Randomness and Intractability in Kolmogorov Complexity

Igor Carboni Oliveira

University of Oxford

ICALP 2019
Background and motivation
Structure versus Randomness

Given a string \(x \in \{0, 1\}^n \), is it “structured” or “random”?

Question of relevance to several fields, including:

LEARNING: Detecting pattern/structure in data.

CRYPTO: Encrypted strings must look random.
Different ways of measuring the complexity of x.

If provably secure cryptography exists, algorithms shouldn't be able to estimate the "complexity" of strings.

This talk: Interested in hardness of estimating complexity.
Complexity of strings

- Different ways of measuring the complexity of \(x \).

010011000111000001111000000111110000000111111000000001111111

- **This talk**: Interested in **hardness** of estimating complexity.

If provably secure cryptography exists, algorithms shouldn’t be able to estimate the “complexity” of strings.
Circuit Complexity:

- View x as a boolean function $f : \{0, 1\}^\ell \to \{0, 1\}$.
- complexity(x) = minimum size of a circuit for f.
- Deciding complexity is just the MCSP. Showing this is hard implies $P \neq NP$.

Kolmogorov Complexity:

- complexity(x) = minimum length of TM that prints x.
- Estimating complexity of x is undecidable.
Circuit complexity and Kolmogorov complexity

Circuit Complexity:
- View x as a boolean function $f : \{0, 1\}^\ell \to \{0, 1\}$.
- complexity(x) = minimum size of a circuit for f.
- Deciding complexity is just the MCSP. Showing this is hard implies $P \neq NP$.

Kolmogorov Complexity:
- complexity(x) = minimum length of TM that prints x.
- Estimating complexity of x is undecidable.
Circuit complexity and Kolmogorov complexity

Circuit Complexity:
- View x as a boolean function $f : \{0, 1\}^\ell \to \{0, 1\}$.
- complexity(x) = minimum size of a circuit for f.
- Deciding complexity is just the MCSP. Showing this is hard implies $P \neq NP$.

Kolmogorov Complexity:
- complexity(x) = minimum length of TM that prints x.
- Estimating complexity of x is undecidable.

“Extremal” . . . Is there an intermediate notion that is useful?
Time-bounded Kolmogorov complexity

- Takes into account **description length** and **running time** of TM.

\[
K_t(x) \overset{\text{def}}{=} \min_{\text{TM } M, \text{ time } t} |M| + \log t
\]

\(
M \text{ prints } x \text{ in time } t
\)

Takes into account description length and running time of TM.

\[K_t(x) \overset{\text{def}}{=} \min_{\text{TM } M, \text{ time } t} |M| + \log t \]

TM \(M \), time \(t \)
\(M \) prints \(x \) in time \(t \)

\(K_t(x) \) can be computed in exponential time (brute-force).
Time-bounded Kolmogorov complexity

[Introduced by L. Levin in 1984.]

[Takes into account description length and running time of TM.]

\[K_t(x) \stackrel{\text{def}}{=} \min_{\text{TM } M, \text{time } t} |M| + \log t \]

\[\text{M prints } x \text{ in time } t \]

[Kt(x) can be computed in exponential time (brute-force).]

Circuit Complexity

Levin’s (Time-Bounded) Kt

Kolmogorov Complexity

NP

EXP

undecidable
Why is K_t an interesting measure?

$\log t$ gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers. Fastest known algorithm runs in time $2^{n/2}$ [Lagarias-Odlyzko, 1987].
Why is K_t an interesting measure?

- $\log t$ gives the “right” measure: connection to **optimal search**.

Example: Deterministic generation of n-bit prime numbers. Fastest known algorithm runs in time $2^{n/2}$ [Lagarias-Odlyzko, 1987].

- Is there a sequence $\{p_n\}$ of n-bit primes such that $K_t(p_n) = o(n)$?
Why is K_t an interesting measure?

$\triangleright \log t$ gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers.
Fastest known algorithm runs in time $2^{n/2}$ [Lagarias-Odlyzko, 1987].

\triangleright Is there a sequence $\{p_n\}$ of n-bit primes such that $K_t(p_n) = o(n)$?

True \iff there is deterministic prime generation in time $2^{o(n)}$
Can we compute $K_t(x)$ in polynomial time?

- Explicitly posed in [ABK$^+$06]. We already know that $P \neq \text{EXP} \ldots$

- Question strongly connected to power of learning algorithms.

- If provably secure cryptography exists, the answer should be **negative**.
Main Result
We introduce a randomized analogue of Levin’s K_t complexity.

Main Result: Randomized K_t complexity cannot be estimated in BPP. (The problem can be solved in randomized exponential time.)

This is an unconditional lower bound for a natural problem.
Randomized Kt Complexity

- Adaptation of Levin’s definition to Randomized Computation.

- For \(x \in \{0, 1\}^n \), we consider algorithms that generate \(x \) w.h.p.:

\[
rKt(x) \overset{\text{def}}{=} \min_{\text{randomized TM } M, \text{ time } t} \left| M \right| + \log t \quad \Pr_M[M \text{ prints } x \text{ in time } t] \geq 2/3
\]

Intuition: String probabilistically decompressed from short representation.
Remarks about K_t Complexity

$$rK_t(x) \overset{\text{def}}{=} \min_{\text{randomized TM } M, \text{ time } t} \Pr_M[M \text{ prints } x \text{ in time } t] \geq \frac{2}{3} |M| + \log t$$

Definition is robust.
Remarks about Kt Complexity

\[r_{Kt}(x) \overset{\text{def}}{=} \min_{\text{randomized TM } M, \text{ time } t} |M| + \log t \]

\[\Pr_M[M \text{ prints } x \text{ in time } t] \geq 2/3 \]

- Definition is **robust**.

- Connected to **pseudodeterministic algorithms**. In particular, it follows from a recent joint work with R. Santhanam that
 - There is an infinite sequence \(\{p_m\}_m \) of \(m \)-bit primes such that \(r_{Kt}(p_m) \leq m^{o(1)} \).
Remarks about Kt Complexity

\[
\text{rKt}(x) \triangleq \min_{\text{randomized TM } M, \text{ time } t} |M| + \log t \quad \Pr_M[M \text{ prints } x \text{ in time } t] \geq 2/3
\]

- Definition is robust.

- Connected to pseudodeterministic algorithms. In particular, it follows from a recent joint work with R. Santhanam that
 - There is an infinite sequence \(\{p_m\}_m \) of \(m \)-bit primes such that \(\text{rKt}(p_m) \leq m^{o(1)} \).

- Under standard derandomization assumptions, \(\text{Kt}(x) = \Theta(\text{rKt}(x)) \).
How difficult is to compute the complexity of a string?

Can we compute $K_t(x)$ in polynomial time?
MKtP – Minimum Kt Problem

Can we compute $rK_t(x)$ in randomized polynomial time?
MrKtP – Minimum rKt Problem
“rKt cannot be approximated in quasi-polynomial time.”

Theorem 1. For every $\varepsilon > 0$, there is no randomized algorithm running in time $n^{\text{poly} (\log n)}$ that distinguishes between $rKt(x) \leq n^\varepsilon$ versus $rKt(x) \geq .99n$, where n is the length of the input string x.

Remark. This problem can be solved in randomized exponential time.
Techniques
Preliminaries

Gap-MrKtP[$n^\varepsilon, .99n$]:

\[
\mathcal{YES}_n \overset{\text{def}}{=} \{x \in \{0, 1\}^n \mid rKt(x) \leq n^\varepsilon\}
\]
\[
\mathcal{NO}_n \overset{\text{def}}{=} \{x \in \{0, 1\}^n \mid rKt(x) > .99n\}
\]

▷ Algorithm for Gap-MrKtP[$n^\varepsilon, .99n$] distinguishes two cases.
Preliminaries

Gap-MrKtP\([n^\varepsilon, .99n] \):

\[\forall \mathcal{S}_n \overset{\text{def}}{=} \{ x \in \{0, 1\}^n \mid rKt(x) \leq n^\varepsilon \} \]

\[\forall O_n \overset{\text{def}}{=} \{ x \in \{0, 1\}^n \mid rKt(x) > .99n \} \]

- Algorithm for Gap-MrKtP\([n^\varepsilon, .99n] \) distinguishes two cases.

- Approach: *indirect diagonalization* using techniques from theory of pseudorandomness.
Main Lemmas

Lemma 1. For every $\varepsilon > 0$, $\text{BPE} \leq_{\text{P}/\text{poly}} \text{Gap-MrKtP}[n^\varepsilon, .99n]$.

▷ Very strong **non-uniform inclusion**.
Lemma 1. For every $\varepsilon > 0$, $\text{BPE} \leq_{P/poly} \text{Gap-MrKtP}[n^\varepsilon, .99n]$.

▷ Very strong non-uniform inclusion.

Lemma 2. For every $\varepsilon > 0$, $\text{PSPACE} \subseteq \text{BPP}^{\text{Gap-MrKtP}[n^\varepsilon, .99n]}$.

▷ Strong uniform inclusion.
Main Lemmas

Lemma 1. For every $\varepsilon > 0$, $\text{BPE} \leq_{P/\text{poly}} \text{Gap-MrKtP}[n^\varepsilon, .99n]$.

- Very strong **non-uniform inclusion**.

Lemma 2. For every $\varepsilon > 0$, $\text{PSPACE} \subseteq \text{BPP}^{\text{Gap-MrKtP}[n^\varepsilon, .99n]}$.

- Strong **uniform inclusion**.

Lemma 3. If $n \leq s(n) \leq 2^{o(n)}$ then $\text{DSPACE}[s^3] \not\subseteq \text{Circuit}[s]$.

- Nexus between **uniform** and **non-uniform** inclusions.
Main Result from Lemmas 1, 2, and 3

Proof by contradiction. Sketch of weaker result:

Assume Gap-MrKtP[\(n^\varepsilon, .99n\)] \(\in\) BPP. This also gives inclusion in P/poly.

L1. BPE \(\leq_{P/poly}\) Gap-MrKtP[\(n^\varepsilon, .99n\)]. This implies BPE \(\subseteq\) Circuit[poly].

L2. PSPACE \(\subseteq\) BPP^Gap-MrKtP[\(n^\varepsilon,.99n\)]. This implies PSPACE \(\subseteq\) BPP.

Translation gives DSPACE[\(n^{\text{poly} \log n}\)] \(\subseteq\) BPTIME[\(n^{\text{poly} \log n}\)] \(\subseteq\) BPE \(\subseteq\) Circuit[poly].

This inclusion contradicts L3. DSPACE[\(s^3\)] \(\nsubseteq\) Circuit[\(s\)].
Hardness versus Randomness paradigm:

From “hard” \(f : \{0, 1\}^m \rightarrow \{0, 1\} \), one designs a “pseudorandom generator”

\[
G^f : \{0, 1\}^\ell \rightarrow \{0, 1\}^n.
\]
Hardness versus Randomness paradigm:

From “hard” \(f : \{0, 1\}^m \rightarrow \{0, 1\} \), one designs a “pseudorandom generator”

\[
G^f : \{0, 1\}^\ell \rightarrow \{0, 1\}^n.
\]

Proof often shows: Algorithm “breaking” \(G^f \) can be used to “compute” \(f \).
> **Hardness versus Randomness paradigm:**

From “hard” \(f : \{0, 1\}^m \rightarrow \{0, 1\} \), one designs a “pseudorandom generator”

\[G^f : \{0, 1\}^\ell \rightarrow \{0, 1\}^n. \]

Proof often shows: Algorithm “breaking” \(G^f \) can be used to “compute” \(f \).

Crucial: We can upper bound \(rKt \) complexity of output strings of \(G^f \).

Algorithm solving \(\text{Gap-MrKtP}[n^\varepsilon, .99n] \) acts as a **distinguisher**!
L1. \(\text{BPE} \leq_{P/poly} \text{Gap-MrKtP}[n^\epsilon, .99n] \). Relies on PRG construction of [BFNW93].

L2. \(\text{PSPACE} \subseteq \text{BPP}^{\text{Gap-MrKtP}[n^\epsilon, .99n]} \). Relies on PRG construction of [TV07].
L1. BPE $\leq_{P/poly} \operatorname{Gap-MrKtP}[n^\epsilon, .99n]$. Relies on PRG construction of [BFNW93].

L2. $\text{PSPACE} \subseteq \operatorname{BPP}^{\operatorname{Gap-MrKtP}[n^\epsilon,.99n]}$. Relies on PRG construction of [TV07].

- **L1** and variants: require notions of string complexity such as rKt and Kt.

- **Randomness is used** in the proof of **L2**: bottleneck to Levin’s Kt.
Further Results

(uniform versus non-uniform lower bounds)
Circuit lower bounds

- Lower bound presented before holds against **uniform** algorithms.

- Boolean circuits capture **non-uniform** computation.

Major Challenge: Show for an explicit problem that any circuit solving the problem requires several AND, OR, NOT gates.
State-of-the-art circuit lower bounds

After 50+ years of intensive investigation:

- Existing circuit lower bounds are of the form $c \cdot n$ for constant c.

- Boolean formulas (weaker model): lower bounds of the form $n^{3-o(1)}$.
After 50+ years of intensive investigation:

- Existing circuit lower bounds are of the form $c \cdot n$ for constant c.
- Boolean formulas (weaker model): lower bounds of the form $n^{3-o(1)}$.

We know that Gap-MrKtP[$n^\epsilon, .99n$] is hard. Can we use it to prove better circuit and formula lower bounds?
Emerging theory showing that \textit{weak} lower bounds can be "magnified" to \textit{strong} lower bounds.
Emerging theory showing that weak lower bounds can be “magnified” to strong lower bounds.

By adapting recent joint work with J. Pich and R. Santhanam:

Theorem 2. If for every $\varepsilon > 0$,

\[
\text{Gap-MrKtP}[n^\varepsilon, .99n] \not\subseteq \text{Circuit}[n^{1.01}], \text{ then } \text{BPEXP} \not\subseteq \text{Circuit}[\text{poly}].
\]

\[
\text{Gap-MrKtP}[n^\varepsilon, .99n] \not\subseteq \text{Formula}[n^{3.01}], \text{ then } \text{BPEXP} \not\subseteq \text{Formula}[\text{poly}].
\]
Open Problems
Can we prove that computing Levin’s K_t complexity cannot be done in deterministic polynomial time?
This work: natural problem that cannot be solved in randomized quasi-polynomial time.

Can we reduce approximating rKt to a problem in NEXP?

Even a randomized reduction would show $\text{NEXP} \neq \text{BPP}$.
References and related work

Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings.

Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy.
The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory.

Eric Allender.
The complexity of complexity.

László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson.
BPP has subexponential time simulations unless EXPTIME has publishable proofs.

Eran Gat and Shafi Goldwasser.
Probabilistic search algorithms with unique answers and their cryptographic applications.

Leonid A. Levin.
Randomness conservation inequalities; information and independence in mathematical theories.

Ming Li and Paul M. B. Vitányi.
An Introduction to Kolmogorov Complexity and Its Applications.

Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam.
Hardness magnification near state-of-the-art lower bounds.

Igor Carboni Oliveira and Rahul Santhanam.
Pseudodeterministic constructions in subexponential time.

Luca Trevisan and Salil P. Vadhan.
Pseudorandomness and average-case complexity via uniform reductions.