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I am interested in mathematical logic and complexity theory. In particular, in proof complexity
of circuit lower bounds.

Background. Proving lower bounds on size of circuits computing explicit boolean functions is
one of the most fundamental problems in the theory of computation, underlying questions such
as the P versus NP problem. Circuit lower bounds have been, however, notoriously difficult to
prove. This led to the development of a theory of formal barrier results. A prominent attempt to
understand the complexity of circuit lower bounds was made with the discovery of the natural
proofs barrier of Razborov and Rudich [30], which ruled out many potential proof methods.
The possibility that circuit lower bounds could present even the limits of logical reasoning was
investigated by Razborov [28], who used natural proofs to derive the unprovability of circuit
lower bounds in certain theories of bounded arithmetic. Such unprovability results correspond
to lower bounds on lengths of proofs in propositional proof systems, which in turn represent
the Cook-Reckhow program towards the separation of NP and coNP - proving that there is no
propositional proof system with p-size proofs of all tautologies is equivalent to NP 6= coNP.
Unfortunately, Razborov’s unprovability result as well as other existing proof complexity lower
bounds work only for very weak theories resp. proof systems.

I. Feasible complexity theory

Razborov’s conjecture. Razborov’s investigation of proof complexity of circuit lower bounds
formed a part of the motivation for the development of a theory of proof complexity genera-
tors [1, 13, 29], which was introduced in a hope to obtain lower bounds against strong proof
systems like Frege - standard textbook systems for propositional logic. Razborov [29] con-
jectured that any suitable Nisan-Wigderson (NW) generator forms a good proof complexity
generator in the sense that tautologies stating the existence of elements outside its range require
superpolynomial-size proofs in Frege systems assuming P/poly is hard on average for NC1. Some
specific NW-generators were, in fact, proven to be hard for weak proof systems like Resolution,
cf. [1]. In [20] I showed that Razborov’s conjecture holds for all proof systems with the so called
feasible interpolation property, including e.g. Resolution and Cutting Planes. This also im-
plied a conditional hardness of circuit lower bounds in such systems. Unfortunately, the feasible
interpolation property is unlikely to hold in strong proof systems like Frege, cf. [15, 4].

Feasible provability of P 6= NP. In order to approach stronger systems I later focused on
a first-order version of the problem independently motivated by the question whether P 6= NP
holds in a strict feasibly constructive sense. In [22] I showed that theories weaker than Cook’s
theory PV1, which formalizes p-time reasoning [8], cannot prove SAT /∈ P/poly under standard
hardness assumptions1. This was obtained by showing a conditional impossibility of witness-
ing P/poly lower bounds by weaker computational models. Unfortunately, this strategy cannot
show the unprovability of SAT /∈ P/poly in PV1 because standard hardness assumptions imply
that SAT /∈ P/poly can be witnessed by a p-time algorithm. On the positive side, such wit-
nessing algorithms yield feasible/succinct propositional formulas encoding circuit lower bounds.
These were proposed in [21] as possibly better candidate hard tautologies than formulas from
Razborov’s conjecture.

1This result is based on a theorem of Kraj́ıček [14] giving a model-theoretic evidence for Razborov’s conjecture
and remains the strongest unprovability result concerning P 6= NP in first-order theories. However, it does not yield
propositional lower bounds. In propositional setting the strongest lower bound on the hardness of SAT /∈ P/poly
is due to Razborov [29].
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Formalizations of complexity theory. Complementing lower bounds, in [23] I aimed at
supporting the thesis that a lot of complexity theory is derivable in feasible fragments of arith-
metic. I formalized the PCP theorem in the theory PV1. Further, with Müller [16], we proved
AC0,AC0[p] and monotone circuit lower bounds in a slight extension of PV1, a theory APC1

formalizing probabilistic p-time reasoning [11]. In [16] we thus formally strengthened construc-
tivity of the existing circuit lower bounds. While already Razborov [27] showed the provability
of AC0,AC0[p] and monotone circuit lower bounds in PV1, we showed the provability of their
succinct formulation - in which one is not given the whole truth-table of a hard function but
only its polynomially big part or its defining formula. In fact, we gave a succinct version of
natural proofs against AC0[p] with proofs in a propositional proof system known as WF.

QBF Frege system. An intuitionistic bounded arithmetic S12, developed by Buss, Cook and
Urquhart [5, 9], captures the notion of feasibly constructive mathematics more closely than
Cook’s PV1. In [3] we showed that a QBF extension of Frege system, introduced by Beyersdorff,
Bonacina and Chew [2], presents a QBF equivalent of intuitionistic S12. In fact, it posseses even
more constructive properties and can be seen as a formalization of ultrafinitism.

II. Hardness magnification

Hardness magnification frontiers. The above-mentioned proposal from [21] suggests to
investigate succinct formulas expressing SAT /∈ P/poly which are exponentially harder than the
truth-table formulas expressing SAT /∈ P/poly. In [16] I expanded this approach by observing
that if the truth-table formulas encoding a polynomial circuit lower bound require superlinear
size proofs in AC0-Frege systems, then succinct formulas encoding the same polynomial circuit
lower bound require (NC1)-Frege proofs of superpolynomial size [16, implicit in Proposition 4.14].
Since AC0-Frege lower bounds are known this suggests a way for attacking Frege lower bounds.
Proposition 4.14 [16] inspired Oliveira and Santhanam [18] to develop an analogous strategy in
circuit complexity, termed hardness magnification. They showed that if an average case version
of the minimum circuit size problem MCSP is hard for superlinear-size circuits, then P 6= NP.
Strikingly, their strategy seemed to overcome the natural proofs barrier of Razborov and Rudich.
In [19] I proved that even if a worst-case version of the minimum circuit size problem MCSP
is hard for circuits of superlinear size, then P 6= NP. Further, by a lower bound of Hirahara-
Santhanam [10], the same version of MCSP is hard for formulas of subquadratic size. Since
the gap between magnification theorems and known lower bounds is (from several perspectives)
seemingly negligible, this raised the hope that closing it was within our reach.

Beyond natural proofs & the locality barrier. In [7] we formally supported the intuition
that hardness magnification overcomes the natural proofs barrier: we proved that hardness
magnification is in certain cases inherently nonnaturalizable. On the other hand, in [7] we
identified a new locality barrier which explains why direct adaptations of the existing lower
bounds do not yield strong complexity separations via hardness magnification.

III. Learning algorithms from circuit lower bounds

Learning algorithms from witnessing. Formalizations from [16] were partially motivated
by an observation [24, 16] pointing out that the ability to prove succinct circuit lower bounds
implies the ability to learn properties of boolean functions. In [25] I developed this connection
further and showed that efficient algorithms witnessing errors of p-size circuits (analogous to
the witnessing of circuit lower bounds in bounded arithmetic) are equivalent to the existence of
efficient learning algorithms for P/poly. This extended the natural proofs barrier and provided
a new characterization of learning algorithms. A similar theorem was previously proved by
Carmosino, Impagliazzo, Kabanets and Kolokolova [6], who established an equivalence between
learning algorithms and lower bounds defined in terms of natural proofs. Moreover, in [25]
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I gave an alternative proof of a surprising theorem of Oliveira and Santhanam [17] showing
that learning algorithms can be sped up in a generic way. The learning speedup can be also
interpreted as a hardness magnification theorem avoiding the locality barrier.

Learning algorithms versus automatability. One of the central notions in proof complexity
is the concept of proof-search algorithms formalized by the notion of automatability: a proof
system P is automatable if there is an algorithm finding P -proofs of each tautology φ in p-
time w.r.t. the shortest P -proof of φ. Extending the work of Razborov [28], Kraj́ıček [12] and
Carmosino et al. [6], in [26] we showed that for every sufficiently strong, well-behaved proof
system P such as WF or set theory ZFC (interpreted as a proof system for proving tautologies),
if P proves efficiently some sufficiently strong circuit lower bound, then efficient P -provability of
efficient learnability of P/poly is equivalent to efficient P -provability of automatability of P on
tautologies encoding circuit lower bounds. This shows that in the context of metamathematics it
is possible to establish a conditional equivalence between central concepts of complexity theory
which we do not know to establish otherwise.
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