = (m− i)(1 + α(m− i− 1)) ci = i(1 + α(i− 1)) for 0 ≤ i < d (2.1.3)

cd = d(2d+ 2−m)(1 + α(d− 1)) (2.1.4)

Definition 2.11. We say that Γ is a near polygon if ithere is a number λ such that

bi = b0 − (λ+ 1)ci for 0 ≤ i < d (2.1.5)

and it does not have a subgraph of the form:

Finally, let me introduce the class of distance-transitive graphs since this notion will be

useful for some constructions.

Definition 2.12. Given a graph Γ its automorphism group Aut(Γ) is the group of all

permutations π : VΓ → VΓ such that v ∼ w ⇐⇒ π(v) ∼ π(w).

Definition 2.13. A graph Γ with diameter d is distance-transitive if Aut(Γ) acts transi-

tively on the set EΓi for 0 ≤ i ≤ d. That is for any four vertices v1, v2, u1, u2 such that

d(v1, u1) = d(v2, u2) there is π ∈ Aut(Γ) satisfying {π(v1), π(u1)} = {v2, u2}.

In particular, Aut(Γ) acts transitively on EΓ. Hence, given Aut(Γ) and (u, v) ∈ EΓ, one

can easily obtain the whole EΓ.

2.2 Design Theory

Definition 2.14. An incidence structure (or block design) is tuple (P,B, I) where P , B

are sets and I is a symmetric relation between the two. We call the elements of P points,

the elements of B blocks and I is called the incidence relation.

11

We will often represent the elements of B as subsets of P and interpret I as ∈. However,

to avoid loosing generality we allow for duplicated blocks. Some authors (Brouwer et

al., 1989)5 define an incidence structure using I = ∈ and require blocks to be unique, yet

SageMath does not require uniqueness and so we won’t. When talking about the incidence

structures we will sometimes refer to blocks as lines and use expressions such as “a point

lies on a line” or “two lines intersect”. In particular, we say that two points are collinear

if there is a block incident to both.

Each incident structure has a dual :

Definition 2.15. Given an incidence structure D = (P,B, I) its dual is the incidence

structure D∗ = (B, P, I).

The incidence structure we will use the most in this report comes from the idea of projective

geometry. There are various ways to define when an incidence structure is a projective

space, but here we will use the following:

Definition 2.16. Let V be a vector space. The projective space Pk(V) = (P,L) is an

incidence structure where P = {〈v〉 | v ∈ V \ {0}} and L = {L | L ≤ V ∧ dim(L) = k}.

We call P the set of projective points and, if k = 2, we call L the set of projective lines.

More generally we call a d-subspace of V a projective (d− 1)-subspace of V . Since we will

almost always pick V = (Fq)n, we will write PG(n− 1, q) for P2((Fq)n) and PG(n− 1, e−

1, q) for Pe((Fq)n). Note also that we will represent L ∈ L as a subset of P .

Given an incidence structure D = (P,B) one can obtain quite a few graphs out of it. In

particular, we define the following three methods:

Definition 2.17. Given an incidence structure (P,B) its point graph is the graph with

vertices P where p ∼ q if they are collinear.

Definition 2.18. Given an incidence structure (P,B) its line graph is the graph with

vertices B where B ∼ B′ if they have a common point.

12

Definition 2.19. Given an incidence structure (P,B) its incidence graph is the bipartite

graph with vertices P × B where p ∼ B if p ∈ B.

Note that the point graph of the dual of D is the line graph of D and that their incidence

graphs are equal.

2.3 Linear Algebra

Most of the constructions in this project will involve some manipulation of vector spaces.

Following Grove (2002),14 we will define a few different forms which will appear quite

often in this report.

Definition 2.20. Let V be a vector space over a field K. Then a bilinear form is a map

〈−,−〉 : V × V → K satisfying

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 〈λv,w〉 = λ〈v, w〉

〈v, u+ w〉 = 〈v, u〉+ 〈v, w〉 〈v, λw〉 = λ〈v, w〉

Note that we can associate a matrixA to any given bilinear form 〈−,−〉 so that 〈v, w〉 = vTAw.

Conversely, any matrix defines a bilinear form in the above way.

Definition 2.21. Let V be a vector space over a field K. Then a map Q : V → K is a

quadratic form if

Q(λv) = λ2Q(v)

B(v, w) = Q(v + w)−Q(v)−Q(w) is bilinear

We say that a vector v 6= 0 is isotropic if Q(v) = 0. In a similar manner, we say that

W ≤ V is totally isotropic if ∀w ∈W Q(w) = 0.

Intuitively, we can associate a matrix A to Q so that Q(v) = vTAv.

13

Definition 2.22. Let V be a vector space over a field Fq2. Then we say that

〈−,−〉 : V × V → Fq2 is a Hermitian form if

〈v + u,w〉 = 〈v, w〉+ 〈u,w〉 〈λv,w〉 = λ〈v, w〉

〈v, w〉 = 〈w, v〉 where x = xq

Similarly to the bilinear forms, we can find a matrix A such that 〈v, w〉 = vTAw. Con-

versely, any matrix A with the property that A = A
T

defines an Hermitian form. The

notion of isotropicity extends to Hermitian forms where we say that v 6= 0 is isotropic if

〈v, v〉 = 0.

The above two forms are associated to some important groups that we define below.

Definition 2.23. Given a quadratic form, the general orthogonal group GO(n, q) is the

group of all linear maps on (Fq)n that preserve the quadratic form.

It turns out that there are essentially three different quadratic forms and so three non-

isomorphic groups that are often denoted by GO(2k + 1, q), GO+(2k, q) and GO−(2k, q).

Definition 2.24. Given an Hermitian form, the general unitary group GU(n, q) is the

group of all linear maps on (Fq2)n that preserve the Hermitian form.

This time all Hermitian form are essentially equivalent and so there is only one group

GU(n, q).

We will often talk about the action of the above groups on a vector space V . Unless stated

otherwise, such action is assumed to be the standard action on projective points. That is,

if M ∈ G, then M acts on the projective point 〈v〉 via M · 〈v〉 = 〈Mv〉. In particular, if v

is “normalised”, i.e. its first non-zero entry is 1, then M sends v to the “normalisation”

of Mv.

14

3 Project Approach

This chapter will explain the general structure of the SageMath module implemented and

address a few design choices.

Following SageMath’s praxis, all constructions will be available through the function

distance_regular_graph. This can be used to build a graph given its intersection ar-

ray or to check whether such graph exists. Moreover, it is the only function that should

be available outside the module. We want the design of such function to be as simple

as possible and flexible enough to make it easy to add/modify constructions. Hence, all

sporadic constructions are added to a dictionary object mapping intersection arrays to

constructions. Similarly, we have a list of pairs (is_f, f) where

is_f(array) =

params if f(params).intersection_array() == array

False otherwise

(3.0.1)

1 de f distance_regular_graph (array) :

2 check array makes sense

3 i f array in sporadic_database :

4 re turn sporadic_database [array]

5 f o r (is_f , f) in list_of_constructions :

6 t = is_f (array)

7 i f t i s not False : r e turn f (t)

8 check feasibility of array

This approach is very flexible as it allows the addition of new constructions easily. In order

to check whether an intersection array is feasible, i.e. there might be a graph for it, we

decided to take advantage of another SageMath package. In particular, Vidali developed

the SageMath module drg23 and used it to prove nonexistence results.22 During the course

of the project we reported a few bugs, but we did not contribute to the package. Despite

15

the great work of Vidali, the feasibility check is quite slow. Hence, we decided to postpone

its use after we known that the graph can’t be built. However, we will perform some

basic checks at the start of the function to avoid repeating those checks in all “selection”

functions is_f.

Most of the constructions we will see build a graph by finding its set of edges. This can

be achieved in essentially three ways:

1. Generate EΓ using other mathematical objects (such as groups);

2. Iterate through VΓ × VΓ and check for adjacency;

3. Iterate through VΓ and construct a set of neighbours for any given vertex.

It follows that when describing a construction is enough to show a way to efficiently check

for adjacency or how to construct the set of neighbours for any given vertex.

3.1 Other combinatorial objects

As we will see in section 4, some constructions rely on first building other combinatorial

objects. Often these objects are already constructed in SageMath, yet SageMath won’t

provide all known examples of such objects. It follows that we would need to implement

some constructions of those combinatorial objects to obtain our distance-regular graphs.

However, we need to limit the scope of this project, hence new constructions will be added

only when necessary for testing purposes. On the other hand, we will make sure that the

graph-related code won’t need to change if new objects are added.

3.2 Efficiency

Efficiency of the constructions is an important matter as naive implementations can easily

be very slow. However, since the start of the project, the concept of “slow” changed

drastically. SageMath is not built with speed in mind as the choice of Python should

16

highlight. Most SageMath’s object are very flexible and carry a lot of features, but this

has the drawback that they end up being relatively slow to handle. Moreover, code clarity

is always preferred to hacks and tricks to improve performance, hence SageMath can be

significantly slower than other systems like GAP.12 It follows that it is quite common

to have SageMath run for a few minutes when building big objects. In particular, the

slower constructions of the project are those that require other combinatorial objects. It

follows that we mainly focused on the correctness of our implementations and worry about

their efficiency only when they were slow even for SageMath’s standards. Nevertheless,

to try to mitigate the performance issues, we developed everything using Cython2 which

is a language with Python like syntax that gets compiled to C. Despite our efforts, some

constructions may take up to 40 minutes when building graphs of size in the order of 105.

See A.3 for sample outputs and timings.

3.3 Testing

All constructions used are proved to be correct by their original designers. In addition,

in section 4 we will prove that our algorithms are equivalent to the given constructions.

Nevertheless, the actual implementation may have bugs. It follows that testing was a cru-

cial aspect of the project. Our main concern is that the graphs built have the intersection

array they are expected to. Hence we developed testing scripts with this purpose. For

any infinite construction, we built functions that generate all small enough possible inputs

and their expected intersection arrays. Thus, testing boils down to iterating through all

such inputs, constructing the graph and then checking that its intersection array matches

the expected result. This checks that all constructions work as expected. Moreover, this

ensures that the invariant 3.0.1 is respected. Throughout this process we discovered some

bugs in the drg package23 developed by Vidali. However, all such bugs were reported and

fixed. See A.2 for the actual testing scripts used.

17

4 New constructions

Explaining and proving the correctness of all constructions will require much more space

than what is available. Hence, we only focus on the constructions for infinite families

of graphs. However, to provide the reader with a general overview, we grouped all the

constructions in the tables 1, 2 and 3. Table 2 contains the families of graphs with un-

bounded diameter that can be built with distance_regular_graph. Other such families

are known, yet any family omitted will have their parameters covered by some other fam-

ily listed in the table. Table 3 lists all constructions of families of graphs with bounded

diameter but unbounded order. Table 3 may not be a comprehensive list as table 2 is.

However, it does include all constructions mentioned in the monographs by Brouwer et

al. (1989)5 and by van Dam et al. (2016).19 Table 1, instead, includes all new “sporadic”

constructions.

Name of graph intersection array

Ivanov Ivanov Faradjev [7, 6, 4, 4, 4, 1, 1, 1; 1, 1, 1, 2, 4, 4, 6, 7]

Double of truncated binary
Golay code graph

[22, 21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21, 22]

Double of binary Golay
code graph

[23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23]

Twice shortened binary
Golay code graph

[21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21]

Thrice shortened binary
Golay code graph

[21, 20, 16, 9, 2, 1; 1, 2, 3, 16, 20, 21]

Shortened binary Golay
code graph

[22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22]

Shortened extended ternary
Golay code graph

[22, 20, 18, 2, 1; 1, 2, 9, 20, 22]

Double of Hoffman
Singleton graph

[7, 6, 6, 1, 1; 1, 1, 6, 6, 7]

Double of Sims Gewirtz
graph

[10, 9, 8, 2, 1; 1, 2, 8, 9, 10]

Double of strongly regular
graph (77, 16, 0, 4)

[16, 15, 12, 4, 1; 1, 4, 12, 15, 16]

18

Double og Higman Sims
graph

[22, 21, 16, 6, 1; 1, 6, 16, 21, 22]

Coxeter graph [3, 2, 2, 1; 1, 1, 1, 2]

Lint Schrijver graph [6, 5, 5, 4; 1, 1, 2, 6]

Doubly truncated Witt
graph

[7, 6, 4, 4; 1, 1, 1, 6]

Distance 3 doubly
truncated Golay code graph

[9, 8, 6, 3; 1, 1, 3, 8]

J2 graph [10, 8, 8, 2; 1, 1, 4, 5]

Foster graph [6, 4, 2, 1; 1, 1, 4, 6]

Conway Smith graph [10, 6, 4, 1; 1, 2, 6, 10]

Shortened ternary Golay
code graph

[20, 18, 4, 1; 1, 2, 18, 20]

Locally GQ (4, 2) graph [45, 32, 12, 1; 1, 6, 32, 45]

3O7(3) graph [117, 80, 24, 1; 1, 12, 80, 117]

Extended binary Golay
code graph

[24, 23, 22, 21; 1, 2, 3, 24]

Leonard graph [12, 11, 10, 7; 1, 2, 5, 12]

A.25 Cocliques of Hoffman
Singleton graph

[15, 14, 10, 3; 1, 5, 12, 15]

Truncated binary Golay
code graph

[22, 21, 20; 1, 2, 6]

Binary Golay code graph [23, 22, 21; 1, 2, 3]

Large Witt graph [30, 28, 24; 1, 3, 15]

Truncated Witt graph [15, 14, 12; 1, 1, 9]

Extended ternary Golay
code graph

[24, 22, 20; 1, 2, 12]

Doubly truncated binary
Golay code graph

[21, 20, 16; 1, 2, 12]

Table 1: New sporadic graphs implemented

19

Name of family parameters intersection array

Johnson graph* n, d, n ≥ 2d cl.p. (d, 1, 1, n− d)

4.1.1 Folded Johnson
graph

n
bi = (n− i)2, ci = i2

cd = d2(2d+ 2− n), d = bn2 c

Odd graph* n bi = n− ci, ci = b i+1
2 c, d = n− 1

4.1.3 Doubled odd graph n bi = n+ 1− ci, ci = bn+1
2 c, d = 2n+ 1

Hamming graph* d, e cl.p. (d, 1, 0, e− 1)

4.1.5 Halved Cube n cl.p. (bn2 c, 1, 2, 2d
n
2 e − 1)

Folded cube* n
bi = n− i, ci = i

cd = d(2d+ 2− n), d = bn2 c

4.1.1 Folded halved cube n
bi = (n− i)(2n− 2i− 1), ci = i(2i− 1)
cd = d(2d+ 2− n)(2d− 1), d = bn2 c

4.1.4 Bilinear form
graph

d, e, q, d ≤ e cl.p. (d, q, q − 1, qe − 1)

4.1.4 Alternating form
graph

n, q cl.p. (bn2 c, q
2, q2 − 1, qα − 1)

α = 2dn2 e − 1

4.1.4 Hermitian form
graph

d, q2 cl.p. (d,−q,−q − 1,−(−q)d − 1)

Polygon* n
d = bn2 c, b0 = 2, cd = 2d+ 2− n
bi = 1, ci = 1 for 1 ≤ i ≤ d− 1

4.1.2 Dual polar graph† d, q, e cl.p (d, q, 0, qe), e ∈ {0, 1, 2, 3
2 ,

1
2}

Dual polar graph* e = 1
2 , d, q2 cl.p.

(
d,−q, q1 + q

1− q
, q

(−q)d + 1

1− q

)
4.1.1 Halved dual polar

graph
n, q

cl.p.
(
bn2 c, q

2, q2 + q,
[
m+1

1

]
q
− 1
)

m = 2dn2 e − 1

4.1.6 Grassmann graph n, d, q, n ≥ 2d cl.p.
(
d, q, q,

[
n−d+1

1

]
q
− 1
)

4.1.6 Doubled
Grassmann graph

e, q bi =
[
e+1

1

]
q
− ci, ci =

[
b i+1

2
c

1

]
q

d = 2e+ 1

Table 2: Families of graphs with intersection arrays of unbounded length; cl.p. stands for
classical parameters; q is assumed to be a prime power
* the family was already implemented in SageMath
† for e = 1, 1

2 ,
3
2 the family was already imlpemented in SageMath

20

Name of family parameters intersection array

4.2.1 Generalised
dodecagon*

s, t [st+ s, st, st, st, st, st; 1, 1, 1, 1, 1, t+ 1]

4.2.1 Generalised
octagon†*

s, t [st+ s, st, st, st; 1, 1, 1, t+ 1]

4.2.1 Generalised
hexagon*

s, t [st+ s, st, st; 1, 1, t+ 1]

4.2.2 GQ with
spread†

s, t [st, s(t− 1), 1; 1, t− 1, st]

4.2.3 Unitarty
nonisotropic

q [q2 − q, q2 − q − 2, q + 1; 1, 1, q2 − 2q] q > 2

4.2.4 Hermitian
cover*

q, r
where r | q2− 1

[q3, (q3 − 1)(r − 1)/r, 1, 1, (q3 − 1)/r, q3]
[q3, (r − 1)(q + 1)m, 1, 1, (q + 1)m, q3]

where m = (q2 − 1)/r

4.2.5
Brouwer-Pasechnik

q [q3 − 1, q3 − q, q3 − q2 + 1; 1, q, q2 − 1]

4.2.5 Pasechnik q [q3, q3 − 1, q3 − q, q3 − q2 + 1; 1, q, q2 − 1, q3]

4.2.6 TD graph† m,u [mu,mu− 1, (m− 1)u, 1; 1, u,mu− 1,mu]

4.2.7 BIBD graphs† v, k [k, k − 1, k − λ; 1, λ, k] where λ = k(k−1)
v−1

4.2.8 Taylor graph† k, µ [k, µ, 1; 1, µ, k]

4.2.9 Denniston
graphs

n where n = 2i

for some i > 0

[n2 − n+ 1, n(n− 1), n(n− 1), n;
1, 1, (n− 1)2, n2 − n+ 1]

4.2.10 Association
schemes†

n, r [rn, (r − 1)(n− 1)/r, 1; 1, (n− 1)/r, n]

4.2.11 Preparata
graphs

t, i [22t − 1, 22t − 2i+1, 1; 1, 2i+1, 22t − 1]

4.2.12 Symplectic
cover

q, n, r
where r | q;
n ≥ 2 even

[qn − 1, (r − 1)qn/r, 1; 1, qn/r, qn − 1]

4.2.14 Kasami gaphs*
s, t prime

powers of 2

[q2 − 1, q2 − q, 1; 1, q, q2 − 1] if s = q2, t = q
[q2j+1−1, q2j+1−q, q2j(q−1)+1; 1, q, q2j−1]

if s = q2j+1, t = qm

4.2.14 Extended
Kasami graphs*

s, t prime
powers of 2

[q2, q2 − 1, q2 − q, 1; 1, q, q2 − 1, q2]
if s = q2, t = q

[q2j+1, q2j+1 − 1, q2j+1 − q, q2j(q − 1) + 1;
1, q, q2j − 1, q2j+1] if s = q2j+1, t = qm

4.2.15 AB graphs n [2n − 1, 2n − 2, 2n−1 + 1; 1, 2, 2n−1 − 1]

Table 3: Families of graphs with fixed diameter and unbounded order
* other constraints on the parameters are needed, look at the related section in chapter 4
† the construction relies on the existence of other combinatorial objects, which might not
exist for certain parameters

21

4.1 Graphs with Unbounded Diameter

4.1.1 Double, Half and Fold

In section 2.1 we introduced a few ways to obtain new graphs from old ones. The imple-

mentation of functions which compute the bipartite double, extended bipartite double or

the fold of a graph is quite straightforward since we simply follow the definitions. However,

computing the half of a graph can be slightly optimised.

Let Γ be a bipartite graph with parts X,Y . The naive approach to compute 1
2Γ is to

compute a part X and then to iterate through it to find all pairs of vertices at distance 2.

However, under the assumption that Γ is connected so is 1
2Γ. This gives a more efficient

way to compute 1
2Γ by exploring the whole of 1

2Γ by performing BFS. This is exactly what

we do.

1 pick v ∈ Γ

2 queue . add (v)

3 whi l e queue i s not empty :

4 v = queue . pop ()

5 candidates = [x f o r c in Γ1(v) f o r x in Γ1(c)]

6 f o r w in candidates :

7 i f (v, w) 6∈ EΓ : #then d(v ,w) = 2

8 i f w i s already in 1
2Γ : cont inue

9 add w , (v, w) to 1
2Γ

10 queue . add (w)

Note that by doing so we don’t need to compute X independently via another BFS.

22

4.1.2 Dual Polar graphs

There are six families of graphs which fall under the name of dual polar graphs. Of these

six, three were already implemented in SageMath. Here I will describe the algorithm used

to implement the remaining three.

The graphs constructed will be denoted by O(n, q), O+(n, q) and O−(n, q). Brouwer et

al. (1989)5 describe those graphs as follow:

Let V be a finite vector space of dimension n over Fq equipped with a nondegenerate

quadratic form. The maximal totally isotropic subspaces of V constitute the vertices of

the graph. They all have the same dimension k and two subspaces U,W are adjacent if

dim(U ∩W) = k − 1.

This construction generates three different families because there are essentially three dif-

ferent quadratic forms on V . In particular, if n is odd, then there is essentially only one

quadratic form and we get the graph O(n, q). However, if n is even, then there are two

different choices for the quadratic form and so we get the graphs O+(n, q) and O−(n, q).

Witt’s theorem (Grove, 2002)14 implies that a form-preserving linear map between sub-

spaces of V can be extended to a form-preserving linear map V → V . Since any linear

map between two totally isotropic subspaces is trivially form-preserving, this implies that

the groups GO(n, q), GO+(n, q) and GO−(n, q) act transitively on the totally isotropic

subspaces. It follows that we can build the graphs using the following template:

1 G = GOe(n, q)

2 find K a maximal totally isotropic subspace

3 vertices = orbit of G on K

4 f o r v, u in vertices :

5 check i f v ∼ u

The groups GOe(n, q) can be built in SageMath using GAP,12 so the hard part is finding

K. To do so, we designed the following algorithm:

23

1 let M be the matrix of the quadratic form

2 let K be the kernel of the matrix

3 whi l e K i s not maximal :

4 find an isotropic vector v not in K

5 i f Span (K ∪ {v}) i s totally isotropic :

6 add v to K

The above works quite well since the kernel of M already gives us a good start and to find

the isotropic vectors we can keep a set of “candidates” which we update as K expands.

Moreover, to test whether Span(K ∪ {v}) is totally isotropic we only need to check a

condition on the basis of K as shown by the below lemma.

Lemma 4.1. Let V = (Fq)n be a vector space with a quadratic form Q(x) = xTMx.

Let W = 〈v1, . . . , vk〉 be a subspace of V . Then W is totally isotropic if and only if

∀i 6= j viMvi = 0 and viMvj + vjMvi = 0.

Proof. (⇒) Since W is totally isotropic, then vi ∈W for any i and so 0 = Q(vi) = viMvi.

Similarly for all i 6= j we have vi + vj ∈W so

0 = Q(vi + vj)

= (vi + vj)M(vi + vj)

= viMvi + vjMvj + viMvj + vjMvi

= viMvj + vjMvi

24

(⇐) Let v ∈W . We need to show Q(v) = vMv = 0. Note that v =
∑k

i=1 λivi. So

Q(v) = (

k∑
i=1

λivi)M(

k∑
j=1

λjvj)

=

k∑
i=1

k∑
j=1

λiλj(viMvj)

=

k∑
i,j=1
i<j

(λiλjviMvj + λjλivjMvi) +

k∑
i=1

λ2
i viMvi

=
k∑

i,j=1
i<j

λiλj(viMvj + vjMvi) + 0 = 0

4.1.3 Doubled Odd graph

The doubled odd graph DO(n) is the bipartite double of the Odd graph. However, there

is a quicker construction as described by Brouwer et al. (1989).5

Let X = {1, . . . , 2n+ 1}. Let all subsets of size n or n+ 1 be the vertices of DO(n). Two

sets X,Y are adjacent if X ⊂ Y or Y ⊂ X.

The trivial implementation that iterates trough the subsets of X turns out to be quite

slow in SageMath. Hence, we represent a subset of X via a binary vector v of length 2n+1

where v[i] = 1 means that i is in the set. So we iterate through the vectors of weight n+ 1

and generate their neighbours by flipping one entry of v from 1 to 0.

4.1.4 Bilinear, Alternating and Hermitian form graphs

Definition 4.2. Let V be a vector space over K. An alternating form on V is a (bilinear)

map 〈v, w〉 = vTAw defined by skew-symmetric matrices A whose diagonal entries are 0.

The bilinear form graphBil(d, e, q), the alternating form graphAlt(n, q) and the Hermitian

form graph Her(n, q2) all have similar constructions, so we introduce a fictitious graph

25

called the “form graph” Form(V,W, k).

The vertices of Form(V,W, k) are all the appropriate forms on V ×W , where f ∼ g if

rank(f − g) = k.

Note that there is no such graph as the “form graph”, yet using the description above we

have

Bil(d, e, q) = Form((Fq)d, (Fq)e, 1) using bilinear forms

Alt(n, q) = Form((Fq)n, (Fq)n, 2) using alternating forms

Her(n, q2) = Form((Fq2)n, (Fq2)n, 1) using Hermitian forms

Let me clarify that those three families of graphs are often defined as here (Brouwer et

al., 1989)5 but without introducing any “form graph”. The concrete algorithm we imple-

mented represents a form f by its matrix Af and precomputes the set

S = {Af | rank(Af) = k}. This allows to define the neighbours ofAf by {Af +Bg | Bg ∈ S}.

Computing the rank of a matrix is relatively expensive and that’s why precomputing S is

a significant improvement over checking rank(f − g) for any pair of vertices.

4.1.5 Halved Cube

First recall that the cube graph is just another name for the Hamming graph H(n, 2). It

follows that we could compute 1
2H(n, 2) by using the halve function described in 4.1.1.

However, Godsil (2003)13 proves that 1
2H(n, 2) = H(n− 1, 2)1-or-2, i.e. the distance 1-or-2

graph of H(n− 1, 2). This is a significant improvement since H(n− 1, 2) has half the size

of H(n, 2). So we build H(n − 1, 2) and from this we only need to add edges between

vertices at distance 2.

4.1.6 Grassmann and Doubled Grassmann graphs

Van Dam et al. (2016)19 describe the Grassmann graph Jq(n, e) as follow:

Let V = (Fq)n, then the vertices of Jq(n, e) are the e-dimensional subspaces of V . Two

26

vertices U,W are adjacent if dim(U ∩W) = e− 1.

Computing the intersection U ∩W boils down to finding the kernel of a matrix composed

by the basis matrices of U and W . It turns out that, for the relatively small input

values we use, it is quicker to compute U ∩W as the intersection of sets. In particular,

we use the projective space PGq(n − 1, e − 1) to construct all e-dimensional subspaces

as sets of projective points. Then computing U ∩W is relatively fast and one ensures

dim(U ∩W) = e− 1 by |U ∩W | = qe−1
q−1 .

The Double Grassmann DJq(e) is the bipartite double of the distance-e graph of Jq(2e+

1, e) (van Dam et al., 2016).19 However, this construction is not optimal as it involves

computing the matrix of all distances of Jq(2e+1, e). Brouwer et al. (1989)5 give a different

description of the graph:

Let V = (Fq)2e+1. The vertices of DJq(e) are the e-dimensional and (e + 1)-dimensional

subspaces of V . Let U ∼W if U ⊂W or W ⊂ U .

Hence we can constrcut DJq(e) by iterating through the (e + 1)-dimensional subspaces

of V and for each such subspace W we find its neighbours by iterating through the e-

dimensional subspaces of W .

4.2 Graphs with Unbounded Order

4.2.1 Generalised Polygons

Van Maldeghem (2012)21 defines a generalised polygon as follow

Definition 4.3. We say that an incidence structure (P,L) is a (weak) generalised n-gon

of oder (s, t) if

1. each point is incident with t+ 1 lines for t ≥ 1

2. each line is incident with s+ 1 points for s ≥ 1

3. the diameter of the incidence graph is n

27

4. the girth of the incidence graph is 2n

Our interest stems from the fact that the point graph of a generalised n-gon is distance-

regular (Brouwer et al., 1989).5 Throughout this section, I will write GP (n, s, t) for the

generalised n-gon of order (s, t) and Γ(n, s, t) for its point graph.

First note that a GP (n, 1, 1) is an ordinary polygon. Feit and Higman (1964)11 prove that,

if we exclude ordinary polygons, then finite examples of generalised n-gons exist only for

n ∈ {2, 3, 4, 6, 8, 12}. In addition, note that the point graph of a generalised n-gon has

diameter bn2 c since its incidence graph has diameter n. So we are only interested in cases

where n ≥ 6. In particular, all known generalised n-gons for n ∈ {6, 8, 12} are listed in

the table below where q is a prime power.

n order (s,t)

6 (1, q), (q, 1), (q, q), (q, q3), (q3, q)

8 (1, q), (q, 1), (22k+1, 24k+2), (24k+2, 22k+1)

12 (1, q), (q, 1)

To further simplify our constructions we have that:

1. Γ(2n, 1, t) is the incidence graph of GP (n, t, t);

2. The dual of a GP (n, s, t) is a GP (n, t, s);

3. Given Γ(n, s, t) we can deduce GP (n, s, t).

For 3 we have that the set of lines of GP (n, s, t) is the set of singular lines of Γ(n, s, t)

(Brouwer et al., 1989).5 The set of singular lines is L = {{v, w}⊥⊥ | v ∼ w} where

S⊥ =
⋂
v∈S({u | u ∼ v}∪{v}). So if we can compute Γ(n, s, t), then we can use the above

formula to compute the line graph of GP (n, s, t) which is Γ(n, t, s).

Note that Γ(4, q, q) is a strongly-regular graph and GP (3, q, q) is PG(2, q), so the con-

struction of Γ(8, 1, q) and Γ(6, 1, q) is straightforward. Therefore, the only “complicated”

constructions are for Γ(6, q, q), Γ(6, q, q3) and Γ(8, 22k+1, 24k+2). All the above graphs are

28

called graphs of Lie type since they are associated to the Lie groups G2(q), 3D4(q) and

2F4(q) (Brouwer et al., 1989).5 In particular, all the above groups act transitively on the

edges of their respective graphs. The GAP package AtlasRep25 contains constructions

for these groups for small enough values of q and bigger values would lead to unfeasibly

large graphs. So we build Γ(6, q, q), Γ(6, q, q3) and Γ(8, 22k+1, 24k+2), by constructing the

related group and then computing the orbit of the group on an edge that we previously

found by hand. To help us find an edge we note that if u ∼ v and k is the valency of the

graph, then v must be in a k-orbit of the stabiliser of u under the related group.

4.2.2 Generalised Quadrangles

There are quite a few different definitions for generalised quadrangles, but here we simply

say that it is a generalised n-gon with n = 4. However, we will later need the following

property from Payne and Thas (1984).15

Proposition 4.4. Let GQ = (P,L) be a generalised quadrangle, then given a line l ∈ L

and a point p ∈ P outside l, there is a unique line l′ ∈ L incident with l which contains p.

If the above were not true, then the generalised quadrangle would contain a triangle,

which translate to a cycle of length 6 in the incidence graph. This can’t happen since the

incidence graph must have girth 8.

Definition 4.5. Given a generalised quadrangle GQ = (P,L), an ovoid of GQ is a set of

points O ⊆ P such that any line of GQ intersects O in exactly one point. A spread of GQ

is a set of lines S ⊆ L such that S partitions P , i.e. any point is in exactly one line of S.

One should note that the dual of a generalised quadrangle GQ of order (s, t) is a generalised

quadrangle GQ′ of order (t, s) and that an ovoid in GQ maps to a spread in GQ′.

Brouwer et al. (1989)5 describe the following way to obtain distance-regular graphs from

generalised quadrangles with a spread:

Given a generalised quadrangle GQ = (P,L) of order (s, t) with t > 1 and a spread S.

The point graph of the incidence structure (P,L \ S) is a distance-regular graph.

29

Computing the point graph of an incidence structure is straightforward so the issues lie

in constructing generalised quadrangles with spreads (or ovoids) since SageMath doesn’t

have any such constructions. To limit the scope of this project, we implemented only

one infinite family. In particular, Payne and Thas (1984)15 describe a construction of the

generalised quadrangle known as H(d, q2), where d = 3, 4, as follow:

Construct the projective space PG(d, q2) and let H = {〈v〉 | 〈v, v〉 = 0}, where 〈−,−〉

is a nondegenerate Hermitian form. Then the points and lines of H form a generalised

quadrangle of order (q2, q) for d = 3 and (q2, q3) for d = 4.

Moreover, Thas and Payne (1994)17 proved that H(3, q2) always has ovoids using the

following theorem:

Theorem 4.6. If the generalised quadrangle S of order (s, t) has a subquadrangle S′ of

order (s, t′), then any point z ∈ S \S′ is collinear to all 1 + st′ points of an ovoid Oz of S′

In particular, we can embed H(3, q2) in H(4, q2), then by picking z in the latter but not

in the former we can find an ovoid. The following lemma will turn out to be useful.

Lemma 4.7. Using the notation of theorem 4.6 we have that z is collinear to p ∈ S′ if

and only if p is in Oz.

Proof. Therorem 4.6 already proves that all points in Oz are collinear to z, so we only

need to prove the converse.

Assume for a contradiction that z is collinear to p ∈ S′, but p /∈ Oz. Then p must lie on at

least one line, say l. By definition of an ovoid, l intersects Oz in a unique point q. Then

we have that z is collinear to q. Hence, z is collinear to two distinct points that lie on the

same line. This contradicts 4.4.

Constructing H(3, q2) is not complicated as we can use the same idea of section 4.1.2.

In particular, recall the generalised unitary group GU(d, q) from section 2.3. Then using

Witt’s theorem (Grove, 2002)14 we have that GU(d, q) acts transitively on all totally

isotropic subspaces. Moreover, such group can be constructed in SageMath through the

GAP package and the invariant Hermitian form preserved by that construction will have

30

n× n matrix Jn = (δi+j,n+1). To help visualise Jn note that for n = 4 we have

J4 =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

In the GAP package, vectors are row vectors, so the Hermitian form is defined by

〈x, y〉 = xJyT where x = xq. For the reminder of this section we adopt the same conven-

tions of the GAP package to reduce the differences between the code and my explanation.

To construct H(3, q2) is enough to find an isotropic vector and a totally isotropic projective

line since the action of GU(4, q) will generate all other projective points and lines. Since

we know J , the task is relatively easy. In particular, let ei be the standard basis, then e1

is isotropic and Span({e1, e2}) is totally isotropic.

Next, we need an embedding of H(3, q2) in H(4, q2). That is, we need an injective map

φ : PG(3, q2)→ PG(4, q2) such that the image of H(3, q2) is a subquadrangle of H(4, q2).

A map that works is given by φ((a, b, c, d)) = (a, b, 0, c, d). In particular, φ is a valid

embedding since 〈v, v〉PG(3,q2) = 0 ⇐⇒ 〈φ(v), φ(v)〉PG(4,q2) = 0. Therefore, the points of

H(3, q2) will map to points of H(4, q2) and the lines of H(3, q2) will be contained in the

lines of H(4, q2).

Next we need z ∈ H(4, q2) \H(3, q2). So we have the following lemmas:

Lemma 4.8. Assume q = pk where p is an odd prime and k > 0, and let a = p−1
2 . Then

the vector v = (0, 1, 1, a, 0) is a point of H(4, q2).

Proof. v is a point of H(4, q2) if and only if it is isotropic with respect to the Hermitian

form given by J5, which we shall write simply as J . So we can compute vJ = (0, a, 1, 1, 0).

Hence vJvT = (0, a, 1, 1, 0)(0, 1, 1, aq, 0)T . Now note that a is an integer and so a ∈ Fq.

Thus aq = a by Fermat Little Theorem. It follows that vJvT = 0+a+1+a+0 = 2a+1 =

(p− 1) + 1 = p = 0 since we are in a field with characteristic p. Thus v is isotropic.

31

Lemma 4.9. Assume q = 2k where k > 0 and let g be a primitive root of Fq2. If a = gq−1,

then the vector v = (0, 1, a+ 1, a, 0) is a point of H(4, q2).

Proof. As in the previous proof we only need to check that v is isotropic. I will write J

for J5. First note that in characteristic 2 we have (x + y)2 = x2 + y2 + 2xy = x2 + y2.

So inductively, (x + y)2k = (x2 + y2)2k−1
= (x4 + y4)2k−2

= · · · = x2k + y2k . Hence,

(a+ 1)q = aq + 1. Then

vJvT = 0 + aq + (a+ 1)q+1 + a+ 0

= aq + a+ (a+ 1)q(a+ 1)

= aq + a+ (aq + 1)(a+ 1)

= aq + a+ aq+1 + a+ aq + 1

= aq+1 + 1 since we are in characteristic 2

Recall, a = gq−1 so aq+1 = g(q−1)(q+1) = gq
2−1 = 1. Thus vJvT = 1 + 1 = 0.

The above proof will work for any a such that aq+1 = 1. So something as simple as a = 1

will do. However, for the purpose of the algorithm we need a+ 1 6= 0, otherwise v would

be in H(3, q2). Since GAP (and SageMath) represents the elements of Fq using a primitive

root, then g is already computed, so a = gq−1 is quite easy to calculate.

Now we can finally compute the ovoid. The naive approach of checking collinearity by

looking at the lines of H(4, q2) is not the most efficient way as H(4, q2) has (1+q3)(1+q5)

lines (Payne and Thas, 1984).15 Hence, I opted to check whether the two vectors span

a totally isotropic line, since those are the lines of H(4, q2). In particular, the following

lemma gives us a quick way of doing so.

Lemma 4.10. Let 〈x, y〉 = xMyT be an Hermitian form on (Fq2)d. Then the span of

{v, w} is a totally isotropic subspace if and only if vMvT = wMwT = vMwT = wMvT = 0

Proof. ⇐ Let u be in the span of {v, w}. Then u = λv + µw for some scalars λ, µ. Then

〈u, u〉 = 〈λv + µw, λv + µw〉 = λλ〈v, v〉 + µµ〈w,w〉 + λµ〈v, w〉 + µλ〈w, v〉. Note that

32

〈v, v〉 = vMvT = 0, 〈w,w〉 = wMwT = 0, 〈v, w〉 = vMwT = 0 and 〈w, v〉 = wMvT = 0.

So 〈u, u〉 = 0.

⇒ First note that we must have 〈v, v〉 = 〈w,w〉 = 0 since v, w are in a totally isotropic

subspace. Hence vMvT = wMwT = 0. Now let u = v + λw for some scalar λ. Then

regardless of λ we must have 〈u, u〉 = 0. Hence

0 = 〈v + λw, v + λw〉

= 〈v, v〉+ λλ〈w,w〉+ λ〈w, v〉+ λ〈v, w〉

= λ〈w, v〉+ λ〈v, w〉 since 〈v, v〉 = 〈w,w〉 = 0

= λ〈v, w〉+ λ〈v, w〉 since 〈−,−〉 is Hermitian

Let 〈v, w〉 = a, then we get

0 = λa+ λa for any λ (4.2.1)

Now we need to distinguish between the cases where q is even or odd.

First assume q is odd. Let λ = a in 4.2.1. Then we get 0 = aa + aa = 2aa = 2aq+1.

Since 2 6= 0, we have aq+1 = 0 and so a = 0. Thus 〈v, w〉 = 0 = 〈w, v〉. Hence vMwT =

wMvT = 0.

Assume now that q is even. Assume further for a contradiction that a 6= 0. Let g be

a primitive root of Fq2 . Then a = gk for some k. Let λ = 1 in 4.2.1, then we get

0 = a+ a = aq + a. So aq−1 + 1 = 0 since a 6= 0. Thus gk(q−1) = 1 = g0. Hence:

k(q − 1) ≡ 0 mod (q2 − 1) (4.2.2)

since the order of (Fq2)× is q2 − 1. Now let λ = g in 4.2.1. Then we get 0 = gaq + gqa =

gkq+1 + gq+k. Hence gkq+1 = gq+k and so kq + 1 ≡ q + k mod (q2 − 1), from which we

deduce

k(q − 1) ≡ q − 1 mod (q2 − 1) (4.2.3)

Now note that equations 4.2.2 and 4.2.3 imply 0 ≡ q − 1 mod (q2 − 1) which is a contra-

diction for q > 1. Hence we must have that a = 0.

33

Using the above lemma and 4.7 we can find an ovoid by iterating through the points w of

H(3, q2) and computing φ(w)JzT , where z is our vector from 4.8 or 4.9. Moreover, recall

that z has the form (0, 1, α, β, 0) and φ(w) = (a, b, 0, c, d). Hence φ(w)JvT = bβq + c. So

by precomputing βq, the check becomes very simple.

To sum up, we generate H(3, q2) using GU(4, q). Then by 4.8 and 4.9 we have a point

z ∈ H(4, q2) \ H(3, q2). Finally, by 4.10 we can compute the ovoid. One we have the

generalised quadrangle, we build its dual to obtain one with spread.

4.2.3 Unitary Nonisotropic graph

Brouwer et al. (1989)5 construct the unitary nonisotropic graph as follow:

For q > 2, let V = (Fq2)3 equipped with the standard Hermitian form. Let the set of

nonisotropic projective points be the vertices and say that v, w are adajcent if 〈v, w〉 = 0.

In addition, they prove that the group GU(3, q) acts transitively on the edges of such

graph. Hence, we can build the graph with minimal effort. In particular, we use GAP to

create the group GU(3, q). Recall from section 4.2.2 that the Hermitian form preserved

by that group is given by the matrix

J =

0 0 1

0 1 0

1 0 0

Then the vector v = (1, 1, 0) is nonisotropic since 〈v, v〉 = 1. So by considering the action

of GU(3, q) on the projective point v we get the set of vertices, i.e. the set of nonisotropic

projective points. Then note that w = (0, 1,−1) is also nonisotropic and 〈w, v〉 = 0. So

v ∼ w. Thus by considering the action of GU(3, q) on the edge (v, w) we can generate all

the other edges.

34

4.2.4 Hermitian cover

Cameron (1991)7 describes a way to obtain antipodal covers of complete graphs using

several forms. However, only when using the 3-dimensional Hermitian form he obtains

graphs with new parameters. Hence, we describe only such construction:

Let V be a 3-dimensional vector space over Fq2 with a nondegenerate Hermitian form. Let

H be a subgroup of index r in the group (Fq2)×. The set of vertices is {Hv | v is isotropic }

and Hv ∼ Hw if 〈v, w〉 ∈ H.

The above construction doesn’t always yield a distance-regular graph, but Brouwer in

the erratum for the book ‘Distance-Regular Graphs’ (1989)4 states all the sufficient and

necessary conditions on r and q for the graph to be distance-regular. In particular, one

needs one of the following:

1. r is odd and r | (q − 1)

2. q is odd and r | 1
2(q + 1)

3. q is even and r | (q + 1)

However, the construction described by Brouwer is flawed as he forgot to mention that

the vectors need to be isotropic. This oversight has been brought to his attention and will

soon be corrected.

To obtain a quick construction of the graph described above, we, once again, resort to

utilise the generalised unitary group GU(3, q). In particular Brouwer4 shows that GU(3, q)

acts transitively on the vertices and edges of the graph. Recall once more that the Her-

mitian form fixed by GU(3, q) has matrix

J =

0 0 1

0 1 0

1 0 0

Hence, the standard vectors e1 and e3 are isotropic and He1 ∼ He3. So by looking at the

35

action of GU(3, q) on the edge (He1, He3) we can get all the edges of the graphs. However,

this time the action of the group is not the usual action on projective points, so we need

to define it ourselves. In particular, we need a way of “normalising” Hv to a vector w.

We do so as follow:

Let g be a generator of (Fq2)×. Then H = 〈gr〉. So the quotient group is

{H, gH, g2H, . . . , gr−1H}. Hence, we can “normalise” Hv to a vector w whose first non-

zero entry is in {1, g, g2, . . . , gr−1}. So M ∈ GO(3, q) acts on a normalised v by sending it

to the normalisation of vM (we have a right action since v is a row vector in GAP).

Once we have defined the above action, the graph is constructed in the usual way by

looking at the orbit of the edge (e1, e3).

4.2.5 Pasechnik and Brouwer-Pasechnik

Brouwer and Pasechnik (2011)6 describe the Brouwer-Pasechnik graph as follow:

Let V be a 3 dimensional vector space over Fq. Let V × V be the set of vertices. Two

distinct vertices (v1, v2), (w1, w2) are adjacent if and only if v1 ×w1 + v2 −w2 = 0, where

× denotes the cross product.

The construction is quite straightforward, but annoyingly (v1, v2) ∼ (v1, v2) using the

above description. Brouwer and Pasechnik solve this issue by explicitly requiring (v1, v2) 6=

(w1, w2). However, we can slightly loosen this condition and have a neater construction.

Lemma 4.11. Let v1×w1 + v2−w2 = 0. Then (v1, v2) = (w1, w2) if and only if v1 = w1

Proof. The only interesting direction is v1 = w1 =⇒ (v1, v2) = (w1, w2) and this can be

proved easily. We have w2 = v1 × w1 + v2 = v1 × v1 + v2. Now note that v1 × v1 = 0 and

so we get w2 = v2.

In the same paper, Brouwer and Pasechnik describe another family of graphs known as the

Pasechnik graphs. They also prove that the Pasechnik graphs are the extended bipartite

double graphs of the Brouwer-Pasechnik graphs. Thus we construct the Pasechnik graphs

36

by computing the extended bipartite double of the graphs constructed above.

4.2.6 Transversal Designs

Transversal designs are peculiar incidence structures with many different characterisations

and here we will follow the approach of Beth et al. (1999),3 but simplify the definition for

our purpose.

Definition 4.12. An incidence structure (P,B) is divisible if P can be partitioned into

point classes such that any two points in the same class are incident with λ1 blocks. A

divisible incidence structure is called a divisible design if any two points in different classes

are incident with λ2 blocks.

We write GDλ1,λ2 [k, g, v] for divisible design where each block has size k, each point class

has size g and there are v points.

Definition 4.13. A divisible design GD0,λ[k, g, v] is called a tansversal design TDλ[k, g]

if every block intersects every point class.

The dual incidence structure of a TDλ[k, g] is called a (g, k;λ)-net.

Note that a TDλ[k, g] must have kg points since the number of point classes must be k.

Definition 4.14. A TDλ[k; g] = (P,B) is called symmetric if its dual is still a TDλ[k; g]

and is called resolvable if there is a partition of B such that each part is a partition of P .

Note that symmetry implies k = gλ.

Brouwer et al. (1989)5 prove that the incidence graph of a symmetric transversal design

is distance-regular. Hence, we need to construct some transversal designs. SageMath can

already build quite a lot of TD1[k, g], so we are interested in ways to build transversal

designs with λ > 1.

To do so we introduce some related objects (Beth et al., 1999):3

Definition 4.15. An orthogonal array OAλ(k, s) is a (λs2 × k) matrix with entries from

37

S = {0, . . . , s − 1} such that any 2 columns contain all ordered pairs from S exactly λ

times.

Definition 4.16. A (g, k;λ)-difference matrix M over a group (G,+) of size g is a (k×λg)

matrix with entries from G such that for any two rows i 6= j each element of G appears λ

times in the vector M [i]−M [j].

Beth et al. (1999)3 prove the following theorems:

Theorem 4.17. A transversal design TDλ[λg, g] is symmetric if and only if it is resolvable.

Theorem 4.18. The existence of a OAλ(k, s) is equivalent to the existence of a TDλ[k, s].

In light of this, one says that a OAλ(k, s) is resolvable if its related transversal design is.

Theorem 4.19. The existence of a (s, k;λ) difference matrix implies the existence of a

resolvable OAλ(k, s).

SageMath has generators for both orthogonal arrays and difference matrices together with

the maps: difference matrix → orthogonal array → transversal design. So we extended

the generator of the orthogonal arrays to allow λ > 1 and constructed difference matrices

with k = λg, which will imply symmetric TDλ[k, g]. In particular, we implemented the

following constructions:

1. difference matrices (pi, pi+j , pj) where p is prime;

2. difference matrices (q, 2q, 2) where q is a prime power;

3. difference matrices (n/s, k, λs) where we have a difference matrix (n, k, λ) over G

and H is a normal subgroup of G of order s.

The construction 2 is uninteresting since Beth et al. (1999)3 essentially give a formula for

the entries of the matrix and the implementation is trivial. The other two constructions

38

can be found in Drake (1979).10 In particular, construction 3 is given by the following

proposition:

Proposition 4.20. Let H = (hij) be a difference matrix over G. Let φ : G → G′ be a

surjective homomorphism, then H ′ = (φ(hij)) is a difference matrix over G′.

The homomorphism used in the third construction is φ : G→ G/H given by g 7→ gH.

Construction 1 can be described as follow (Drake, 1979):10

Let K be the multiplication table of Fpi+j . Then K is a (pi+j , pi+j , 1) difference matrix

over (Fpi+j ,+). Then using 4.20 with φ : Fpi+j → Fpi we obtain the desired difference

matrix.

Finding such φ can be quite complicated, so what we do in the code is Fpi+j
∼−→ (Zp)i+j

φ−→ (Zp)i

where φ is just truncating the vectors to length i.

4.2.7 BIBD graphs

Brouwer et al. (1989)5 define BIBDs as follow:

Definition 4.21. A Balanced Incomplete Block Design, also called a 2-design, is an

incidence structure (P,B) where each block has size k and any two distinct points are

exactly in λ different blocks.

We often associate to a BIBID D the parameters (v, b, k, r, λ) where k, λ are as above, v

is the number of points, b is the number of blocks and any point is in r different blocks.

However, when describing a BIBD only the parameters (v, k, λ) are given since the other

two can be deduced from the following equalities:

bk = vr

λ(v − 1) = r(k − 1)

Brower et al. (1989)5 also prove that the incidence graph of a non-trivial symmetric BIBD

39

is distance-regular. Here, symmetric (or square) simply means that the number of points

is the same as the number of blocks.

SageMath already has a generator of BIBDs, but it only handles incidence structures with

λ = 1. Hence, we modified the generator to allow for arbitrary values of λ. After some

work, SageMath was able to generate several new BIBDs with λ 6= 1 without the need of

any new construction. This is mainly due to the connections between BIBDs and other

combinatorial objects that SageMath can build. Hence, little work was required to set up

those constructions.

4.2.8 Taylor graphs

Brouwer et al. (1989)5 define Taylor graphs to be any distance-regular graph with intersec-

tion array [k, µ, 1, 1, µ, k]. These graphs are related to some particular incidence structures

called two-graphs.

Definition 4.22. A two-graph is an incidence structure (P,B) where each block has size

3 and any set of 4 points contains an even number of blocks. Moreover, we say that the

two-graph is regular if every pair of points is contained in a constant number λ of blocks.

Note that a regular two-graph is a BIBD.

Brouwer et al. (1989)5 prove that there is a bijective correspondence between antipodal

2-covers of the complete graph and non-complete two-graphs. Moreover, we have that the

antipodal cover is distance-regular, i.e. a Taylor graph, if and only if the two-graph is

regular.

Brouwer et al. (1989)5 also describe the bijection, which result in the following construc-

tion:

Let D = (P,B) be a two-graph. Fix α ∈ P . Let the vertex set be {(x, 0), (x, 1) | x ∈ P}

and define adjacency by

1. (x, k) ∼ (y, k) if x 6= y and {x, y, α} is coherent

40

2. (x, 0) ∼ (y, 1) if x 6= y and {x, y, α} is not coheren

A triple is coherent if it is a block, while a pair is always coherent. It follows that

(α, 0) ∼ (x, 0) and (α, 1) ∼ (x, 1) for any x ∈ P \ {α}.

To practically construct the Taylor graph given a two-graph (P,B) we pick α and add all

the edges with α in them. Then we iterate through B and keep track of the pairs (x, y)

such that {x, y, α} is a coherent, i.e. a block. Once terminated, we iterate through all

paris (x, y) and add edges according to the adjacency relation.

Now the focus shifts on constructing two-graphs. Luckily, SageMath can already construct

an infinite family of regular two-graphs. Hence, we designed a generator function for two-

graphs. The complement of a two-graph is the incidence structure with the same points,

but has as blocks all the triples that are not blocks in the original two-graph (Brouwer et

al., 1989).5 Hence, by including the complement of the already-available family, we obtain

enough examples for our purpose.

4.2.9 Denniston graphs

Denniston (1969)9 defines a maximal arc in PG(2, q) as follow:

Definition 4.23. A n-maximal arc in the projective plane PG(2, q) is a set of points S

such that any line intersects S in 0 or n points.

In the same paper, Denniston also gives a construction of such an arc when n and q are

powers of 2. In particular, the construction given is:

Let Q(x, y) be an irreducible quadratic form over (Fq)2. Let H be a subgroup of the addi-

tive group of Fq of order n. Then the arc is given by the set

A = {(1, x, y,) | Q(x, y) ∈ H}.

Here, a quadratic form is intended as we introduced in section 2.3, but we write Q(x, y) for

Q(v) where v is the vector (x, y). Hence, Q(x, y) becomes a homogeneous polynomial of

degree 2, i.e. Q(x, y) = αx2+βxy+γy2. Thus irreducible means that Q(x, y) is irreducible

41

as a polynomial over x, y.

Thas (1974)16 describes a way of taking the complement of arcs in the projective plane

to obtain peculiar incidence structures. In particular, let PG(2, q) = (P,L) and let A

be an n-arc in it. Then Thas studied the incidence structure D = (P \ A,L′) where

L′ = {L | L ∈ L ∧ L ∩A = n}.

Brouwer et al. (1989)5 prove that the incidence graph of the complement (as intended by

Thas) of a Denniston’s arc when q = n2 is distance-regular.

Once we have the arc A, computing the complement is quite easy and so is constructing

the incidence graph. Hence, here we will focus on finding the maximal arc. The first step

is to find an irreducible quadratic form. To achieve this, we have the following lemmas.

Lemma 4.24. Let Q(x, y) = x2 + axy+ y2 be a quadratic form over (Fq)2. Then Q(x, y)

is reducible if and only if there is b ∈ Fq s.t. a = b+ 1
b .

Proof. ⇒ Assume Q(x, y) is reducible. Then Q(x, y) = (αx + βy)(γx + δy) for some

α, β, γ, δ ∈ Fq. Then Q(x, y) = αγ(x + β
αy)(x + δ

γ y) where we need α 6= 0 6= γ since

Q(x, y) has a term x2. Morever, we can deduce that αγ = 1. So by relabelling we

get Q(x, y) = (x + αy)(x + βy) for some α, β ∈ Fq. Unfolding the product we obtain

Q(x, y) = x2 + (α + β)xy + αβy2. So we can deduce αβ = 1. Thus α = 1
β since β 6= 0.

Hence we get Q(x, y) = x2 + (β + 1
β)xy + y2. Thus, by comparing terms we obtain that

a = β + 1
β .

⇐ Assume a = b+ 1
b . Then (x+ by)(x+ 1

by) = x2 + axy + y2 = Q(x, y) and so Q(x, y) is

reducible.

Lemma 4.25. For any prime power q, there is a ∈ Fq such that there is no b ∈ Fq

satisfying a = b+ 1
b .

Proof. Consider the function f : Fq → Fq given by f(x) = x+ 1
x . Then f(0) is not defined.

So the domain of f has actually the size of q − 1. Thus the range of f can’t have size

bigger than q − 1. Therefore there is at least one element of Fq which is not in the range

of f , such element is a suitable a.

42

In addition, one can note that b+ 1
b = (1

b)+ 1
1
b

. So the range of f is no bigger than 1+ q−1
2 .

Therefore, to find an irreducible quadratic form we compute the range of f and pick an

element outside of it.

Now that we have Q(x, y) computing the arc is quite straightforward, we just iterate

through the pairs (x, y) and if Q(x, y) ∈ Fn, then we add the point (1, x, y) to the arc.

4.2.10 Association Schemes

Brouwer et al. (1989)5 define association schemes in the following manner:

Definition 4.26. A d-class association scheme is a pair (X,R) where X is a set and

R = {R0, ..., Rd} is a partition of X ×X with the following properties:

1. R0 = {(x, x) | x ∈ X}

2. if (x, y) ∈ Ri, then (y, x) ∈ Ri

3. for any pair (x, y) ∈ Rk there are pkij z ∈ X s.t. (x, z) ∈ Ri and (z, y) ∈ Rj.

The numbers pkij are called the intersection numbers of the scheme.

Definition 4.27. A d-class association scheme is called pseudocylic if there is a constant

n such that p0
ii = n for 1 ≤ i ≤ d and

∑d
i=0 p

k
ii = n− 1 for 1 ≤ k ≤ d.

Definition 4.28. Let Q be a set. We say that (Q,⊕) is a quasigroup if ⊕ : Q×Q→ Q

is a binary operation on Q and, given any two of {a, b, a ⊕ b}, the third can be uniquely

determined.

The reason for all those definitions is that one can construct graphs from association

schemes with quasigroups. In particular, Brouwer et al. (1989)5 propose the following

construction:

Given a d-class association scheme (X,R) and a commutative quasigroup I = {1, ..., d},

43

let (X ∪ {∞}) × I be the vertex set, where ∞ is a symbol not in X. We say that two

distinct vertices (a, i), (b, j) are adjacent if either (a, b) ∈ Ri⊕j , or a =∞ and i = j.

Brouwer et al. (1989)5 also prove that if the d-class association scheme is pseudocyclic

with intersection numbers satisfying pk⊕li⊕l,j⊕l = pkij for any i, j, k, l ∈ {1, . . . , d}, then the

graph derived from it is distance-regular.

The construction described above is easily implemented, so we only need to worry on how

to obtain association schemes. Unfortunately, SageMath is lacking in any support for

association schemes, so we had implemented a simple class. We keep the set X as it could

be a set of any type of objects, but R can be represented as a matrix M . More precisely,

let X = {x0, ..., xn}, then M [i, j] = k means that (xi, xj) ∈ Rk. Using our definition we

could store only the upper diagonal entries of M , yet there are more general definitions of

association schemes which would result in M not being symmetric.

Constructing a database of association schemes could easily be a stand-alone project,

therefore we decided to construct only one infinite family called cyclotomic schemes. Fol-

lowing Brouwer et al. (1989)5 one can construct a cyclotomic scheme as follow:

Let X = Fq. Let K be a subgroup of (Fq)× and let g be a primitive root of Fq. Let

r = q−1
|K| , then for 1 ≤ i ≤ r define Ri = {(x, y) | x− y ∈ giK}.

When |K| is even or q is a power of 2, the association scheme described is symmetric and

pseudocylic. Let I = {1, ..., r} and define i⊕ j = i+ j mod r where 0 is interpreted as r.

Then I is a commutative group (so a quasigroup) and together with the above schemes it

give rise to distance-regular graphs.

4.2.11 Preparata graph

De Caen et al. (1995)8 construct a graph related to the Preparata codes as follow:

Let A be a subgroup of (F22t−1 ,+). The vertices are F22t−1×F2×(F22t−1/A). Two vertices

(x1, i, y1), (x2, j, y2) are adjacent if and only if (y1 +y2)+A = x1
2x2 +x1x2

2 +(i+j)(x1
3 +

x2
3) +A.

44

It follows that we need an efficient way to handle operations modulo A as well as finding a

suitable A given its size, since this is what is going to affect the intersection array. Once we

can achieve this, the construction becomes routine. So here we will explain our approach

to this issue. First note that F22t−1
∼= (F2)2t−1 as vector spaces (and so additive groups)

and SageMath can already compute this isomorphism quickly. Hence, we can pick A to

be the subspace generated by {e1, ..., ek} where |A| = 2k. To performs computations in

the quotient group we keep track of the maps f : x 7→ x + A and g : x + A 7→ x, where

the latter sends the set x+A to a unique representative x such that f ◦ g is the identity.

Finding f and g is quite straightforward:

1 f o r each x ∈ F22t−1 :

2 compute x+A

3 s e t f(x) = x+A

4 s e t g(x+A) = x #o v e r r i d e i f nece s sa ry

Once we have f and g, we can check x+A = y+A by g(x+A) = g(y+A). Moreover, we if let

a set Q be the range of g, then, when we need to iterate through (F22t−1/A), we just iterate

through Q and use f to obtain x+A from x. So we perform (x+A)+(y+A) = (x+y)+A

by g(f(x+ y)). The rest of the construction follows easily.

4.2.12 Symplectic covers

Definition 4.29. We say that a bilinear form 〈−,−〉 : V ×V → K on an even dimensional

vector space V is symplectic if 〈v, w〉 = −〈w, v〉 and 〈v, v〉 = 0.

For the purpose of this report, we will always use the form 〈v, w〉 = vTA2nw where A2n is

the 2n× 2n matrix given by

A2n =

 0n In

−In 0n

Browuer et al. (1989)5 constructs antipodal covers of complete graphs using symplectic

45

forms in the following way:

Let V = (Fq)n where n is even. Let 〈−,−〉 be a nondegenerate symplectic form on V and

let A be any subgroup of the additive group Fq. Then the vertex set is (Fq/A) × V and

two vertices (λ+A, v), (µ+A,w) are adjacent if and only if v 6= w and 〈v, w〉 ∈ λ−µ+A.

Note that the adjacency condition is equivalent to 〈v, w〉 = λ − µ + a for some a ∈ A.

Hence, λ = 〈v, w〉 + µ − a which means that λ + A = 〈v, w〉 + µ + A. We have already

discussed in section 4.2.11 how to find a subgroup of the additive group Fq and also how

to perform operations on the quotient group. Thus it becomes relative straightforward to

build the graphs described. However, we try to minimise the number of symplectic form

operations by noting that 〈v, w〉 = −〈w, v〉. So we iterate through the ordered pairs (v, w)

and generate all edges between (µ+ A, v) and (λ+ A,w) (for any µ, λ) computing 〈v, w〉

once.

4.2.13 Coset Graphs of Linear Codes

Brouwer et al. (1989)5 describe the following way of obtaining graphs from subspaces of

vector spaces:

Let V be a vector space of dimension n over Fq and C a subspace. The coset graph Γ(C)

has vertices the cosets of C in V and 2 cosets are adjacent if they have representatives

that differ in one coordinate.

Brouwer et al. (1989)5 often refer to the subspace C as “a linear code” because C is often

constructed as the codebook of a linear code. However, we are not interested in coding

theory and so we will stick to the familiar terminology.

In order to use the above construction we need a way to handle the quotient vector space.

So the actual algorithm implemented is the following:

Let U be the complement of C, i.e. U ⊕ C = V . Then let P : V → U be the projection

map u+ c 7→ u for u ∈ U and c ∈ C. The vertex set is U and the neighbours of u ∈ U are

{u+ λP (ei)|λ ∈ Fq \ {0}, 1 ≤ i ≤ n} where ei are the standard basis.

To show the equivalence of the two constructions we have the following lemma:

46

Lemma 4.30. There is a bijection P̄ : V/C → U such that v + C ∼ w + C if and only if

P̄ (v + C)− P̄ (w + C) = λP (ei) for some i and some λ 6= 0.

Proof. Let P̄ (v+C) = P (v). Then P̄ is well-defined and injective since v+C = w+C ⇐⇒

v−w = c ∈ C ⇐⇒ P (v) = P (w). Moreover, P̄ is surjective since for any u ∈ U we have

P̄ (u+ C) = P (u) = u.

Now, v+C ∼ w+C if and only if there are v′, w′ such that v′+C = v+C, w′+C = w+C

and v′, w′ differ in only one coordinate. v′, w′ differ in only one coordinate if and only

if v′ − w′ = λei for some i and λ 6= 0. So v + C ∼ w + C ⇐⇒ v′ − w′ = λei ⇐⇒

P (v′)− P (w′) = λP (ei) ⇐⇒ P̄ (v + C)− P̄ (w + C) = λP (ei).

The above lemma shows that the two graphs described above are isomorphic. Moreover,

the construction we proposed is quite efficient since λP (ei) can be precomputed and so all

edges are generated via a vector addition.

The only aspect left is to describe how to find U and P (ei). We compute U by noting that

U ∼= V/C and SageMath can already compute such embedding. This method boils down to

computing the row reduced echelon form of a few matrices, so it not very computationally

expensive. Computing P (ei) can be more complicated. First note that for ei ∈ U P (ei) =

ei and so we may get some of them for free. For the others we note the following:

Let U have basis {u1, . . . , uk} and C have basis {c1, . . . , cl}. Define a matrix A whose

columns are [u1, . . . , uk, c1, . . . , cl]. Then Aα = ei implies that
∑k

i=1 αiui +
∑l

i=1 αk+ici =

ei where α = (α1, ..., αk+l). Hence P (ei) =
∑k

i=1 αiui.

So we can find P (ei) by computing α = A−1ei, where we have that A is invertible since

{u1, . . . , uk, c1, . . . , cl} is a basis for V .

4.2.14 Kasami codes

Brouwer et al. (1989)5 prove that the coset graph of the Kasami codes is distance-regular.

Using the construction from the previous section, we can build the coset graph quite

quickly, so here is only a matter of constructing the Kasami codes.

47

Brouwer et al. (1989)5 describe these codes as follow:

Definition 4.31. Let s, t be powers of 2.

Define K(s, t) = {v ∈ (F2)s |
∑

α∈Fs
v[α] =

∑
α∈Fs

v[α]α =
∑

α∈Fs
v[α]αt+1 = 0}, where v[α]

is the αth entry of v starting from 0. If either s = t2 or t = 2mk and s = 2(2j+1)k where

m ≤ j and gcd(m, 2j + 1) = 1, then K(s, t) is called the extended Kasami code. The

Kasami codes are obtained from the extended Kasami codes by truncating the first entry

from all vectors.

The trivial approach of going through V = (F2)s and checking the three sums is too slow

as we need to check 2s vectors and each check is O(s) operations over a finite field. To

solve this issue we note that

K(s, t) =
{
v ∈ (F2)s |

∑
α∈Fs

v[α] = 0
}
∩
{
v ∈ (F2)s |

∑
α∈Fs

v[α]α = 0
}

∩
{
v ∈ (F2)s |

∑
α∈Fs

v[α]αt+1 = 0
}

(4.2.4)

The first subspace has an easy basis. For the other two finding a basis is more complicated

as it depends on the additive structure of Fs. However, the following lemma let us find a

rather small spanning set.

Lemma 4.32. Let V be a vector space of dimension n > 0 over F2. Let {λi | 1 ≤ i ≤ n}

be a set closed under addition. Then the subspace U = {v |
∑n

i=1 viλi = 0}, has spanning

set S = {ei + ej + ek | λk = λi + λj}.

Proof. We denote ei+ej+ek by vijk. Note that
∑n

l=1 vijk[l]λl = λi+λj+λk = λk+λk = 0

since we are in characteristic 2. So Span(S) ⊆ U . For the converse, let u ∈ U we proceed

by induction on the number of non-zero entries of u.

Base cases:

If u = 0, we are done.

If u has only 1 non-zero entry, say u[i]. Then u ∈ U implies λi = 0 so for j 6= i λj+λi = λj

and so ej + ei + ej = ei is in S. Hence u = ei ∈ S.

Inductive step:

48

Assume u has at least 2 non zero entries u[i], u[j] with i 6= j and let λk = λi + λj and

u′ = u+ vijk. Then u′ ∈ U (by the previous part) and the non-zero entries of u′ = u+ vijk

are those of u taken away i, j and either removing or adding k. Thus u′ has at least 1 less

non-zero entry of u. By inductive hypothesis u′ ∈ Span(S) and so is u.

If we can apply the above lemma to the extended Kasami codes, then we can easily

find spanning sets for the sets in 4.2.4 and so deduce K(s, t). So we need to show that

{α | α ∈ Fs} and {αt+1 | α ∈ Fs} are closed under addition. The first set is a field so we

are done. The second set is trickier and we solve the issue in the following lemma:

Lemma 4.33. Let s, t be as in the extended Kasami codes. Then the set S = {αt+1 | α ∈ Fs}

is closed under addition.

Proof. We distinguish the two possible cases for s and t.

Assume s = t2. Then Ft is a subfield of Fs and Ft = S. In particular Ft = {α ∈ Fs | αt = a}.

Note that (αt+1)t = αt
2+t = αsαt = ααt = αt+1.

Assume t = qm, s = q2j+1 with q a power of 2, m ≤ j and gcd(m, 2j + 1) = 1. Let

g be a generator of (Fs)×, then S is the subgroup generated by gt+1 together with 0.

If gcd(t + 1, s − 1) = 1, then gt+1 is itself a generator and so S = Fs. So let’s prove

gcd(t+ 1, s− 1) = 1. Let p be a prime dividing gcd(t+ 1, s− 1) = gcd(qm + 1, q2j+1 − 1),

then q2j+1 ≡ 1 mod p and qm ≡ −1 mod p, which implies q2m ≡ 1 mod p. So the order

of q (in (Zp)×) divides 2j + 1 and 2m. Since gcd(2j + 1,m) = 1 we must have that the

order of q is 1. Hence q ≡ 1 mod p. Thus p | q − 1. So

p | q − 1, qm + 1, q2j+1 − 1

Hence, p | gcd(q − 1, qm + 1). Note qm + 1 = ((q − 1) + 1)m + 1 ≡ 2 mod q − 1. So

gcd(q − 1, qm + 1) = gcd(q − 1, 2) = 1 since q − 1 odd. Hence p = 1 which means

gcd(t+ 1, s− 1) = 1 and the result follows.

49

4.2.15 AB graph

This graph was first constructed by van Dam and Fon-Der-Flaass (2002)20 and it requires

some more background material. Hence, we follow the introduction of that paper and

state a few definitions.

Definition 4.34. Let V be an n dimensional vector space over F2. Let f : V → V be any

function. The Fourier transform of f is µf : V × V → R given by

µf (x, y) =
∑
v∈V

(−1)〈x,v〉(−1)〈y,f(v)〉

where 〈−,−〉 is the standard dot product

Definition 4.35. Let V be as above. A function f : V → V is called almost bent (AB) if

µf (x, y) ∈ {±2
n+1
2 , 0} for all (x, y) 6= (0, 0)

Given an AB function f with f(0) = 0 the related graph is described as follow:

Let V × V be the vertices and (v1, v2) ∼ (u1, u2) if f(v1 + u1) = v2 + u2.

This construction is well-suited to build a graph since given a vertex (v1, v2) we can define

its neighbours by {(u1, u2) | u2 = f(v1 + u1) + v2}. Note that we are in characteristic 2.

So the issue becomes finding an easy-to-compute function f . Luckily, van Dam and Fon-

Der-Flaass (2002)20 list all known (at that time) AB functions. Among those, for odd n

we find the Gold’s function f : F2n → F2n given by f(x) = x3. Note that here F2n is

viewed as a vector space over F2. Van Dam et al. (2016)19 also quote some new result

about AB functions, but no AB function on even dimensional vector spaces is known. This

is quite unfortunate as for odd n the intersection array of the AB graphs is the same as

some Kasami graphs (section 4.2.14). However, we decided to implement this construction

regardless in the hope that AB functions on even n will soon be found. Moreover, it is

quicker to construct the AB graph than its related Kasami graph.

50

5 Conclusion

In chapter 1 we set ourselves the aim to construct all infinite families mentioned in the

two monographs Brouwer et al. (1989)5 and van Dam et al. (2016).19 We have achieved

our target and went beyond by constructing several “sporadic” graphs. In particular, we

implemented 26 new constructions which lead to 29 new families of graphs being available

to SageMath together with 30 new “sporadic” graphs. These cover all infinite families

mentioned in the two monographs and all graphs of diameter at least 4 listed in the ‘Ta-

bles of Parameters’ from ‘Distance-Regular Graphs’ by Brouwer et al. (1989).5 We also

expanded SageMath in other areas by adding 7 new constructions of other combinatorial

objects. All the code developed in this project is available online and is slowly finding its

way into the main release of SageMath. Thanks to the help of my project supervisor, this

process will continue throughout the summer, so that all our efforts will not be in vain.

Moreover, this process highlighted typos on common web resources such as WolframAl-

pha24 and distanceregular.org1 as well as an oversight in a construction described in the

erratum by Brouwer.4

5.1 Future work

Our module is by no means perfect and a lot of more work can be done. In particular,

we highlight the following few points that the SageMath’s community should consider

working on:

1. Complete the database of constructions by adding the few sporadic graphs missing

together with any potential newly discovered infinite family;

2. Improve the efficiency and robustness of the drg module;

3. Add support for parallel computation;

4. Expand the constructions of related combinatorial objects.

51

Finally, let me point out that 3 has always been in the back of our mind since new hardware

tends to expand the number of logical threads rather than CPU clock-speed. As a result,

most constructions we implemented can be parallelised with little effort. In particular,

whenever the set of edges is generated by checking adjacency on a pair of vertices or by

constructing the set of neighbours for a given vertex, one can parallelise the algorithm via

a simple bag-of-tasks pattern.

52

6 References

[1] Robert Bailey. Distanceregular.org. https://www.distanceregular.org.

[2] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython:
The best of both worlds. Computing in Science Engineering, 13(2):31 –39, 2011.

[3] Thomas Beth, Deiter Jungnickel, and Hanfried Lenz. Design Theory: Volume 1.
Cambridge University Press, 1999.

[4] A.E. Brouwer. Correction and additions to the book ‘distance-regular graphs’.
https://www.win.tue.nl/ aeb/drg/index.html.

[5] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-
Verlag, Berlin, 1989.

[6] Andries Brouwer and Dmitrii Pasechnik. Two distance-regular graphs. Journal of
Algebraic Combinatorics, 36, 07 2011.

[7] Peter J. Cameron. Covers of graphs and egqs. Discrete Mathematics, 97(1):83 – 92,
1991.

[8] D. de Caen, R. Mathon, and G. E. Moorhouse. A family of antipodal distance-regular
graphs related to the classical preparata codes. Journal of Algebraic Combinatorics,
4(4):317–327, 1995.

[9] R.H.F. Denniston. Some maximal arcs in finite projective planes. Journal of Combi-
natorial Theory, 6(3):317 – 319, 1969.

[10] David A. Drake. Partial λ-geometries and generalized hadamard matrices over groups.
Canadian Journal of Mathematics, 31(3):617–627, 1979.

[11] Walter Feit and Graham Higman. The nonexistence of certain generalized polygons.
Journal of Algebra, 1(2):114 – 131, 1964.

[12] GAP – Groups, Algorithms, and Programming, Version 4.10.2.
https://www.gap-system.org, Jun 2019.

[13] Christopher D. Godsil. Interesting graphs and their colourings. 2003. Available on:
semanticsholar.org.

[14] Larry C Grove. Classical groups and geometric algebra, volume 39 of Graduate Studies
in Mathematics. American Mathematical Soc., 2002.

[15] Stanley Payne and J. Thas. Finite generalized quadrangles. Research Notes in Math-
ematics, 110, 01 1984.

[16] J. A. Thas. Construction of maximal arcs and partial geometries. Geometriae Dedi-
cata, 3(1):61–64, 1974.

[17] J. A. Thas and S. E. Payne. Spreads and ovoids in finite generalized quadrangles.
Geometriae Dedicata, 52(3):227–253, 1994.

[18] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.1.rc3), 2020. https://www.sagemath.org.

53

https://www.distanceregular.org
https://www.win.tue.nl/~aeb/drg/index.html
https://www.gap-system.org
https://www.semanticscholar.org/paper/Interesting-Graphs-and-Their-Colourings-Godsil/1f9447ade22fe859028cd79ad0ce0cd1070ba073

[19] Edwin R van Dam, Jack H Koolen, and Hajime Tanaka. Distance-regular graphs.
The Electronic Journal of Combinatorics, Dynamic Surveys, 2016. https://www.

combinatorics.org/ojs/index.php/eljc/article/view/DS22.

[20] E.R. van Dam and D. Fon-Der-Flaass. Codes, graphs, and schemes from nonlinear
functions. European Journal of Combinatorics, 24(1):85 – 98, 2003.

[21] Hendrik Van Maldeghem. Generalized polygons. Springer Science & Business Media,
2012.

[22] Janoš Vidali. Using symbolic computation to prove nonexistence of distance-
regular graphs. Electronic Journal of Combinatorics, 25(4):P4.21, 2018. http:

//www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21.

[23] Janoš Vidali. jaanos/sage-drg: sage-drg v0.9, 2019. https://github.com/

jaanos/sage-drg/, 10.5281/zenodo.1418409.

[24] Eric W. Weisstein. M 22 graph. https://mathworld.wolfram.com/M22Graph.html.

[25] R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, and T. Breuer. At-
lasRep, a gap interface to the atlas of group representations, Version 2.1.0.
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep, May 2019. Refer-
eed GAP package.

54

https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS22
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS22
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21
https://github.com/jaanos/sage-drg/
https://github.com/jaanos/sage-drg/
http://dx.doi.org/10.5281/zenodo.1418409
https://mathworld.wolfram.com/M22Graph.html
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

A Code

Since we have a strict page limit, we can’t include all code, hence below we include: a

testing script; sample outputs; the constructions described; some other examples.

A.1 Main function

1 def distance_regular_graph(list arr, existence=False, check=True):
2 import drg
3 from drg import InfeasibleError
4
5 def result(G):
6 if check:
7 array = intersection_array_from_graph(G)
8 if array != arr:
9 raise RuntimeError("Sage built the wrong

distance-regular graph; expected {}, result
{}".format(arr,array))

10 return G
11
12 def is_iterable(obj):
13 try:
14 iter(obj)
15 return True
16 except TypeError:
17 return False
18
19 n = len(arr)
20 d = n // 2
21 #check that arr makes sense:
22 try:
23 parameters = drg.DRGParameters(arr[:d],arr[d:])
24 except (AssertionError, InfeasibleError, TypeError) as err:
25 if existence: return False
26 raise EmptySetError(
27 "No distance-regular graphs with parameters {} exists;

reason: {}".format(arr,err))
28
29 #handle diameter < 3
30 if d == 1 and arr[1] == 1:
31 if existence: return True
32 return result(GraphGenerators.CompleteGraph(arr[0]+1))
33 if d == 2:
34 k = arr[0]
35 mu = arr[3]
36 l = k -arr[1]-1 #a1 = k - b1 -c1
37 v = number_of_vertices_from_intersection_array(arr)
38 if existence: return

strongly_regular_graph(v,k,l,mu,existence=True)

55

39 return result(strongly_regular_graph(v,k,l,mu))
40
41 t = tuple(arr)
42 if t in _sporadic_graph_database:
43 if existence: return True
44 return result(_sporadic_graph_database[t]())
45
46 for (f,g) in _infinite_families:
47 t = f(arr)
48 if t is not False:
49 if existence: return True
50
51 G = g(*t) if is_iterable(t) else g(t)
52 return result(G)
53
54 #now try drg feasibility
55 try:
56 parameters.check_feasible()
57 except (InfeasibleError, TypeError, AssertionError) as err:
58 if existence: return False
59 raise EmptySetError(
60 "no distance-regular graph with intersection array {}

exists; reason: {}".format(arr,feasible))
61
62 if existence: return Unknown
63 raise RuntimeError("No distance-regular graph with intersection

array {} known".format(arr))

A.2 Testing script

1 def test_sporadic():
2 ok = 0
3 fail = 0
4 for arr in _sporadic_graph_database:
5 start = time()
6 G = _sporadic_graph_database[arr]()
7 end = time()
8 if tuple(intersection_array_from_graph(G)) != arr:
9 print("{} {} failed".format(warning,arr))

10 fail+= 1
11 else:
12 print("{} success ({} edges in

{})".format(arr,G.size(),end-start))
13 ok += 1
14
15 return (ok,fail)
16
17 def call_wrapper(f,obj,unpack):
18 if unpack:
19 return f(*obj)
20 else:
21 return f(obj)
22
23 def is_iterable(obj):

56

24 try:
25 iter(obj)
26 except TypeError:
27 return False
28 return True
29
30 def test_function(name, graph, params, array, edges=None,

fromArray=False):
31
32 ok = 0
33 fail = 0
34 iterable = True #assume true; doesn't matter
35
36 #default function to compute number of edges
37 def edgesDefault(arr):
38 try:
39 nE =

arr[0]*number_of_vertices_from_intersection_array(arr) // 2
40 except OverflowError:
41 return edgeLimit+1
42 return nE
43
44 def edgesWrapper(t):
45 try:
46 nE = call_wrapper(edges,t,iterable)
47 except OverflowError:
48 return edgeLimit +1
49 return nE
50
51 for t in params():#parmas is a generator
52 iterable = is_iterable(t)
53 if edges is None:#no specific function; use default
54 arr = call_wrapper(array,t,iterable)
55 nE = edgesDefault(arr)
56 if nE > edgeLimit: continue
57 else:
58 nE = edgesWrapper(t)
59 if nE > edgeLimit: continue
60 arr = call_wrapper(array,t,iterable)
61
62 start = time()
63 if fromArray:
64 G = distance_regular_graph(arr,check=False)
65 else:
66 G = call_wrapper(graph,t,iterable)
67 end = time()
68
69 if intersection_array_from_graph(G) == arr:
70 ok += 1
71 print("{} with parameters {} success ({} vertices, {}

edges in {})".format(name,t,G.order(),G.size(),end-start))
72 else:
73 fail += 1
74 print("{} {} with parameters {}

failed".format(warning,name,t))
75

57

76 return (ok,fail)
77
78 @fork(timeout=timeLimit,verbose=False)
79 def timeout_wrapper(f,*t):
80 return f(*t)
81
82 def test_all(fromArray=False):
83 totalOK = 0
84 totalFail = 0
85
86 for t in _tests_list:
87 name = t[0]
88 print("start testing {}".format(name))
89
90 lt = len(t)
91 if lt == 2:
92 (ok,fail) = t[1]()
93 else:
94 graph = t[1]
95 params = t[2]
96 array = t[3]
97 edges = None if lt == 4 else t[4]
98 res = timeout_wrapper(test_function, name, graph, params,

array, edges, fromArray)
99 if type(res) == type(""):

100 print("timeout..., not counting")
101 (ok,fail) = (0,0)
102 else:
103 (ok,fail) = res
104
105 totalOK += ok
106 totalFail += fail
107 print("{} terminated: fail {}, ok {}, total

{}".format(name,fail,ok,ok+fail))
108 print("---")
109
110 print("All functions tested")
111 print("Tests passed {}, failed {}, total {}".format(totalOK,

totalFail, totalOK+totalFail))
112
113 def test_random_array(n, drange, maxV , noConstraints=False):
114 #we generate n random arrays
115 #they should have diameter in drange
116 #each entry in the array is <= maxV (use to bound the graph size)
117 #size of graph is < maxV * (maxV^d-1)/(maxV-1) / 2
118 #if noConstraints is True, then arrays are completely random
119 #otherwise we ensure c_1 =1 and c[i] <= c[i+1]
120 #and b[i] >= b[i+1] and a_i >=0
121 from numpy.random import randint
122 D = len(drange)
123 ds = randint(0,D,n)
124
125 for v in range(n):
126 d = drange[ds[v]]
127 if noConstraints:
128 arr = list(randint(1,maxV,2*d))

58

129 else:
130 bs = [randint(1,maxV-1)]#we will increase b_0 by 1 later

to ensure b_i < b_0
131 for i in range(d-1):
132 bs.append(randint(1,bs[i]+1))
133
134 bs[0] += 1
135 bs.append(0)#we need b_d = 0 for below
136 cs = [1]
137 for i in range(d-1):
138 cs.append(randint(cs[i],bs[0]-bs[i+2]+1))
139
140 arr = bs[:-1]+cs
141 print("testing array {}".format(arr))
142 if distance_regular_graph(arr,existence=True) is True:
143 print("array is good!")
144 n = number_of_vertices_from_intersection_array(arr)
145 if n*arr[0] > 2*edgeLimit:
146 print("too big")
147 continue
148 G = distance_regular_graph(arr,check=True)
149 print("constructed {}".format(G.name()))
150
151 print("tests terminated")

A.3 Sample Outputs

sage: from sage.graphs.distance_regular import *

sage: %time alternating_form_graph(6,2)

CPU times: user 6min 17s, sys: 10 s, total: 6min 27s

Wall time: 6min 33s

Alternating form graph on (F_2)^6: Graph on 32768 vertices

sage: G = _

sage: G.size()

10665984

sage: %time G = symplectic_cover(16,2,8)

CPU times: user 2.8 s, sys: 79.2 ms, total: 2.88 s

Wall time: 2.91 s

sage: G.size()

261120

sage: G.order()

2048

sage: %time H = fold_graph(G)

CPU times: user 14.1 s, sys: 212 ms, total: 14.3 s

Wall time: 14.4 s

sage: H.order()

256

sage: H.size()

32640

sage: H.is_isomorphic(graphs.CompleteGraph(256))

59

True

sage: %time distance_regular_graph([57,56,56,8,1,1,49,57],existence=True)

CPU times: user 79.2 ms, sys: 3.84 ms, total: 83 ms

Wall time: 65.5 ms

True

sage: %time G = distance_regular_graph([57,56,56,8,1,1,49,57])

CPU times: user 57.1 s, sys: 674 ms, total: 57.8 s

Wall time: 58 s

sage: %time H = distance_regular_graph([57,56,56,8,1,1,49,57],check=False)

CPU times: user 39.5 s, sys: 653 ms, total: 40.2 s

Wall time: 40.3 s

sage: G.size()

211185

sage: G.is_isomorphic(H)

True

#run of the testing script on 2 families (rounded times to nearest ms)
start testing double Grassmann
double Grassmann with parameters (2, 1) success (14 vertices, 21 edges in

0.086)
double Grassmann with parameters (3, 1) success (26 vertices, 52 edges in

0.043)
double Grassmann with parameters (4, 1) success (42 vertices, 105 edges

in 0.228)
double Grassmann with parameters (5, 1) success (62 vertices, 186 edges

in 0.137)
double Grassmann with parameters (7, 1) success (114 vertices, 456 edges

in 0.388)
double Grassmann with parameters (2, 2) success (310 vertices, 1085 edges

in 1.370)
double Grassmann with parameters (3, 2) success (2420 vertices, 15730

edges in 17.820)
double Grassmann with parameters (4, 2) success (11594 vertices, 121737

edges in 281.452)
double Grassmann with parameters (2, 3) success (23622 vertices, 177165

edges in 380.385)
double Grassmann terminated: fail 0, ok 9, total 9

start testing hermitian cover
hermitian cover with parameters (2, 3) success (27 vertices, 108 edges in

0.456)
hermitian cover with parameters (3, 2) success (56 vertices, 756 edges in

0.012)
hermitian cover with parameters (4, 3) success (195 vertices, 6240 edges

in 0.075)
hermitian cover with parameters (4, 5) success (325 vertices, 10400 edges

in 0.130)
hermitian cover with parameters (5, 3) success (378 vertices, 23625 edges

in 0.305)
hermitian cover with parameters (7, 2) success (688 vertices, 117992

edges in 2.395)
hermitian cover with parameters (7, 3) success (1032 vertices, 176988

60

edges in 4.870)
hermitian cover with parameters (7, 4) success (1376 vertices, 235984

edges in 19.940)
hermitian cover with parameters (8, 3) success (1539 vertices, 393984

edges in 17.466)
hermitian cover terminated: fail 0, ok 9, total 9

All functions tested
Tests passed 18, failed 0, total 18

A.4 Double, Half and Fold

1 def bipartite_double_graph(G):
2 r"""
3 Return the bipartite double of G
4 """
5 edges = []
6 for (u,v) in G.edges(sort=False,labels=False):
7 sig_check()
8 u1 = (0,u)
9 u2 = (1,u)

10 v1 = (0,v)
11 v2 = (1,v)
12
13 edges.append((u1,v2))
14 edges.append((u2,v1))
15
16 H = Graph(edges, format='list_of_edges')
17 H.name("Bipartite Double of %s"%(G.name()))
18
19 return H
20
21
22 def extended_biparitite_double_graph(G):
23 r"""
24 Return extended bipartite double of G
25 """
26 H = bipartite_double_graph(G)
27 for u in G.vertices():
28 sig_check()
29 u1 = (0,u)
30 u2 = (1,u)
31
32 H.add_edge((u1,u2))
33
34 H.name("Extended %s"%(H.name()))
35 return H
36
37
38 def halve_graph(G) :
39 r"""
40 Return the half graph of the graph given
41 """

61

42 H = GraphGenerators.EmptyGraph()
43 queue = [G.vertices()[0]] # queue of vertices to follow
44 H.add_vertex(G.vertices()[0])
45 while queue:
46 v = queue.pop(0)
47 #compute all neighbours of the neighbours
48 candidate = set([x for c in G.neighbors(v,sort=False) for x

in G.neighbors(c,sort=False)])
49 for w in candidate:
50 if not G.has_edge(v,w):#then d(v,w)==2
51 if w not in H:
52 queue.append(w)
53 H.add_vertex(w)
54 H.add_edge(v,w)
55
56 H.name("Halved %s" % G.name())
57 return H
58
59
60 def fold_graph(G, d=None):
61 r"""
62 Return the fold of G.
63
64 If d is not None, then we assume that G.diameter() == d
65 """
66 distance = G.distance_all_pairs()
67
68 if d is None:
69 d= G.diameter()
70
71 #go through vertices
72 #if d(u,v) == d, then they are in a clique
73 vertices = set(G.vertices(sort=False))
74 cliques = []
75 while vertices:
76 v = vertices.pop()
77 clique = [v]
78 for u in vertices:
79 if distance[v][u] == d:
80 clique.append(u)
81
82 vertices = vertices.difference(clique)
83 cliques.append(frozenset(clique))
84
85 N = len(cliques)
86 edges = []
87 for i in range(N):
88 cl1 = cliques[i]
89 for j in range(i+1,N):
90 cl2 = cliques[j]
91
92 #look for edge connecting cliques
93 edge=False
94 for u in cl1:
95 for v in cl2:
96 if G.has_edge((u,v)):

62

97 edge=True
98 break
99 if edge:

100 break
101
102 if edge:
103 edges.append((i,j))
104
105 H = Graph(edges,format="list_of_edges")
106 H.name("Fold of %s" % (G.name()))
107 return H

A.5 Dual Polar graphs

1 def dual_polar_orthogonal(const int e, const int d, const int q):
2 r"""
3 Return dual polar graph on GOe(n, q) of diameter d
4
5 n is determined by d and e
6 """
7
8 def hashable(v):
9 v.set_immutable()

10 return v
11
12 if e not in {0,1,-1}:
13 raise ValueError("e must by 0,+1 or -1")
14
15 m = 2*d + 1 - e
16
17 group = libgap.GeneralOrthogonalGroup(e,m,q)
18 M = Matrix(libgap.InvariantQuadraticForm(group)["matrix"])
19 #Q(x) = xMx is our quadratic form
20
21 #we need to find a totally isotropic subspace of dimension d
22 #attempt 1 (consider kernel)
23 K = M.kernel()
24 isotropicBasis = list(K.basis())
25
26 #extend K to a maximal isotropic subspace
27 if K.dimension() < d:
28 V = VectorSpace(GF(q),m)
29 candidates = set(map(hashable,[P.basis()[0] for P in

V.subspaces(1)]))#all projective points
30 hashableK = map(hashable, [P.basis()[0] for P in

K.subspaces(1)])
31 candidates = candidates.difference(hashableK) #remove all

points already in K
32 nonZeroScalars = [x for x in GF(q) if not x.is_zero()]
33 while K.dimension() < d:
34 found = False#found vector to extend K?
35 while not found:
36 v = candidates.pop()
37 if v*M*v == 0:

63

38 #found another isotropic point
39 #check if we can add it to K
40 found = True
41 for w in isotropicBasis:
42 if w*M*v+v*M*w != 0:
43 found = False
44 break
45 #end while found
46 isotropicBasis.append(v)
47 #remove new points of K
48 newVectors = map(hashable,[k+l*v for k in K for l in

nonZeroScalars])
49 candidates.difference(newVectors)
50 K = V.span(isotropicBasis)
51 #end while K.dimension
52 isotropicBasis = list(K.basis())
53
54 W = libgap.FullRowSpace(libgap.GF(q), m) #W is GAP version of V
55 isoS = libgap.Subspace(W,isotropicBasis) #isoS is GAP version of K
56
57 allIsoPoints =

libgap.Orbit(group,isotropicBasis[0],libgap.OnLines) #all
isotropic projective points

58 permutation = libgap.Action(group, allIsoPoints,libgap.OnLines)
59 #this is the permutation group generated by GO^e(n,q) acting on

projective isotropic points
60
61 #translate K(=isoS) to int for the permutation group
62 isoSPoints = [libgap.Elements(libgap.Basis(x))[0] for x in

libgap.Elements(isoS.Subspaces(1))]
63 isoSPointsInt = libgap.Set([libgap.Position(allIsoPoints, x) for

x in isoSPoints])
64
65 allIsoSubspaces = libgap.Orbit(permutation,isoSPointsInt,

libgap.OnSets)#our vertices
66 intersection_size = (q**(d-1) - 1) / (q-1) #number of projective

points in a d-1 subspace
67
68 edges = []
69 n = len(allIsoSubspaces)
70 for i in range(n):
71 seti = allIsoSubspaces[i]
72 for j in range(i+1,n):
73 setj = allIsoSubspaces[j]
74 if libgap.Size(libgap.Intersection(seti,setj)) ==

intersection_size:
75 edges.append((i,j))
76
77 G = Graph(edges, format="list_of_edges")
78 G.name("Dual Polar Graph on Orthogonal group (%d,%d,%d)"%(e,m,q))
79 return G

64

A.6 Double Odd graph

1 def doubled_odd_graph(const int n):
2 r"""
3 Double odd graph on 2*n+1 points
4
5 Input: n
6 """
7 if n < 1:
8 raise ValueError("n must be >= 1")
9

10 # a binary vector of size 2n+1 represents a set
11 edges = []
12 for s1 in IntegerVectors(n, k=2*n +1, max_part=1):
13 #s1 is a list
14 #iterate through it and create s2
15 for i in range(2*n+1):
16 sig_check()
17 if s1[i] == 0:
18 s2 = list(s1)
19 s2[i] = 1
20 #now s2 is a n+1-set containing s1
21 edges.append((tuple(s1),tuple(s2)))
22
23 G = Graph(edges, format='list_of_edges')
24 G.name("Bipartite double of Odd graph on a set of %d

elements"%(2*n+1))
25 return G

A.7 Bilinear, Alternating and Hermitian form graphs

1 def bilinear_form_graph(const int d, const int e, const int q):
2 r"""
3 Return the bilinear form graph on d× e matrices over Fq.
4 """
5 matricesOverq = MatrixSpace(GF(q), d, e,

implementation='meataxe')
6
7 rank1Matrices = []
8 for m in matricesOverq:
9 sig_check()

10 if m.rank() == 1:
11 rank1Matrices.append(m)
12
13 edges = []
14 for m1 in matricesOverq:
15 m1.set_immutable()
16 for m2 in rank1Matrices:
17 sig_check()
18 m3 = m1+m2
19 m3.set_immutable()
20 edges.append((m1, m3))
21

65

22 G = Graph(edges, format='list_of_edges')
23 G.name("Bilinear form graph over F_%d with parameters (%d,%d)"

%(q,d,e))
24 return G
25
26
27 def alternating_form_graph(const int n, const int q):
28 r"""
29 Return the alternating form graph on n× n matrices on Fq
30 """
31 def symmetry(x): return -x
32 def diagonal(x): return 0
33
34 matrices = MatrixSpace(GF(q), n, n, implementation="meataxe")
35 skewSymmetricMatrices = matrices.symmetric_generator(symmetry,

diagonal)
36
37 rank2Matrices = []
38 for mat in skewSymmetricMatrices:
39 sig_check()
40 # check if mat is a rank2 matrix
41 if mat.rank() == 2:
42 rank2Matrices.append(mat)
43
44 skewSymmetricMatrices = matrices.symmetric_generator(symmetry,

diagonal)
45
46 # now we have all matrices of rank 2
47 edges = []
48 for m1 in skewSymmetricMatrices:
49 m1.set_immutable()
50 for m2 in rank2Matrices:
51 sig_check() # check for interrupts
52 m3 = m1+m2
53 m3.set_immutable()
54 edges.append((m1, m3))
55
56 G = Graph(edges, format='list_of_edges')
57 G.name("Alternating form graph on (F_%d)^%d" %(q,n))
58 return G
59
60
61 def hermitian_form_graph(const int n, const int q):
62 r"""
63 Return the Hermitian from graph of n× n matrices on Fq
64
65 q must be the square of a prime power
66 """
67 MS = MatrixSpace(GF(q), n, n, implementation="meataxe")
68
69 (b,k) = is_prime_power(q, get_data=True)
70 if k == 0 or k % 2 != 0:
71 raise ValueError("We need q=r^2 where r is a prime power")
72
73 # here we have b^k = q, b is prime and k is even
74 r = b**(k//2)

66

75 # so r^2 = b^k = q
76
77 def symmetry(x): return x**r
78
79 hermitianMatrices = MS.symmetric_generator(symmetry)
80
81 rank1Matrices = []
82 for mat in hermitianMatrices:
83 sig_check()
84 if mat.rank() == 1: rank1Matrices.append(mat)
85
86 #refresh generator
87 hermitianMatrices = MS.symmetric_generator(symmetry)
88 edges = []
89 for mat in hermitianMatrices:
90 mat.set_immutable()
91 for mat2 in rank1Matrices:
92 sig_check()
93
94 mat3 = mat + mat2
95 mat3.set_immutable()
96 edges.append((mat, mat3))
97
98 G = Graph(edges, format='list_of_edges')
99 G.name("Hermitian form graph on (F_%d)^%d" %(q,n))

100 return G

A.8 Halved Cube

1 def halved_cube(int n):
2 r"""

3 Return the graph 1
2H(n, 2).

4 """
5 def hamming_distance(v, w):
6 assert(len(v) == len(w),
7 "Can't compute Hamming distance of 2 vectors of different

size!")
8
9 counter = 0

10 for i in range(len(v)):
11 if (v[i] != w[i]):
12 counter = counter + 1
13
14 return counter
15
16 if n <= 2:
17 raise ValueError("we need n > 2")
18
19 #construct the half cube graph 1/2 H(n,2) (= H(n,2)_{1-or-2})
20 G = GraphGenerators.CubeGraph(n-1)
21 # we use the fact that the vertices are strings and their

distance is their hamming_distance
22 for i in G.vertices():
23 for j in G.vertices():

67

24 sig_check()
25 if hamming_distance(i, j) == 2 :
26 G.add_edge(i,j)
27
28 G.name("Halved %d Cube"%n)
29 return G

A.9 Grassmann and Double Grassmann graphs

1 def Grassmann_graph(const int q, const int n, const int input_e):
2 r"""
3 Return a Grassmann graph Jq(n, e)
4
5 Jq(n, e) ∼= Jq(n, n− e), so if n< 2e, then we compute Jq(n, n− e)
6 """
7 if n <= input_e + 1:
8 raise ValueError(
9 "Impossible parameters n <= e+1 (%d <= %d)" %(n,input_e))

10
11 e = input_e
12 if n < 2*input_e:
13 e = n - input_e
14
15 PG = Sage_Designs.ProjectiveGeometryDesign(n-1, e-1, q)
16 #we want the intersection graph
17 #the size of the intersection must be (q^{e-1} - 1) / (q-1)
18 size = (q**(e-1) - 1)/(q-1)
19 G = PG.intersection_graph([size])
20 G.name("Grassmann graph J_%d(%d,%d)"%(q,n,e))
21 return G
22
23
24 def double_Grassmann_graph(const int q, const int e):
25 r"""
26 Return the double Grassmann graph DJq(2e+ 1, e)
27 """
28 n = 2*e+1
29 V = VectorSpace(GF(q),n)
30
31 edges = []
32 for W in V.subspaces(e+1):
33 Wbasis = frozenset(W.basis())
34 for U in W.subspaces(e):
35 Ubasis = frozenset(U.basis())
36 edges.append((Wbasis, Ubasis))
37
38 G = Graph(edges,format='list_of_edges')
39 G.name("Double Grassmann graph (%d,%d,%d)"%(n,e,q))
40 return G

68

A.10 Generalised Polygons graphs

1 def generalised_dodecagon(const int s, const int t):
2 q = 0
3 orderType = 0
4
5 if s == 1: #(1,q)
6 q = t
7 elif t == 1: # (q,1)
8 q = s
9 orderType = 1

10 else:
11 raise ValueError("No known dodecagon with given input")
12
13 if not is_prime_power(q):
14 raise ValueError("No known dodecagon with given input")
15
16 if orderType == 0:
17 #incidence graph of hexagon (q,q)
18
19 H = generalised_hexagon(q,q)
20 lines = extract_lines(H)
21 points = list(H.vertices())
22
23 edges = []
24 for p in points:
25 for l in lines:
26 sig_check()
27 if p in l:
28 edges.append((p,l))
29
30 G = Graph(edges, format='list_of_edges')
31 G.name("Generalised dodecagon of order (1,%d)"%q)
32 return G
33
34 else: #orderType == 1
35 #dual
36 H = generalised_dodecagon(t,s)
37 G = line_graph_generalised_polygon(H)
38 G.name("Generalised dodecagon of order (%s,%d)"%(s,t))
39 return G
40
41
42 def generalised_octagon(const int s, const int t):
43 cdef int q = 0
44 cdef int orderType = 0
45 if s == 1:# (1,q)
46 q = t
47 elif t == 1:# (q,1)
48 q = s
49 orderType = 1
50 elif s**2 == t:# (q,q^2)
51 q = s
52 (p,k) = is_prime_power(q,get_data=True)
53 if p != 2 or k%2 != 1:

69

54 raise ValueError("generalised octagon (q,q^2) only for q
odd powers of 2")

55 orderType = 2
56 elif t**2 == s: #(q^2,q)
57 q = t
58 orderType = 1
59 else:
60 raise ValueError("No known octagon with input")
61
62 if not is_prime_power(q):
63 raise ValueError("No known octagon with input")
64
65 if orderType == 0:
66 H = strongly_regular_graph((q+1)*(q*q+1), q*(q+1), q-1, q+1,

check=False)
67 # above is pointgraph of generalised quadrangle (q,q)
68 lines = extract_lines(H)
69 points = list(H.vertices())
70 #points and lines make the quadrangle
71
72 edges = []
73 for p in points:
74 for l in lines:
75 sig_check()
76 if p in l:
77 edges.append((p,l))
78
79 G = Graph(edges, format='list_of_edges')
80 G.name("Generalised octagon of order (1,%d)"%q)
81 return G
82
83 elif orderType == 1:
84 #dual
85 H = generalised_octagon(t,s)
86 G = line_graph_generalised_polygon(H)
87 G.name("Generalised octagon of order(%d,%d)"%(s,t))
88 return G
89 else:
90 if q == 2:
91 g = libgap.AtlasGroup("2F4(2)", libgap.NrMovedPoints,

1755)
92 G = Graph(g.Orbit([1,73], libgap.OnSets),

format='list_of_edges')
93 G.name("Generalised octagon of order (2,4)")
94 return G
95 else:
96 raise NotImplementedError("graph would be too big")
97
98
99 def generalised_hexagon(const int s, const int t):

100 r"""
101 to use libgap.AtlasGroup we need to do
102 sage -i gap_packages
103 """
104 cdef int q = 0
105 cdef int orderType = 0

70

106 if s == 1: # (1,q)
107 q = t
108 elif t == 1:# (q,1)
109 q = s
110 orderType = 1
111 elif s == t:# (q,q)
112 q = s
113 orderType = 2
114 elif s**3 == t:# (q,q^3)
115 q = s
116 orderType = 3
117 elif t**3 == s: # (q^3, q)
118 q = t
119 orderType = 1
120 else:
121 raise ValueError("invalid input")
122
123 if not is_prime_power(q):
124 raise ValueError("invalid input")
125
126 if orderType == 0:
127 #incident graph of generalised 3-gon of order (q,q)
128 PG2 = Sage_Designs.ProjectiveGeometryDesign(2,1,q)
129
130 edges = []
131 for l in PG2.blocks():
132 for p in l:
133 sig_check()
134 edges.append((p, frozenset(l)))
135
136 G = Graph(edges, format='list_of_edges')
137 G.name("Generalised hexagon of order (1,%d)"%q)
138 return G
139
140 elif orderType == 1:
141 # "dual" graph
142 H = generalised_hexagon(t,s)
143 G = line_graph_generalised_polygon(H)
144 G.name("Generalised hexagon of order(%d,%d)"%(s,t))
145 return G
146
147 elif orderType == 2:
148 # we use the group G2(q)
149 # if q == 2, then G2(2) is isomorphic to U3(3).2
150 if q == 2:
151 group = libgap.AtlasGroup("U3(3).2",

libgap.NrMovedPoints, 63)
152 G = Graph(group.Orbit([1,19], libgap.OnSets),

format='list_of_edges')
153 G.name("Generalised hexagon of order (%d,%d)"%(q,q))
154 return G
155 elif q == 3: #we don't have permutation rep
156 matrixRep = libgap.AtlasGroup("G2(3)", libgap.Position,7)
157 e1 = vector(GF(3), [1,0,0,0,0,0,0])
158 orb = matrixRep.Orbit(e1, libgap.OnLines)
159 group = libgap.Action(matrixRep,orb,libgap.OnLines)

71

160 #now group is our permutation rep
161 G = Graph(group.Orbit([1,52], libgap.OnSets),

format='list_of_edges')
162 G.name("Generealised hexagon of order (%d,%d)"%(q,q))
163 return G
164 elif q <= 5:
165 arr = intersection_array_2d_gon(3,s,t)
166 n = number_of_vertices_from_intersection_array(arr)
167 G = graph_from_permutation_group(

libgap.AtlasGroup("G2(%d)"%q, libgap.NrMovedPoints, n),
arr[0])

168 G.name("Generalised hexagon of order (%d,%d)"%(q,q))
169 return G
170 else:
171 raise NotImplementedError("graph would be too big")
172
173 elif orderType == 3:
174 if q> 3: raise ValueError("graph would be too big")
175 movedPoints = 819 if q==2 else 26572
176 group = libgap.AtlasGroup("3D4(%d)"%q, libgap.NrMovedPoints,

movedPoints)
177 G = Graph(group.Orbit([1,2],libgap.OnSets),

format='list_of_edges')
178 G.name("Generalised hexagon of order (%d,%d)"%(q,q**3))
179 return G
180
181
182 def extract_lines(G):
183 r"""
184 Return the singular lines of the graph G
185 """
186 lines = []
187 edges = set(G.edges(labels=False,sort=False))
188
189 while edges :
190 (x,y) = edges.pop()
191
192 #compute line
193 bottomX = set(G.neighbors(x,closed=True))
194 bottomY = set(G.neighbors(y,closed=True))
195 bottom1 = bottomX.intersection(bottomY)
196
197 b = bottom1.pop()
198 bottom2 = frozenset(G.neighbors(b,closed=True))
199 for v in bottom1:
200 sig_check()
201 s = frozenset(G.neighbors(v,closed=True))
202 bottom2 = bottom2.intersection(s)
203
204 #now bottom2 is a line
205 lines.append(tuple(bottom2))#we need tuple or GAP will

complain
206
207 #remove pointless edges
208 for u in bottom2:
209 for v in bottom2:

72

210 try :
211 edges.remove((u,v))
212 except KeyError:
213 pass #ignore this
214
215 #end while edges
216 return lines
217
218
219 def line_graph_generalised_polygon(H):
220 r"""
221 Given the point graph of a generalised polygon, it computes its

line graph
222 """
223 lines = extract_lines(H)
224
225 #get a map point -> all lines incident to point
226 vToLines = { v : [] for v in H.vertices(sort=False) }
227 for l in lines:
228 for p in l:
229 sig_check()
230 vToLines[p].append(l)
231
232 k = len(vToLines[lines[0][0]])
233
234 edges = []
235 for v in vToLines:
236 lines = vToLines[v]
237 for i,l in enumerate(lines):
238 for j in range(i+1,k):
239 sig_check()
240 edges.append((l,lines[j]))
241
242 G = Graph(edges,format="list_of_edges")
243 return G
244
245
246 def graph_from_permutation_group(group, const int order):
247 r"""
248 Construct graph looking at the orbit of group on an edge (1,x)
249 where x is picked from an obit of length order from the

stabilizer of 1
250 """
251 h = group.Stabilizer(1)
252 orbitIndex = 0
253 orbitLenghts = h.OrbitLengths()
254
255 # if we can't find the correct orbit, we raise out of bound error
256 while orbitLenghts[orbitIndex] != order:
257 orbitIndex += 1
258
259 #now we found the correct orbit
260 v = h.Orbits()[orbitIndex][0] #pick an element of the orbit
261
262 G = Graph(group.Orbit([1,v], libgap.OnSets),

format='list_of_edges')

73

263
264 return G

A.11 Generalised Quadrangle graph

1 def GQ_spread_graph(GQ, S):
2 r"""
3 Point graph of the generalised quadrangle GQ without its spread S
4 """
5 k = len(GQ.blocks()[0])
6 edges = []
7 for b in GQ.blocks():
8 if b in S: continue
9 for i in range(k):

10 p1 = b[i]
11 for j in range(i+1,k):
12 sig_check()
13 p2 = b[j]
14 edges.append((p1,p2))
15
16 G = Graph(edges, format="list_of_edges")
17 return G
18
19
20 def generalised_quadrangle_hermitian(const int q):
21 r"""
22 Construct the generalised quadrangle H(3,q^2) with an ovoid
23 The GQ has order (q^2,q)
24 """
25 GU = libgap.GU(4,q)
26 H = libgap.InvariantSesquilinearForm(GU)["matrix"]
27 Fq = libgap.GF(q*q)
28 zero = libgap.Zero(Fq)
29 one = libgap.One(Fq)
30 V = libgap.FullRowSpace(Fq,4)
31
32 e1 = [one,zero,zero,zero] #isotropic point
33
34 points = list(libgap.Orbit(GU,e1,libgap.OnLines)) #all isotropic

points
35 pointInt = { x:(i+1) for i,x in enumerate(points) } #+1 because

GAP starts at 1
36 #points is the hermitian variety
37
38 GUp = libgap.Action(GU, points, libgap.OnLines)#GU as permutation

group of points
39
40 e2 = [zero,one,zero,zero]
41
42 line = V.Subspace([e1,e2])#a totally isotropic line
43 lineAsPoints = [libgap.Elements(libgap.Basis(b))[0] for b in

libgap.Elements(line.Subspaces(1))]
44 line = libgap.Set([pointInt[p] for p in lineAsPoints])
45

74

46 lines = libgap.Orbit(GUp, line, libgap.OnSets)#all isotropic lines
47
48 #to find ovoid, we embed H(3,q^2) in H(4,q^2)
49 #then embedding is (a,b,c,d) -> (a,b,0,c,d) [so we preserve

isotropicity]
50 W = libgap.FullRowSpace(Fq,5)
51 J = [[0,0,0,0,1], [0,0,0,1,0], [0,0,1,0,0], [0,1,0,0,0],

[1,0,0,0,0]]
52 J = libgap(J)
53 if q%2 == 1:
54 (p,k) = is_prime_power(q,get_data=True)
55 a = (p-1)// 2
56 aGap = zero
57 for i in range(a): aGap += one
58 p = [zero,one,one,aGap,zero]
59 else:
60 a = libgap.PrimitiveRoot(Fq)**(q-1)
61 p = [zero,one,a+one,a,zero]
62
63 #now p is a point of H(4,q^2) not in H(3,q^2)
64
65 #p' is collinear to p iff p'Jp^q = 0
66 #note that p'Jp^q = bx^q + c where p' =(a,b,0,c,d) and

p=(0,1,1,x,0)
67 ovoid = []
68 xq = p[3]**q
69 for p2 in points:
70 if p2[1]*xq+p2[2] == zero:
71 ovoid.append(libgap(pointInt[p2]))
72
73 D = IncidenceStructure(lines)
74 return (D,ovoid)

A.12 Unitary Nonisotropic graph

1 def unitary_nonisotropic_graph(const int q):
2 r"""

3 Return graph on nonisotropic points for a Hermitian form on (Fq2)3

4 """
5 if q < 3:
6 raise ValueError("q must be greater than 2")
7 if not is_prime_power(q):
8 raise ValueError("q must be a prime power")
9

10 GU = libgap.GU(3,q)
11 Fr = libgap.GF(q*q)
12 one = libgap.One(Fr)
13 zero = libgap.Zero(Fr)
14 ev = [one,one,zero]
15 w = [zero,one,-one]
16
17 vertices = libgap.Orbit(GU,ev,libgap.OnLines)
18 PGU = libgap.Action(GU,vertices,libgap.OnLines)
19

75

20 evPos = -1
21 wPos = -1
22 for i,v in enumerate(vertices):
23 if v == ev:
24 evPos = i+1
25 if v == w:
26 wPos = i+1
27
28 if evPos != -1 and wPos != -1:
29 break
30
31 edges = libgap.Orbit(PGU, libgap.Set([evPos,wPos]), libgap.OnSets)
32
33 G = Graph(edges,format="list_of_edges")
34 G.name("Unitary nonisotropic graph on (F_%d)^3"%(q*q))
35 return G

A.13 Hermitian Cover

1 def hermitian_cover(const int q, const int r):
2 r"""
3 Return the Hermitian r-antipodal cover of Kq3+1

4 """
5 if not is_prime_power(q):
6 raise ValueError("invalid input: q must be prime power")
7
8 if not((r%2 == 1 and (q-1)%r == 0) or
9 (q%2 == 0 and (q+1)%r == 0) or

10 (q%2 == 1 and ((q+1)//2)%r == 0)):
11 raise ValueError("invalid input")
12
13 Fq2 = libgap.GF(q*q)
14 one = libgap.One(Fq2)
15 zero = libgap.Zero(Fq2)
16 gen = libgap.Z(q*q)
17
18 Kreps = [gen**i for i in range(r)]#representatives of quotient

Fq2/K
19
20 #vertices are Kv for isotropic v
21 GU = libgap.GU(3,q)
22 e1 = [one,zero,zero]
23 iso_points = libgap.Orbit(GU,e1,libgap.OnLines)
24
25 vertices = [k*v for k in Kreps for v in iso_points]
26
27 #create global variable for function
28 libgap.set_global("zero",zero)
29 libgap.set_global("r",r)
30 libgap.set_global("gen",gen)
31
32 #we need to define the action of GU on (k,v)
33 func = """OnKLines := function(v,M)
34 local w, i, b, k;

76

35
36 w := ShallowCopy(v*M);
37
38 i := 1;
39 while i < 4 do
40 if w[i] <> zero then
41 break;
42 fi;
43 i := i+1;
44 od;
45 b := w[i];
46
47 i := 1;
48 while i < 4 do
49 w[i] := w[i]/b;
50 i := i+1;
51 od;
52
53 k := LogFFE(b,gen);
54 i := k mod r;
55 b := gen^i;
56
57 return b*w;
58 end;"""
59
60 gapOnKLines = libgap.eval(func)
61 GUAction = libgap.Action(GU,vertices,gapOnKLines)
62
63 e3 = [zero,zero,one]#other isotropic, with H(e3,e1) = 1
64 e1pos = libgap.Position(vertices,e1)
65 e3pos = libgap.Position(vertices,e3)
66
67 #now we have that
68 #(e1pos, e11pos) is an edge
69 edges = libgap.Orbit(GUAction,[e1pos,e3pos], libgap.OnSets)
70 G = Graph(edges, format="list_of_edges")
71 return G

A.14 Pasechnik and Brouwer-Pasechnik graphs

1 def Brouwer_Pasechnik_graph(const int q):
2 r"""
3 Return the Brouwer-Pasechnik graph on Fq
4 """
5 Fq = GF(q)
6
7 def cross(v,w):
8 z = [v[1]*w[2]-v[2]*w[1], v[2]*w[0]-v[0]*w[2],

v[0]*w[1]-v[1]*w[0]]
9 return vector(Fq,z)

10
11 V = list(VectorSpace(Fq,3))
12 for v in V:
13 v.set_immutable()

77

14
15 edges = []
16 for u in V:
17 for v in V:
18 for v2 in V:
19 sig_check()
20 if v2 == v: continue #otherwise cross(v,v2) == 0 and

u2 == u
21 u2 = u+ cross(v,v2)
22 u2.set_immutable()
23 edges.append(((u,v),(u2,v2)))
24
25 G = Graph(edges,format="list_of_edges")
26 G.name("Brouwer-Pasechnik graph on GF(%d)"%q)
27 return G
28
29
30 def Pasechnik_graph(const int q):
31 r"""
32 Return Pasechnik graph on Fq.
33 """
34 H = Brouwer_Pasechnik_graph(q)
35 G = extended_biparitite_double_graph(H)
36 G.name("Pasechnik graph on D_4(%d)"%q)
37 return G

A.15 TD graphs

1 def graph_from_TD(const int m, const int u):
2 r"""
3 Return the incidence graph of a symmetric transversal design with

parameters m, u.
4 """
5 SN = Sage_Designs.symmetric_net(m,u)
6 return SN.incidence_graph()
7
8
9 def prime_power_and_2_difference_matrix(q):

10 r"""
11 Return a (q,2q,2) difference matrix where q is a prime power.
12 """
13 if q % 2 == 0:
14 (p,i) = is_prime_power(q,get_data=True)
15 return prime_power_difference_matrix(2,i,1)
16
17 Fq = FiniteField(q)
18 elems = [x for x in Fq]
19 l = len(elems)
20 n = Fq.primitive_element() #we only need a non-square, but this

should do
21
22 D = [[0]*(2*q) for i in range(2*q)]
23 for i in range(1,5):
24 for x in range(l):

78

25 for y in range(l):
26 if i == 1:
27 d = elems[x]*elems[y] + (elems[x]**2 / 4)
28 elif i == 2:
29 d = elems[x]*elems[y] + (n*elems[x]**2 / 4)
30 elif i == 3:
31 d = elems[x]*elems[y] - elems[y]**2 -

(elems[x]**2 / 4)
32 elif i == 4:
33 d = (elems[x]*elems[y] - elems[y]**2 -

elems[x]**2 / 4) / n
34
35 rowshift = q if i > 2 else 0
36 colshift = q if i%2 == 0 else 0
37 D[x + rowshift][y + colshift] = d
38
39 return (Fq,D)
40
41
42 def prime_power_difference_matrix(p,i,j):
43 r"""
44 Return a (p^i, p^(i+j), p^j) difference matrix where p is a prime.
45 """
46 from sage.modules.free_module_element import vector
47
48 G = FiniteField(p**(i+j))
49 elemsG = [x for x in G]
50 K = [[x*y for y in elemsG] for x in elemsG]
51
52 #we need to map G to (Z_p)^(i+j)
53 x = G.gen()
54 Fp = FiniteField(p)
55
56 basis = [x**l for l in range(i+j)]
57 iso = {}
58 for v in VectorSpace(Fp,i+j):
59 y = 0
60 for l in range(i+j):
61 y += v[l]*(x**l)
62 iso[y] = v
63
64 H = [[tuple(iso[x][:i]) for x in row] for row in K]
65
66 #So H is Over (Z_p)^i
67 V = VectorSpace(Fp,i)
68
69 return (V,H)
70
71
72 def subgroup_construction(g,k,lmbda,existence=False):
73 r"""
74 Return a (g,k,\lambda) difference matrix using a subgroup

construction
75 """
76 #here we assume (g,k,lmbda) = (g2/s,k,lmbda2*s)
77 #and try to construct (g2,k,lmbda2)

79

78
79 possibleS = divisors(lmbda)
80 possibleS = possibleS[1:] #remove s=1
81
82 for s in possibleS:
83 g2=g*s
84 lmbda2 = lmbda//s
85 exists = difference_matrix(g2,k,lmbda2,existence=True)
86 if exists is not True:
87 continue
88
89 (G,M) = difference_matrix(g2,k,lmbda2)
90
91 if G in FiniteFields:
92 if existence: return True
93 #then G is essentially a vectorspace
94 (G,fr,to) = G.vector_space(map=True)
95
96 #map elements of M to the vector space
97 for i in range(lmbda2*g2):
98 for j in range(k):
99 M[i][j] = to(M[i][j])

100
101 #now we need to find (if it exists) a normal subgroup of G of

order s
102 if G in VectorSpaces:
103 if existence: return True
104 Fp = G.base_field()
105 p = Fp.characteristic()
106 n = 1
107 m = p
108 while m < s:
109 m *= p
110 n += 1
111 #so n = dimension of H
112
113 n = G.dimension() - n #dimension of G/H
114 GH = VectorSpace(Fp,n)
115
116 #now map all elements of M into G/H
117 for i in range(lmbda2*g2):
118 for j in range(k):
119 M[i][j] = tuple(M[i][j][:n]) #truncate vector
120
121 return GH,M
122 else:
123 #we don't handle this at this moment
124 continue
125
126 if existence:
127 return False
128
129 raise EmptySetError("no subgroup construction found")

80

A.16 BIBD graphs

1 def graph_from_square_BIBD(const int v, const int k):
2 r"""
3 Returns the incidence graph of a symmetric (or square) BIBD with

v points and block size k
4 """
5 if v == 1 or (k*(k-1))%(v-1) != 0:
6 raise ValueError("no square BIBD exists with v={},

k={}".format(v,k))
7 lmbd = (k*(k-1))//(v-1)
8 D = Sage_Designs.balanced_incomplete_block_design(v, k, lmbd=lmbd)
9 return D.incidence_graph()

A.17 Taylor graph

1 def Taylor_graph(const int n, const int l):
2 r"""
3 Return the Taylor graph related to the two-graph with parameters

n, l
4 """
5 D = two_graph(n,l,regular=True,check=False)
6 G = graph_from_two_graph(D)
7 return G
8
9

10 def graph_from_two_graph(D):
11 r"""
12 Given a two graph (block design) it builds the graph associated

with it.
13 """
14 edges = []
15
16 inf = D.ground_set()[0]
17
18 #first we do all coherent edges
19 S = set() #set of coherent pairs
20 for b in D.blocks():
21 sig_check()
22 if b[0] == inf: x=b[1]; y=b[2]
23 elif b[1] == inf: x=b[0]; y=b[2]
24 elif b[2] == inf: x=b[0]; y=b[1]
25 else: continue
26 #now x,y,inf are coherent
27 S.add(frozenset([x,y]))
28 edges.append(((x,0),(y,0)))
29 edges.append(((x,1),(y,1)))
30
31 #inf is coherent with any other vertex!
32 for x in D.ground_set()[1:]:#we don't want edge inf inf
33 sig_check()
34 edges.append(((x,0),(inf,0)))
35 edges.append(((x,1),(inf,1)))

81

36 S.add(frozenset([x,inf]))
37
38 #now we can handle the non-coherent ones
39 l = D.num_points()
40 for i in range(l):
41 x = D.ground_set()[i]
42 for j in range(i+1,l):#go through all ordered pairt
43 sig_check()
44 y = D.ground_set()[j]
45 if frozenset([x,y]) in S: continue#x,y,inf coherent
46 #otherwise add edge
47 edges.append(((x,0),(y,1)))
48 edges.append(((x,1),(y,0)))
49
50 G = Graph(edges,format="list_of_edges")
51 return G

A.18 Denniston graph

1 def graph_from_Denniston_arc(const int n):
2 r"""
3 Returns the distance regular graph related to the Denniston n-arc

on Fn2

4 """
5 (p,k) = is_prime_power(n,get_data=True)
6 if p != 2:
7 raise ValueError("input must be a power of 2")
8
9 q = n*n

10 Fq = GF(q)
11 Fn = GF(n)
12 elemsFq = [x for x in Fq]
13
14 #ensure elemsFq[0] == 0
15 if not elemsFq[0].is_zero():
16 for i,x in enumerate(elemsFq):
17 sig_check()
18 if x.is_zero():
19 y = elemsFq[0]
20 elemsFq[0] = x
21 elemsFq[i] = y
22 break
23
24 #find irreducible quadratic
25 candidates = set(Fq)
26 for x in elemsFq[1:]:#we rely on the first element to be 0
27 sig_check()
28 a = x + (1/x)
29 candidates = candidates.difference({a})
30
31 irrCoef = candidates.pop()
32 def Q(x,y):
33 return x*x+irrCoef*x*y+y*y
34

82

35 PG = Sage_Designs.ProjectiveGeometryDesign(2,1,q) #projective
plane PG(2,q)

36 #the points are represented as vectors with homogeneous
coordinates (first non-zero entry is 1)

37
38 arc = set() #complete arc
39 for x in elemsFq:
40 for y in elemsFq:
41 sig_check()
42 if Q(x,y) in Fn:
43 arc.add(vector(Fq,[1,x,y],immutable=True))
44
45 #pick all lines intersecting arc in n points (so any line

intersecting the arc)
46 #remove all points in arc
47 lines = []
48 for b in PG.blocks():
49 sb = Set(b)
50 for p in b:
51 sig_check()
52 if p in arc:
53 newLine = sb.difference(arc)
54 lines.append(newLine)
55 break
56
57 #now we have a list of all lines of the complement
58 edges = []
59 for b in lines:
60 bs = frozenset(b)
61 for p in b:
62 sig_check()
63 edges.append((p,bs))
64
65 G = Graph(edges,format="list_of_edges")
66 G.name("Incidence graph of the complement of a complete %d-arc in

PG(2,%d)"%(n,q))
67 return G

A.19 Association Schemes graph

1 def association_scheme_graph(scheme, inf="inf"):
2 r"""
3 Return the graph related to the given association scheme.
4
5 We need inf not to be a point of the scheme
6 """
7 if inf in scheme.ground_set():
8 raise ValueError("inf must not be in the association scheme")
9

10 r = scheme.num_classes()
11 X = scheme.ground_set()
12 I = list(range(1,r+1))
13
14 edges = []

83

15 for x in X:
16 for i in I:
17 edges.append(((inf,i),(x,i)))
18
19 n = scheme.num_points()
20 for x in range(n):
21 for y in range(x+1,n):
22 ij = scheme.matrix()[x][y]
23 for i in I:
24 j = (ij -i)%r
25 if j == 0: j = r
26 edges.append(((X[x],i),(X[y],j)))
27 edges.append(((X[y],i),(X[x],j)))
28
29 G = Graph(edges,format="list_of_edges")
30 return G
31
32
33 def cyclotomic_scheme(const int q, const int r, check=True):
34 r"""
35 Return cyclotomic association scheme on q points and r classes
36 """
37 if r <= 0 or (q-1)%r != 0:
38 raise ValueError("we need r to be a (positive) divisor of

q-1")
39
40 Fq = GF(q)
41 X = list(Fq)
42 XtoInt = { x: i for i,x in enumerate(X) }
43
44 relations = [[0 for i in range(q)] for j in range(q)] #qxq matrix
45
46 a = Fq.primitive_element()
47 ar = a**r
48 m = (q-1)//r
49 K = [ar**i for i in range(m)]
50 for i in range(1,r+1):
51 ai=a**i
52 aiK = [ai*x for x in K]
53 for x in X:
54 for z in aiK:
55 sig_check()
56 y = x+z
57 relations[XtoInt[x]][XtoInt[y]] = i
58
59 return AssociationScheme(X, relations, check=check)

A.20 Preparata graphs

1 def Preparata_graph(const int t, const int i):
2 r"""

3 Return Preparata graph on F22t−1 with subgroup A of size 2i

4 """
5 if i > 2*t-2 or i < 0:

84

6 raise ValueError("i should be between (inclusive) 0 and
2*t-2")

7
8 if t < 1:
9 raise ValueError("t should be greater than 1")

10
11 q = 2**(2*t-1)
12 Fq= GF(q)
13
14 if i != 0:#then A has some meaning
15 (Fqvec,fromV,toV) = Fq.vector_space(map=True)
16 n = Fqvec.dimension()
17 A = []
18 for j in range(i):
19 v = [0]*n
20 v[j] = 1
21 v = vector(Fqvec.base_field(), v)
22 A.append(v)
23
24 #now A represents a basis for a vector space of dim i
25 A = Fqvec.span(A)
26 A = [fromV(x) for x in A]
27 #now A is a subgroup of Fq of size 2^i
28 Q = set()
29 toQ = {}
30 Qrep = {}
31 for x in Fq:
32 sig_check()
33 xA = frozenset([x+a for a in A])
34 toQ[x] = xA
35 Qrep[xA] = x
36 for k in Qrep:
37 Q.add(Qrep[k])
38
39 else:
40 Q = Fq
41
42 edges = []
43 for x in Fq:
44 x2 = x*x
45 x3 = x2*x
46 for y in Fq:
47 y2 = y*y
48 r = x2*y+x*y2
49 x3py3 = x3+y2*y
50 for a in Q:
51 sig_check()
52 if x != y or r != 0:
53 b = r+a
54 if i != 0: b = Qrep[toQ[b]]
55 edges.append(((x,0,a),(y,0,b)))
56 edges.append(((x,1,a),(y,1,b)))
57 b = r + x3py3 +a
58 if i != 0: b = Qrep[toQ[b]]
59 edges.append(((x,0,a),(y,1,b)))
60 edges.append(((x,1,a),(y,0,b)))

85

61
62 G = Graph(edges, format="list_of_edges")
63 G.name("Preparata graph on 2^(2%d-1)"%t)
64 return G

A.21 Symplectic Cover

1 def symplectic_cover(const int q, const int n, const int r):
2 r"""
3 Returns an r-antipodal cover of Kqn using a symplectic form over

Fq
4 with a subgroup of index r
5 """
6 if n <= 0:
7 raise ValueError("n must be positive")
8 if n%2 == 1:
9 raise ValueError("n must be even")

10 if q%r != 0:
11 raise ValueError("r must be a factor of q")
12
13 def ei(i,m):
14 v = [0]*m
15 v[i] = 1
16 return v
17
18 Fq = GF(q)
19 V = VectorSpace(Fq,n)
20
21 if r != q:
22 #we need A to be a subgroup of the additive group of Fq
23 #so we make Fq a vectorspace and A is a subspace
24 (Fqvec,fromVec,toVec) = Fq.vector_space(map=True)
25 (p,k) = is_prime_power(r,get_data=True)
26 Adim = Fqvec.dimension() -k #|A| = q / r
27 A = Fqvec.span([ei(i,Fqvec.dimension()) for i in range(Adim)])
28 A = [fromVec(x) for x in A]
29
30 Q = set()
31 toQ = {}# map a -> a+A
32 Qrep = {}#map a+A -> a (unique representative for a+A)
33 for x in Fq:
34 sig_check()
35 xA = frozenset([x+a for a in A])
36 Q.add(xA)
37 toQ[x] = xA
38 Qrep[xA] = x
39 Q = set([Qrep[xA] for xA in Q])
40
41 else:
42 Q = Fq
43
44 #symplectic form has matrix
45 # 0 I
46 # -I 0

86

47 M = []
48 n2 = n//2
49 for i in range(n):
50 sig_check()
51 row = [0]*n
52 if i < n2:
53 row[n2+i] = 1
54 else:
55 row[i-n2] = -1
56 M.append(row)
57 M = Matrix(Fq,M)
58
59 vectors = list(V)
60 for v in vectors:
61 v.set_immutable()
62
63 edges = []
64 k = len(vectors)
65 for i in range(k):
66 x = vectors[i]
67 for j in range(i+1,k):
68 y = vectors[j]
69 Bxy = x*M*y
70 Byx = - Bxy
71 for b in Q:
72 sig_check()
73 a = b + Bxy
74 a2 = b + Byx
75 if r != q:
76 a = Qrep[toQ[a]]
77 a2 = Qrep[toQ[a2]]
78
79 edges.append(((a,x),(b,y)))
80 edges.append(((a2,y),(b,x)))
81
82 G = Graph(edges, format="list_of_edges")
83 G.name("Symplectic antipodal %d cover of K_{%d^%d}"%(r,q,n))
84 return G

A.22 Coset Graph of Linear Code

1 def coset_graph(const int q, C_basis, U_basis=None, n=None :
2 r"""
3 Computes the coset graph Γ(C) where C = Span(C_basis)
4
5 The elements of C_basis are vectors over (Fq)n.
6 U_basis must span the complement of C
7
8 If n or U_basis are not given, they will be deduced from C_basis.
9 So if n or U_basis are not given, then C_basis should not be

empty.
10 """
11 if n == None:
12 n = len(C_basis[0])# dim V

87

13 F = GF(q) #base field
14 lambdas = [x for x in F if x != 0]#non-zero elements of F
15
16 def e(const int i):
17 v = [0]*n
18 v[i-1] = 1
19 return vector(F,v,immutable=True)
20
21 V = VectorSpace(F,n)
22
23 if U_basis is None:
24 C = V.span(C_basis)
25 Q = V.quotient(C)
26 lift = Q.lift_map()#Q -> V
27 U_basis = [lift(v) for v in Q.basis()]
28
29 U = V.span(U_basis)
30 vertices = list(U)
31
32 # build our matrix A
33 A = U_basis.copy()
34 for c in C_basis:
35 A.append(c)
36
37 A = Matrix(F,A)
38 A = A.transpose()
39 Ainv = A.inverse()
40
41 Pei = [] #list of P(e_i)
42 for i in range(n+1):
43 ei = e(i)
44 if ei in U:
45 Pei.append(ei)
46 else:
47 a = Ainv * ei
48 # get zero vector and sum a[i]u_i to it
49 v = vector(F,[0]*n)
50 for i in range(len(U_basis)):
51 v += a[i]*U_basis[i]
52 v.set_immutable()
53 Pei.append(v)
54
55 lPei = [l*u for l in lambdas for u in Pei]
56
57 edges = []
58 for v in vertices:
59 for u in lPei:
60 w = v + u
61 edges.append((v, w))
62
63 G = Graph(edges, format='list_of_edges')
64 return G

88

A.23 Kasami codes

1 def extended_Kasami_code(const int s, const int t):
2 r"""
3 Returns the extended Kasami code with parameters (s,t)
4 """
5 F2 = GF(2)
6 V = VectorSpace(F2, s)
7 elemsFs = [x for x in GF(s)]
8
9 #we ensure that 0 is the first element of elemsFs

10 if not elemsFs[0].is_zero():
11 for i in range(s):
12 if elemsFs[i].is_zero:
13 a = elemsFs[0]
14 elemsFs[0] = elemsFs[i]
15 elemsFs[i] = a
16 break
17
18 FsToInt = { x : i for i,x in enumerate(elemsFs)}
19 elemsFsT = [x**(t+1) for x in elemsFs]
20 FsTToInt = { x: i for i,x in enumerate(elemsFsT)}
21
22 e1 = [0]*s
23 e1[0] = 1
24 e1 = vector(F2,e1,immutable=True)
25
26 W1_basis = []
27 for i in range(s-1):
28 v = [0]*s
29 v[i] = 1
30 v[s-1] = 1
31 W1_basis.append(v)
32 W1 = V.span(W1_basis) #W1 satisfies \sum v[i] = 0
33
34 W2_basis = set([e1])#not really a basis...
35 for i in range(1,s):#avoid x = 0
36 x = elemsFs[i]
37 for j in range(i+1,s):
38 y = elemsFs[j]
39 v = [0]*s
40 v[i] = 1
41 v[j] = 1
42 v[FsToInt[(x+y)]] = 1
43 v = vector(F2,v,immutable=True)
44 W2_basis.add(v)
45 W2 = V.span(W2_basis) #W2 satisfies \sum v[i]elemsFs[i] = 0
46
47 W3_basis = set([e1]) #again not really a basis
48 for i in range(1,s): #avoid x = 0^(t+1) = 0
49 x = elemsFsT[i]
50 for j in range(i+1,s):
51 y = elemsFsT[j]
52 v = [0]*s
53 v[i] = 1

89

54 v[j] = 1
55 v[FsTToInt[(x+y)]] = 1
56 v=vector(F2,v,immutable=True)
57 W3_basis.add(v)
58 W3 = V.span(W3_basis)
59
60 W = W2.intersection(W3)
61 codebook = W.intersection(W1)
62 return codebook
63
64
65 def Kasami_code(const int s, const int t):
66 r"""
67 Return the Kasami code with parameters (s,t)
68 """
69 C = extended_Kasami_code(s,t)
70 codebook = [v[1:] for v in C.basis()]
71 V = VectorSpace(GF(2),s-1)
72
73 return V.span(codebook)

A.24 AB graph

1 def AB_graph(const int n):
2 r"""
3 Graph using almost bent functions on (Fq)n
4
5 At the moment only odd n are implemented
6 """
7 if n%2 == 0:
8 raise ValueError("no known AB function for even n")
9

10 Fq = GF(2**n)
11 f = { x : x**3 for x in Fq }#AB function
12
13 vectors = [x for x in Fq]
14 edges = []
15 for i,x in enumerate(vectors):
16 for y in vectors[i+1:]:
17 for a in vectors:
18 sig_check()
19 b = a + f[x+y]
20 edges.append(((x,a),(y,b)))
21 edges.append(((y,a),(x,b)))
22
23 G = Graph(edges,format="list_of_edges")
24 return G

90

A.25 Example of sporadic graph

1 def cocliques_HoffmanSingleton():
2 D = GraphGenerators.HoffmanSingletonGraph()
3 DC = D.complement()
4
5 cocliques = DC.cliques_maximum()#100 of this
6
7 edges = []
8 for i in range(100):
9 sC = frozenset(cocliques[i])

10 for j in range(i+1,100):
11 if len(sC.intersection(cocliques[j])) == 8:
12 sC2 = frozenset(cocliques[j])
13 edges.append((sC,sC2))
14
15 G = Graph(edges,format="list_of_edges")
16 return G

A.26 Example of selection function

1 def is_from_square_BIBD(list arr):
2 r"""
3 Returns (v,k) s.t. graph_from_BIBD(v,k) has the correct
4 intersection array; False if such pair doesn't exist
5 """
6 if len(arr) != 6: return False
7 k = arr[0]
8 l = arr[4]
9 if l == 0 or (k*(k-1))%l != 0: return False

10 v = (k*(k-1))//l +1
11
12 if k <= 2: return False #trivial cases
13 if v == k: return False #diameter 2
14 #this will force v >= 4 as there is no BIBD with v<k
15
16 if arr != [k, k-1, k-l, 1,l,k]:
17 return False
18
19 if Sage_Designs.balanced_incomplete_block_design(v, k, lmbd=l,

existence=True) is not True:
20 return False
21
22 return (v,k)

91

	Introduction
	Background knowledge and notation
	Project Approach
	 New constructions
	Conclusion
	References
	Code

