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Can we automate mathematics? Can we design efficient all-purpose learning algorithms?

I am interested in mathematical logic and complexity theory. In particular, in proof complexity
of circuit lower bounds.

Background. Proving lower bounds on the size of circuits computing explicit Boolean functions
is one of the most fundamental problems in the theory of computation, underlying questions
such as the P versus NP problem. Circuit lower bounds have been, however, notoriously difficult
to prove. This led to the development of a theory of formal barrier results. A prominent attempt
to understand the complexity of circuit lower bounds was made with the discovery of the natural
proofs barrier of Razborov and Rudich [33], which ruled out many potential proof methods. The
possibility that circuit lower bounds could present even the limits of (feasible) logical reasoning
was investigated by Razborov [31], who used natural proofs to derive the unprovability of circuit
lower bounds in certain theories of bounded arithmetic. Such unprovability results can be
typically interpreted as lower bounds on lengths of proofs in propositional proof systems, which
in turn represent the Cook-Reckhow program towards the separation of NP and coNP - proving
that there is no propositional proof system with p-size proofs of all tautologies is equivalent
to NP 6= coNP. Unfortunately, Razborov’s unprovability result as well as other existing proof
complexity lower bounds work only for very weak theories and proof systems.

I. Feasible complexity theory

Razborov’s conjecture. Razborov’s investigation of proof complexity of circuit lower bounds
formed a part of the motivation for the development of a theory of proof complexity generators [1,
13, 32], which was introduced in a hope to obtain lower bounds against strong proof systems like
Frege - standard textbook systems for propositional logic. Razborov [32] conjectured that any
suitable Nisan-Wigderson (NW) generator forms a good proof complexity generator in the sense
that tautologies stating the existence of elements outside its range require superpolynomial-size
proofs in Frege systems assuming P/poly is hard on average for NC1. If true, the conjecture would
imply a conditional unprovability of circuit lower bounds in strong mathematical theories. Some
specific NW-generators were, in fact, proven to be hard for weak proof systems like Resolution
[1]. In [21] I showed that Razborov’s conjecture holds for all proof systems with a suitable
‘feasible interpolation’ property. Unfortunately, the feasible interpolation property is unlikely
to hold in strong proof systems like Frege [15, 4].

Feasible provability of P 6= NP. In order to approach stronger systems, I later focused on
a first-order version of the problem independently motivated by the question whether P 6= NP
holds in a strict feasibly constructive sense. In [23] I showed that, under standard hardness
assumptions, theories weaker than PV1 cannot prove (an ‘almost everywhere’ formulation of)
SAT /∈ P/poly.1 Here, PV1 is Cook’s theory formalizing p-time reasoning [8]. The result was
obtained by showing a conditional impossibility of witnessing P/poly lower bounds by weaker
computational models. Unfortunately, this strategy cannot show the unprovability of SAT /∈
P/poly in PV1 because standard hardness assumptions imply that SAT /∈ P/poly can be witnessed
by a p-time algorithm. On the positive side, such witnessing algorithms allow us to encode s-size

1This result is based on a theorem of Kraj́ıček [14] giving a model-theoretic evidence for Razborov’s conjecture
and remains the strongest unprovability result concerning P 6= NP in first-order theories. However, it does not yield
propositional lower bounds. In propositional setting, the strongest lower bound on the hardness of SAT /∈ P/poly
is due to Razborov [32].
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circuit lower bounds by ‘feasible/succinct’ propositional formulas of size poly(s). This realization
eventually led to the developments in hardness magnification described below.

Formalization of complexity theory. Complementing lower bounds, in [24] I aimed at sup-
porting the thesis that a lot of complexity theory is derivable in feasible fragments of arithmetic.
I formalized the PCP theorem in the theory PV1. Further, with Müller [17] we proved AC0,AC0[p]
and monotone circuit lower bounds in a slight extension of PV1, a theory APC1 formalizing prob-
abilistic p-time reasoning [11]. In [17] we thus formally strengthened the constructivity of the
existing circuit lower bounds. While already Razborov [30] showed the provability of AC0,AC0[p]
and monotone circuit lower bounds in PV1, we showed the provability of their succinct formula-
tion - in which one is not given the whole truth-table of a hard function but only its polynomially
big part or its defining formula. In fact, we gave a succinct version of natural proofs against
AC0[p] with proofs in a propositional proof system known as WF.

QBF Frege system. An intuitionistic bounded arithmetic S12, developed by Buss, Cook and
Urquhart [5, 9], captures the notion of feasibly constructive mathematics more closely than
Cook’s PV1. In [3] we showed that a QBF extension of Frege system, introduced by Beyersdorff,
Bonacina and Chew [2], presents a QBF equivalent of intuitionistic S12. In fact, it posseses even
more constructive properties and can be considered as a formalization of ultrafinitism.

II. Hardness magnification

Hardness magnification frontiers. In [22] I suggested to investigate succinct propositional
formulas expressing SAT /∈ P/poly which are exponentially harder than the ‘truth-table’ formulas
expressing SAT /∈ P/poly. In [17] I expanded this approach by observing that if the truth-table
formulas encoding a polynomial circuit lower bound require superlinear size proofs in AC0-Frege
systems, then succinct formulas encoding the same polynomial circuit lower bound require Frege
proofs of superpolynomial size [17, implicit in Proposition 4.14]. Since AC0-Frege lower bounds
are known, this suggests a way for attacking Frege lower bounds.
Proposition 4.14 [17] inspired Oliveira and Santhanam [19] to develop an analogous strategy in
circuit complexity, referred to as hardness magnification. They showed that if an average-case
version of the minimum circuit size problem MCSP is hard for superlinear-size circuits, then
P 6= NP. Strikingly, their strategy seems to overcome the natural proofs barrier of Razborov
and Rudich. In [20] I proved that even if a worst-case version of the minimum circuit size
problem MCSP is hard for circuits of superlinear size, then P 6= NP.2 Further, by a lower bound
of Hirahara-Santhanam [10], the same version of MCSP is hard for formulas of subquadratic
size. Since the gap between magnification theorems and known lower bounds is (from several
perspectives) seemingly negligible, this raised the hope that closing it was within our reach.

Beyond natural proofs & the locality barrier. In [7] we formally supported the intuition
that hardness magnification overcomes the natural proofs barrier: We proved that hardness
magnification is in certain cases inherently nonnaturalizable as its successful implementation
would imply the non-existence of natural proofs. On the other hand, in [7] we identified a new
locality barrier which explains why direct adaptations of the existing lower bounds do not yield
strong complexity separations via hardness magnification. The phenomenon in the core of the
locality barrier says that the existing circuit lower bounds relevant for hardness magnification
‘localize’ in the sense that they remain valid even if we allow circuits to use arbitrarily powerful
oracles with small fan-in. In [27] I showed that a nontrivial localizability is an inherent property
of all circuit lower bounds based on the approximation method of Razborov.

2Independently, McKay, Murray and Williams [16] proved the implication with a completely different proof.
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III. Learning algorithms from circuit lower bounds

Learning algorithms from witnessing. The formalization results from [17] were partially
motivated by an observation [25, 17] pointing out that the ability to prove succinct circuit
lower bounds implies the ability to learn outputs of Boolean functions. In [26] I developed
this connection further and showed that efficient algorithms witnessing errors of p-size circuits
(analogous to the witnessing of circuit lower bounds in bounded arithmetic) are equivalent to
the existence of efficient learning algorithms for P/poly. This provided a new characterization of
natural proofs and learning algorithms. A similar theorem was previously proved by Carmosino,
Impagliazzo, Kabanets and Kolokolova [6], who established an equivalence between learning
algorithms and lower bounds defined in terms of natural proofs. Moreover, in [26] I gave an
alternative proof of a surprising theorem of Oliveira and Santhanam [18] showing that learning
algorithms can be sped up in a generic way. The learning speedup can be also interpreted as a
hardness magnification theorem avoiding the locality barrier.

Learning algorithms versus automatability. One of the central notions in proof complexity
is the concept of proof-search algorithms formalized by the notion of automatability: a proof
system P is automatable if there is an algorithm finding P -proofs of each tautology φ in p-
time w.r.t. the shortest P -proof of φ. Extending the work of Razborov [31], Kraj́ıček [12] and
Carmosino et al. [6], in [28] we showed that for every sufficiently strong, well-behaved proof
system P such as WF or set theory ZFC (interpreted as a proof system for proving tautologies),
if P proves efficiently some sufficiently strong circuit lower bound, then efficient P -provability
of efficient learnability of P/poly is equivalent to efficient P -provability of (a form of) automata-
bility of P on tautologies encoding circuit lower bounds. This shows that in the context of
metamathematics it is possible to establish a conditional equivalence between central concepts
of complexity theory which we do not know to establish otherwise.

Learning algorithms from breaking cryptography. Do efficient learning algorithms for
P/poly follow from breaking cryptographic pseudorandom generators? Such an implication
would significantly strengthen the natural proofs barrier and establish a ‘win-win’ dichotomy:
Either safe cryptography is possible or there are efficient learning algorithms for P/poly. With
Santhanam [29] we connected this problem and related questions to a fundamental problem in
proof complexity: While the Cook-Reckhow program is an approach to the P vs NP problem,
a significant problem with the approach is that we do not know if we ever reach the point of
proving a superpolynomial lower bound for all proof systems, if we focus only on concrete ones.
In [29] we showed that P 6= NP indeed follows from superpolynomial lower bounds for Extended
Frege system (EF), if S12 proves (a) a subexponential circuit lower bound for E and that (b) a
p-time function transforms circuits breaking one-way functions to p-size circuits computing SAT.
If the EF lower bound holds for tautologies expressing suitable circuit lower bounds, (b) can be
replaced by the S12-provability of a construction of efficient learning algorithms for P/poly from
circuits breaking one-way functions. This can be interpreted as a conditional proof complexity
collapse: If P = NP and the above-mentioned assumptions hold, then EF has p-size proofs of
the respective set of tautologies.
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[11] Jeřábek E., Approximate counting in bounded arithmetic; Journal of Symbolic Logic, 72(3),
2007.
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