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Abstract

We revisit known constructions of efficient learning algorithms from various no-
tions of constructive circuit lower bounds such as distinguishers breaking pseudoran-
dom generators or efficient witnessing algorithms which find errors of small circuits
attempting to compute hard functions. As our main result we prove that if it is
possible to find efficiently, in a particular interactive way, errors of many p-size cir-
cuits attempting to solve hard problems, then p-size circuits can be PAC learned
over the uniform distribution with membership queries by circuits of subexponential
size. The opposite implication holds as well. This provides a new characterisation of
learning algorithms and extends the natural proofs barrier of Razborov and Rudich.
The proof is based on a method of exploiting Nisan-Wigderson generators intro-
duced by Kraj́ıček (2010) and used to analyze complexity of circuit lower bounds
in bounded arithmetic.

An interesting consequence of known constructions of learning algorithms from
circuit lower bounds is a learning speedup of Oliveira and Santhanam (2016). We
present an alternative proof of this phenomenon and discuss its potential to advance
the program of hardness magnification.

1 Introduction

While the central conjectures in complexity theory such as P 6= NP have the form of
impossibility results, we hope that a better understanding of the impossibility phenomena
will also shed light on the question of constructing new useful algorithms. A successful
formalization of such hopes can be found in cryptography, where the impossibility results
in the form of average-case lower bounds are turned into cryptographic primitives. In the
present paper we are interested in turning complexity lower bounds into efficient learning
algorithms.

Results of this form can be traced back to cryptography as well. The ‘pseudoran-
domness from unpredictability’ paradigm was used by Blum, Furst, Kearns and Lipton [3]
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to show that efficient distinguishers breaking pseudorandom generators imply an efficient
learning of p-size circuits on average. The distinguishers from [3] can be interpreted as con-
structive circuit lower bounds distinguishing partial truth-tables of easy Boolean functions
from partial truth-tables of hard functions, cf. Section 4. The existing methods for prov-
ing circuit lower bounds have been also applied in constructions of new learning algorithms
for restricted circuit classes, e.g. Linial, Mansour and Nisan [23] used AC0 lower bounds
to get learning algorithms for AC0. More recently, in a landmark work, Carmosino, Im-
pagliazzo, Kabanets and Kolokolova [5] gave a generic construction of learning algorithms
from natural proofs of circuit lower bounds. Oliveira and Santhanam [32] extended their
result to a dichotomy between the non-existence of non-uniform pseudorandom function
families and the existence of efficient learning of small circuits. These results led Oliveira
and Santhanam [32] also to a discovery of a surprising learning speedup. For example,
learning p-size circuits over the uniform distribution with membership queries by circuits
of weakly subexponential size 2n/nω(1) implies that for each constant k and ε > 0, cir-
cuits of size nk can be learned over the uniform distribution with membership queries by
circuits of strongly subexponential size 2n

ε
.

1.1 Our contribution

In the present paper we revisit these connections. We start by considering a simple
instance-specific model of learning in which proving a single circuit lower bound implies
a reliable prediction of the value of a target function on a single input. The model
underlies the construction of learning algorithms from [3, 5] and differs from the standard
PAC learning model mainly in that it does not ask learners to construct a circuit which
computes the target function on a big fraction of inputs, cf. Section 3.

Learning from witnessing lower bounds. Our main result is a construction of efficient
PAC learning of p-size circuits from a constructive circuit lower bound for an arbitrary
Boolean function H. More precisely, we obtain subexponential-size circuits learning p-
size circuits over the uniform distribution with membership queries. The assumption
of a constructive circuit lower bound we need is defined as the existence of 2O(n)-size
‘witnessing’ circuits W which given an oracle access to a p-size circuit D with n inputs
find a not-yet-queried input on which D fails to compute H. The circuits W are allowed
to fail on 1/poly(n) fraction of circuits D. Moreover, even if circuits W succeed on a
circuit D they are allowed to output incorrect answer log n times (receiving a correction
in each round) before generating the right answer, cf. Theorem 1. The implication can be
also interpreted as a construction of PAC learning algorithms from a frequent interactive
instance-specific1 learning: If we are given an algorithm which is able to predict a value of
a big fraction of p-size circuits (after a small number of queries and ≤ log n mistakes) even

1We use the adjective ‘instance-specific’ only informally in this paper. The instance-specific model
discussed earlier actually differs slightly from the concept in Theorem 1.
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on a single input, this already implies learnability of p-size circuits on almost all inputs.
The opposite implication producing efficient witnessing of lower bounds from learning
algorithms holds as well, which yields a new characterisation of PAC learning of small
circuits, cf. Lemma 1.

Relation to proof complexity, natural proofs and witnessing theorems. The
notion of interactive witnessing of circuit lower bounds from Theorem 1 is motivated by
witnessing theorems from bounded arithmetic. One of the most prominent theories of
bounded arithmetic is Cook’s theory PV1, which formalizes p-time reasoning. Theories of
bounded arithmetic satisfy many so called witnessing theorems, which allow us to show,
for example, that if we can prove a p-size circuit lower bound for a function H ∈ NP in
PV1 then there exists a witnessing analogous to the one from Theorem 1 except that the
witnessing circuits W have white-box access to D (i.e. access to a full description of D),
see Section 3.1 for a more detailed comparison. The witnessing from Theorem 1 is also
closely related to algorithms finding hard instances of NP problems by Gutfreund, Shaltiel,
Ta-Shma [12] and Atserias [2]. The main difference is that the algorithms from [12] have
white-box access to the algorithm whose error they search for. While Atserias [2] made [12]
work with the black-box (oracle) access, his algorithm achieves much smaller probability
of success than the one required in Theorem 1, cf. Section 3.1.

The proof of Theorem 1 is an adaptation of a method of exploiting Nisan-Wigderson
generators introduced by Kraj́ıček [17] in order to give a model-theoretic evidence for
Razborov’s conjecture in proof complexity. Razborov’s conjecture [39] states a conditional
hardness of deriving tautologies expressing the existence of an element outside of the
range of a suitable NW-generator in strong proof systems. Kraj́ıček’s result significantly
strengthens a similar but much simpler proof of the validity of Razborov’s conjecture for
proof systems with feasible interpolation [34]. The method has been also used to show
a conditional hardness of generating hard tautologies [19], a conditional unprovability of
p-size circuit lower bounds for SAT in theories of bounded arithmetic below Cook’s theory
PV1 [35] and an unconditional unprovability of strong nondeterministic lower bounds in
Jeřábek’s theory of approximate counting APC1 [37]. We take advantage of its unique
way of exploiting the NW generator: it gives us a reconstruction algorithm which after
breaking the NW-generator in a particular interactive fashion allows us to approximately
compute the function on which the generator is based. There are, however, technical
issues with adapting this method in our context, e.g. unlike in bounded arithmetic our
witnessing circuits can fail with a significant probability. Our main contribution is in
finding the right notions which allow the arguments to go through (in both directions).

A competing notion of constructive circuit lower bounds has been developed in the
influential theory of natural proofs of Razborov and Rudich [40], which explains why
many of the existing lower bound methods cannot yield separations such as P 6= NP.
Natural proofs are known to be equivalent to the existence of efficient learning algo-
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rithms, cf. [5]. For example, P/poly-natural proofs useful against P/poly2 are equivalent
to subexponential-size circuits learning p-size circuits over the uniform distribution with
membership queries. Furthermore, natural proofs have been used to derive unprovability
results in proof complexity as well. Specifically, to derive unprovability of circuit lower
bounds in proof systems with the feasible interpolation property, cf. [38, 16]. Despite sim-
ilar applications and motivations for defining these concepts, the relation between natural
proofs and the witnessing method has not been clear. In fact, a priori the ‘static’ defini-
tion of natural proofs appears to be quite orthogonal to the witnessing from Theorem 1.
Theorem 1 thus not only extends the scope of the natural proofs barrier by providing an-
other equivalent characterisation which incorporates interactivity but also helps to clarify
its relation to the witnessing method.

Learning speedup. Our second contribution is a simple proof of a generalized learning
speedup of Oliveira and Santhanam [32]. Specifically, we show that for each superpolyno-
mial function s, if for each constant k, circuits of size nk are learnable by circuits of size s
over the uniform distribution with random examples, then for each constant k and ε > 0,
circuits of size nk are learnable over the uniform distribution with membership queries by
circuits of size O(sε), cf. Theorem 6. We obtain the speedup by a more direct exploitation
of a slightly modified NW-generator. In comparison to the proof from [32], this sidesteps
the need to construct natural proofs and invoke the construction of Carmosino et al. [5].
A disadvantage of the method is that we need to assume learning with random examples
instead of membership queries. Nevertheless, we present one more alternative proof of
the learning speedup based on (a simple case of) Theorem 1, which allows to start with
membership queries, cf. Theorem 7. We emphasize, however, that behind all proofs of
the learning speedup is essentially the same general idea of reconstructing, in this or that
way, the base function of some form of the NW-generator.

Relation to hardness magnification and locality. The generalized learning speedup
can be interpreted as a nonlocalizable hardness magnification theorem reducing a com-
plexity lower bound into a seemingly weaker one. In general, hardness magnification refers
to an approach to strong complexity lower bounds developed in a series of recent papers,
cf. Section 5. Unfortunately, while the approach avoids (in certain cases provably [6])
the natural proofs barrier, it suffers from a ‘locality barrier’: magnification theorems typ-
ically yield unconditional upper bounds for specific problems if the computational model
in question is allowed to use oracles with small fan-in, but the existing lower bounds ac-
tually work even against the presence of local oracles. In fact, a better understanding of
nonlocalizable lower bounds is essential for further progress on strong complexity lower
bounds in general, see Section 5 for more details. A promising aspect of the learning

2P/poly-natural proofs useful against P/poly are defined as 2O(n)-size circuits with 2n inputs accepting
a 1/2O(n)-fraction of inputs and rejecting all inputs which represent truth-tables of Boolean functions on
n inputs computable by p-size circuits, cf. Definition 1.
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speedup (Theorem 6) is that it avoids the locality barrier, cf. Section 5.

Learning from breaking cryptographic pseudorandom generators. In Section 4
we survey known constructions of learning algorithms from distinguishers breaking pseu-
dorandom generators (PRGs) or natural proofs. While several such constructions are
known, the question of extracting efficient learning of p-size circuits from the non-existence
of cryptographic PRGs remains open. A positive answer to this question would estab-
lish an interesting win-win situation: either safe cryptography or efficient learning is
possible. In the already mentioned approach, Oliveira and Santhanam [32] showed that
efficient learning of p-size circuits with membership queries follows from the non-existence
of nonuniform pseudorandom function families. By a straightforward adaptation of the
proof method behind their result we show that efficient learning of p-size circuits with
random examples follows from the non-existence of succinct nonuniform pseudorandom
function families, cf. Theorem 5. Finally, we point out that the desired construction of
learning algorithms from the non-existence of cryptographic PRGs is closely related to a
question of Rudich about turning demibits to superbits, cf. Section 4.4.

2 Preliminaries

[n] denotes {1, . . . , n}. Circuit[s] denotes fan-in two Boolean circuits of size at most s. The
size of a circuit is the number of gates. A function f : {0, 1}n 7→ {0, 1} is γ-approximated
by a circuit C, if Prx[C(x) = f(x)] ≥ γ.

Definition 1 (Natural property [40]). Let m = 2n and s, d : N 7→ N. A sequence of
circuits {Cm}∞m=1 is a Circuit[s(m)]-natural property useful against Circuit[d(n)] if

1. Constructivity. Cm has m inputs and size s(m),

2. Largeness. Prx[Cm(x) = 1] ≥ 1/mO(1),

3. Usefulness. For each sufficiently big m, Cm(x) = 1 implies that x is a truth-table of
a function on n inputs which is not computable by circuits of size d(n).

Definition 2 (Pseudorandom generator). A function g : {0, 1}n 7→ {0, 1}n+1 computable
by p-size circuits is a pseudorandom generator safe against circuits of size s(n), if for
each circuit D of size s(n),∣∣∣∣ Pr

y∈{0,1}n+1
[D(y) = 1]− Pr

x∈{0,1}n
[D(g(x)) = 1]

∣∣∣∣ < 1

s(n)
.

Definition 3 (PAC learning). A circuit class C is learnable over the uniform disribution
by a circuit class D up to error ε with confidence δ, if there are randomized oracle circuits
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Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} computable by
a circuit from C, when given oracle access to f , input 1n and the internal randomness
w ∈ {0, 1}∗, Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1− ε)-approximates f ] ≥ δ.

Lf uses non-adaptive membership queries if the set of queries which Lf makes to the
oracle does not depend on the answers to previous queries. Lf uses random examples if
the set of queries which Lf makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution.

Boosting confidence and reducing error. The confidence of the learner can be
efficiently boosted in a standard way. Suppose an s-size circuit Lf learns f up to error ε
with confidence δ. We can then run Lf k times, test the output of Lf from every run with
m new random queries and output the most accurate one. By Hoeffding’s inequality, m
random queries fail to estimate the error ε of an output of Lf up to γ with probability at
most 2/e2γ

2m. Therefore the resulting circuit of size poly(s,m, k) learns f up to error ε+γ
with confidence at least 1− 2k/e2γ

2m− (1− δ)k ≥ 1− 2k/e2γ
2m− e−kδ. If we are trying to

learn small circuits we can get even confidence 1 by fixing internal randomness of learner
nonuniformly without losing much on the running time or the error of the output. It is
also possible to reduce the error up to which Lf learns f without a significant blowup in
the running time and confidence. If we want to learn f with a better error, we first learn
an amplified version of f , Amp(f). Employing direct product theorems and Goldreich-
Levin reconstruction algorithm, Carmosino et. al. [5, Lemma 3.5] showed that for each
0 < ε, γ < 1 it is possible to map a Boolean function f with n inputs to a Boolean
function Amp(f) with poly(n, 1/ε, log(1/γ)) inputs so that Amp(f) ∈ P/polyf and there
is a probabilistic poly(|C|, n, 1/ε, 1/γ)-time machine which given a circuit C (1/2 + γ)-
approximating Amp(f) and an oracle access to f outputs with high probability a circuit
(1− ε)-approximating f . We thus typically ignore the optimisation of the confidence and
error parameter in the rest of the paper.

3 Instance-specific learning

The most direct way of turning circuit lower bounds into a certain type of learning can
be described as follows.3

3The simple observation from box A appeared in [27, Section 4.5] and [36]. I am not aware of a
more systematic treatment of this concept. There are related models of learning such as ‘knows what
it knows’ model by Li-Littman-Walsh [22] and ‘reliable learning’ by Rivest-Sloan [41] which prohibit
incorrect predictions in various ways. These models, however, follow the formalization of PAC learning
in that the goal of the learner is to learn the target concept by accessing it. In box A we do not assume
that the target concept f is determined on all inputs or prior to the given samples.
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A. Prediction from lower bound. Suppose we are given bits f(y1), . . . , f(yk)
for n-bit strings y1, . . . , yk defining a partial Boolean function f . We want to pre-
dict the value of f on a new input yk+1 ∈ {0, 1}n. A priori f(yk+1) is not defined
but we will interpret the minimal-size circuit Cf coinciding with f on y1, . . . , yk
as ‘the right’ prediction of f(yk+1). That is, we want to find Cf (yk+1). Here, we
assume that the minimal circuit Cf determines the value f(yk+1). Otherwise,
there are two circuits C1, C2 of minimal size such that C1(yk+1) 6= C2(yk+1), and
therefore any prediction is equally good. Say that the size of the minimal circuit
Cf is s. Then the task to predict the value Cf (yk+1) can be formulated as the
task to prove an s-size circuit lower bound of the form

∀ circuit C of size s,
∨

i=1,...,k

C(yi) 6= f(yi) ∨ C(yk+1) 6= ε

for ε = 0 or ε = 1.

An interesting aspect of the prediction method described in box A is that by proving
even a single circuit lower bound we can learn something about the function f (if we know
the value s). More precisely, we predict Cf on a single input but do not necessarilly gain
knowledge of the values of Cf on other inputs. This ‘instance-specific’ learning should be
contrasted with PAC learning, Definition 3, where one is required to generate a circuit
predicting the target function f on most inputs. This, however, does not mean that it is
easier to learn in the sense of box A: in Definition 3 we do not need to recognize when the
prediction errs while the prediction from box A is zero-error in the sense that it guarantees
to output the right value of Cf (yk+1).

4

Determining minimal circuit size. A drawback of the observation in box A is that
it requires knowledge of the size s of the minimal circuit Cf , which might be hard for
the learner to determine. The size s could be determined by deciding t-size circuit lower
bounds for t ∈ [s]. Perhaps a more practical way of addressing the issue is to take a
sufficiently big approximate value s′ of s, choose a random t ∈ [s′] and prove t-size lower
bounds (as in box A with t instead of s). If s′ ≤ nO(1), the probability that we have
the right t is 1/nO(1). Then, by solving polynomially many t-size lower bounds (in order
to predict Cf (y) on polynomially many y’s), we can approximate the accuracy of our
predictions. If the accuracy is not high, we can reapeat the process with a new random

4Provability vs truth. The definition of ‘the right’ prediction in terms of minimal circuits used
in box A can be interpreted as an implicit (alternative) definition of truth. Consider, for example, that
strings yj encode statements in set theory ZFC and the value f(yj) is 1 if and only if the statement encoded
by y is provable in ZFC. It would be interesting to find out whether the minimal circuit coinciding with
a sufficiently rich list of such samples (yj , f(yj)) determines a truth value of the Continuum Hypothesis
or of the consistency of ZFC, statements which are independent of ZFC. Unfortunately, in general, such
questions seem to be out of reach of the contemporary mathematics.
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t ∈ [s′]. The advantage of this method is that it does not rely on deciding correctly
whether some particular t-size circuit lower bounds hold - we are actually allowed to err
on some fraction of lower bounds. However, its predictions are no longer zero-error. A
closely related argument is formalized in Section 4.

Proof complexity. The prediction method from box A relies on proof complexity of
circuit lower bounds, cf. [20].5 It would be interesting to find out if proving circuit lower
bounds in standard proof systems suffices to construct learning circuits.

Question 1 (Learning interpolation). Is there a p-time function which given an Extended
Frege proof of a formula

∨
y∈AC(y) 6= f(y) ∨ C(x) 6= ε, for ε = 0 or ε = 1, with free

variables representing s-size circuits C with n inputs, a fixed set A of n-bit inputs of a
sufficiently big size |A| = poly(s, n), a fixed n-bit string x /∈ A and values of f ∈ Circuit[s]
on A, outputs a circuit (1/2 + 1/n)-approximating f?

3.1 Learning from witnessing lower bounds

We now give a construction of PAC learning algorithms from an interactive witnessing
of circuit lower bounds. As discussed in the introduction, the implication can be also
interpreted as a construction of PAC learning algorithms from a frequent interactive
instance-specific learning.

Theorem 1 (Learning from interactive witnessing of lower bounds). Let d ≥ 2; k,K ≥ 1
and H be a Boolean function with n inputs. Assume there are 2Kn-size circuits W 1

1 , . . . ,W
b
logn

with b = 2Kn such that for each distribution R on n10dk-size circuits with n inputs there ex-
ists j ∈ [b] such that circuits W j

1 , . . . ,W
j
logn witness errors of n10dk-size circuits attempting

to compute H in the following way.

Given an oracle access to a random n10dk-size circuit D(x) with n inputs, with
probability at least 1 − 3/n3 over R, the following interactive protocol succeeds:
After querying values of circuit D, W j

1 outputs a not-yet-queried x1 ∈ {0, 1}n s.t.
D(x1) 6= H(x1) or W j

2 receives a correction in the form of bits D(x1), H(x1) s.t.
D(x1) = H(x1). Having D(x1), H(x1) and the samples queried by W j

1 , W j
2 makes

further queries to D and generates the second not-yet-queried candidate x2 ∈ {0, 1}n
for the claim C(x2) 6= H(x2). If D(x2) = H(x2), W j

3 receives a correction and the
protocol continues in this way until some W j

t , for t ≤ log n, with access to all

5Notably, Razborov [39] established that weak proof systems such as Resolution operating with k-
DNFs for small k do not have polynomial-size proofs of any superpolynomial circuit lower bound what-
soever and he conjectured this holds under a hardness assumption even for stronger systems such as
Frege. The issue is, however, delicate because proof systems like Extended Frege are already capable of
formalizing a lot of complexity theory, see e.g. [27], and it is perfectly plausible that if a circuit lower
bound is provable at all, then it is efficiently provable in Extended Frege.
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previous corrections and samples finds the right xt which has not been queried by
W j

1 , . . . ,W
j
t and witnesses D(xt) 6= H(xt).

Then, circuits of size ndk with nd inputs can be learned by circuits of size 2K
′n over

the uniform distribution with non-adaptive membership queries, confidence 1/2K
′n2

up to
error 1/2− 1/2K

′n2
, where K ′ is a constant depending only on K.

Note that the witnessing circuits from Theorem 1 can work for arbitrary function H
and, for the circuits D on which the witnessing succeeds, the number of queries in each
round is implicitly bounded by < 2n (since after querying D on all inputs it would be
impossible to output a not-yet-queried input).

Proof. The proof follows the main construction from [35, 17] in the context of learn-
ing. The main technical complication is caused by the fact that the witnessing circuits
W 1

1 . . . ,W
b
logn are allowed to fail on a significant fraction of inputs.

In order to derive the conclusion of the theorem it suffices to assume that the witnessing
circuits work for distributions R induced by specific Nisan-Wigderson generators.

Consider a Nisan-Wigderson generator based on a circuit C which we aim to learn.
Specifically, for d ≥ 2 and n2d ≤ m ≤ 2n2d, let A = {ai,j}i∈[2

n]
j∈[m] be a 2n ×m 0-1 matrix

with nd ones per row and Ji(A) := {j ∈ [m]; ai,j = 1}. Then define an NW-generator
NWC : {0, 1}m 7→ {0, 1}2n as

(NWC(w))i = C(w|Ji(A))

where w|Ji(A) are wj’s such that j ∈ Ji(A).
For any d ≥ 2, Nisan and Wigderson [29] constructed a 2n × m 0-1 matrix A with

nd ones per row and n2d ≤ m ≤ 2n2d which is also an (n, nd)-design meaning that for
each i 6= j, |Ji(A) ∩ Jj(A)| ≤ n and |Ji(A)| = nd. Moreover, there are n9d-size circuits
which given i ∈ {0, 1}n and w ∈ {0, 1}m output w|Ji(A), cf. [5]. Therefore, if C has nd

inputs and size ndk, then for each w ∈ {0, 1}m, (NWC(w))x is a function on n inputs x
computable by circuits of size n10dk. We want to learn C by a circuit of size 2O(n).

Let R be the distribution on n10dk-size circuits defined so that a random circuit over
R is (NWC(w))x for w ∈ {0, 1}m chosen uniformly at random.

By the assumption of the theorem, we have 2Kn-size circuits W 1
1 , . . . ,W

b
logn, with

b = 2Kn such that for some j ∈ [b] for 1− 3/n3 of all w ∈ {0, 1}m circuits W j
1 , . . . ,W

j
logn

find an error of the n10dk-size circuit (NWC(w))x attempting to compute H. We will use
them in order to break, in a certain sense, the generator NWC and reconstruct the circuit
C.

For each w define a trace tr(C,w) = x1, . . . , xt as the sequence of t ≤ log n strings
generated by W j

1 , . . . ,W
j
t on (NWC(w))x such that W j

t is the first circuit which succeeds
in witnessing the error, i.e. H(xt) 6= (NWC(w))xt . If circuits W j

1 , . . . ,W
j
logn do not find
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an error, xt = xlogn. The trace is defined w.r.t. a fixed ‘helpful’ oracle Y providing
corrections in the form of bits (NWC(w))x, H(x).

For u ∈ {0, 1}nd and v ∈ {0, 1}m−nd define rx(u, v) ∈ {0, 1}m by putting bits of u into
positions Jx(A) and filling the remaining bits by v (in the natural order). We say that
w ∈ {0, 1}m is good if the trace tr(C,w) ends with a string witnessing an error of circuit
(NWC(w))x and bad otherwise. Similarly, given v ∈ {0, 1}m−nd and x′ ∈ {0, 1}n, we say
that u ∈ {0, 1}nd is good if rx′(u, v) is.

The core claim of the proof is the existence of a frequent trace on which circuit
W j

1 , . . . ,W
j
logn succeed in witnessing the error with significant advantage.

Claim 3.1. There is a trace Tr = X1, . . . , Xt, t ≤ log n such that for s ≥ 1/(62n(t−1)22nn)
of all a ∈ {0, 1}m−nd for s′ ≥ s of all u ∈ {0, 1}nd tr(C, rXt(u, a)) starts with Tr and at
least (2/3− 6t/n3 − 2/n)s′2n

d
u’s are good and satisfy tr(C, rXt(u, a)) = Tr.

The trace Tr is constructed inductively: in step i we want to find X1, . . . , Xi−1 such
that for ≥ 1/62n(i−1) of all w’s tr(C,w) strictly extends X1, . . . , Xi−1 and the fraction of
good w’s for which this happens is ≥ 1− 6i/2n3. For i = 1 this holds by the assumption.
Assume we have such X1, . . . , Xi−1. We want to extend them to X1, . . . , Xi. Since there
are at most 2n strings Xj, there is Xi such that for s′′ ≥ 1/(22n62n(i−1)) w’s tr(C,w) starts
with X1, . . . , Xi and ≤ 6i/n3 of these w’s are bad. Otherwise, the fraction of good w’s for
which tr(C,w) strictly extends X1, . . . , Xi−1 would be ≤ 1/2n + 1 − 6i/n3 < 1 − 6i/2n3

if 2n3 ≤ 2n. Now, either for ≥ (2/3)s′′ of w’s tr(C,w) stops at Xi (hence, for ≤ (1/3)s′′

w’s the trace continues and for ≤ 6is′′/n3 bad w’s tr(C,w) starts with X1, . . . , Xi) or for
≥ (1/3)s′′ w’s the trace strictly extends X1, . . . , Xi. In the latter case, for ≤ 6is′′/n3 bad
w’s tr(C,w) starts with X1, . . . , Xi, which means that the fraction of bad w’s such that
tr(C,w) strictly extends X1, . . . , Xi is ≤ 3 · 6i/n3.

Since for all w, the length of tr(C,w) is bounded by log n, the process of extending
X1, . . . , Xi−1 has to stop at some step 1 ≤ i ≤ log n. That is, there is Tr = X1, . . . , Xt, t ≤
log n such that for ≥ (2/3)s of w’s tr(C,w) = Tr, for ≤ (1/3)s of w’s tr(C,w) strictly
extends Tr and ≤ 6ts/n3 of w’s such that tr(C,w) is consistent with Tr are bad, where
s ≥ 1/(62n(t−1)22n). The number of good w’s such that tr(C,w) = Tr is at least (2/3 −
6t/n3)s2m. Therefore, ≥ s/n a’s can be completed by s′ ≥ s/n u’s to a string w = rXt(u, a)
such that tr(C,w) starts with Tr and at least (2/3− 6t/n3 − 2/n)s′2n

d
u’s are good and

satisfy tr(C, rXt(u, a)) = Tr. This proves the claim.

For X ∈ {0, 1}n and a′ ∈ {0, 1}m−nd let rX(·, a′) be the bits of a′ in the positions
of [m]\JX(A). Since A is an (n, nd)-design, for any row x 6= X at most n bits of

rX(·, a′)|Jx(A) are not set. For x 6= X, let Y X,a′

x,C be the set of all corrections provided by

Y on x,C and rX(u, a′)|Jx(A) for all u ∈ {0, 1}nd . This includes queries to C on inputs

rX(u, a′)|Jx(A). The size of each set Y X,a′

x,C is 2O(n).
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We are ready to describe a circuit D′ that approximates C. First, choose uniformly at
random a′ ∈ {0, 1}m−nd , a trace X1, . . . , X t with t ≤ log n, a bit maj ∈ {0, 1} and j′ ∈ [b].

Query C so that all queries to C from sets Y Xt,a′

x,C , for x 6= X t, are obtained. In order to

get access to all corrections from Y Xt,a′

X1,C , . . . , Y
Xt,a′

Xt−1,C we provide also the full truth-table
of H as a nonuniform advice of D′. The truth table of H is a single nonuniform advice of
the learner which works for every C. Then D′ computes as follows. For each u ∈ {0, 1}nd

produce rXt(u, a′). Next, use W j′

1 to produce x1. If a query of W j′

1 cannot be answered

by Y Xt,a′

x,C with x 6= X t or x1 6= X1, output maj. Otherwise, use the advice from Y Xt,a′

X1,C

to find out if H(X1) = NWC(rXt(u, a′))X1 . If the equality does not hold, output maj.

Otherwise, use W j′

2 to generate x2 and continue in the same manner until W j′

t produces

xt. If a query of W j′

t cannot be answered by Y Xt,a′

x,C with x 6= X t or xt 6= X t, output maj.

Otherwise, output 0 iff H(X t) = 1. The resulting circuit D′ has nd inputs and size 2O(n),
if m ≤ 2n (which holds w.l.o.g.).

By Claim 3.1, with probability at least 1/(62n logn2O(n logn)) the learner guessed j′ = j,
trace Tr and assignment a such that for at least (2/3− 6t/n3− 2/n)s′ of all u ∈ {0, 1}nd ,
D′ will successfully predict C(u). Moreover, for at most (1/3 + 6t/n3 + 2/n)s′ of all u’s,
the trace extends Tr or starts with Tr but does not end with a string witnessing an error.
Since with probability 1/2 the correct value on at least half of all remaining u’s is maj,
Pru[D

′(u) = C(u)] ≥ 1/2 + (1/6− 6t/n3 − 2/n)s.

The assumption from Theorem 1 is justified by the following lemma which establishes
the converse.

Lemma 1 (Witnessing from learning). Let k ≥ 1; ε < 1; 2n/2n ≥ 2εn ≥ nk and H
be a Boolean function with n inputs hard to (1 − 1/n)-approximate by circuits of size
2εn. Assume Circuit[nk] can be learned by Circuit[2εn] over the uniform distribution with
confidence 1 up to error ε′.

Then, there are 2O(n)-size circuits W 1, . . . ,W b with b = 2n/2n such that for each
distribution R on nk-size circuits with n inputs there exists j ∈ [b] such that given an
oracle access to a random nk-size circuit D(x) with n inputs, with probability at least
1−2ε′n over R, after ≤ 2εn queries to circuit D, W j outputs a not-yet-queried x ∈ {0, 1}n
s.t. D(x) 6= H(x).

Proof. By the assumption, there exists an 2εn-size circuit W which for each nk-size circuit
D, given an oracle access to D, outputs a circuit C (1 − ε′)-approximating D. Since H
is hard to (1− 1/n)-approximate by circuits of size 2εn ≤ 2n/2n, there are at least 2n/2n
inputs which have not been queried by W and on which C fails to compute H. Therefore,
a random input which has not been queried by W and on which C fails to compute
H witnesses D(x) 6= H(x) with probability ≥ 1 − 2ε′n. Let W 1, . . . ,W b, b = 2n/2n, be
circuits such that W i simulates W and outputs the i-th input on which C fails to compute
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H ignoring inputs which have been queried by W . The size of each W i is 2O(n) because it
uses the whole truth table of H as a nonuniform advice. Let R be arbitrary distribution
on circuits of size nk. Since for each D, at least 1 − 2ε′n of W i’s succeed, there is W j

which succeeds on random D with probability ≥ 1− 2ε′n over R.

Note that Theorem 1 together with Lemma 1 imply that for suitable H it is possible to
collapse the number of rounds in the interactive witnessing from Theorem 1 at the expense
of witnessing errors of slightly smaller circuits (and a small increase in the running time
of the witnessing).

Learning from witnessing lower bounds with white-box access. Theorem 1 holds
also under the stronger assumption that circuits W 1

1 . . . ,W
b
logn witness errors of n10dk-size

nondeterministic circuits D with n inputs (and ≤ n10dk nondeterministic bits), where
D computes a function in Circuit[n10dk], i.e. D is a nondeterministic circuit computing a
function in P/poly. Then it makes sense to allow W 1

1 , . . . ,W
b
logn to access a full description

of a given nondeterministic circuit D. The conclusion of the resulting theorem remains
valid with the only difference that the learning algorithm is given full description of an
ndk-size nondeterministic circuit with nd inputs representing the target function (which
is computable by an ndk-size deterministic circuit with nd inputs).

Comparison to witnessing in bounded arithmetic. The existence of witnessing
analogous to the one from Theorem 1 follows from the provability of circuit lower bounds
in bounded arithmetic.

If H : {0, 1}n → {0, 1} is an NP function and n0, k are constants, we can write down
a ∀Σb

2 formula LB(H,nk) stating that H is hard for circuits of size nk:

∀n, n > n0 ∀ circuit D of size ≤ nk ∃y, |y| = n, D(y) 6= H(y),

whereD(y) 6= H(y) is a Σb
2 formula stating that a circuitD on input y outputs the opposite

value of H(y). Here, Σb
2 is a class of formulas in the language of Cook’s theory PV1 which

define precisely the predicates from Σp
2 level of the polynomial hierarchy, cf. [20].

By the KPT theorem [21], if PV1 proves LB(H,nk) then there are finitely many poly(n)-
time functions W1, . . . ,Wl which witness the existential quantifiers of LB(H,nk) (including
the existential quantifier from the subformula D(y) 6= H(y)) in the same interactive way
as in Theorem 1 except that the corrections include strings standing for the innermost
universal quantifier of LB(H,nk) (which allow to verify in p-time that D(y) 6= H(y) has
not been witnessed by the most recent candidates). Moreover, W1, . . . ,Wl have access
to the full description of a given circuit D and do not make queries to D but directly
generate potential errors, cf. [35].

It is possible to change the formula LB(H,nk) by introducing a parameter m satisfying
2n = |m| so that the witnessing from the PV1-provability of the new formula is given by
circuits W1, . . . ,Wl of size 2O(n). In such case, H is allowed to be in NE. We could allow

12



H to be even an arbitrary Boolean function if we formulated the lower bound in QBF
proof systems instead of bounded arithmetic.

A crucial difference between the black-box witnessing from Theorem 1 and white-
box witnessing in bounded arithmetic is that, under standard hardness assumptions, the
white-box witnessing of p-size circuit lower bounds for functions H such as SAT exists,
cf. [27].

Comparison to other witnessing theorems. Lipton and Young [24] showed that for
each Boolean function H hard for circuits of size O(nk+1) there is a multiset of inputs A
of size O(nk), the so called anticheckers, such that each nk-size circuit fails to compute
H on ≥ 1/3 of inputs from A. Therefore, for each distribution R on nk-size circuits,
some input from the set of anticheckers will witness an error of a random nk-size circuits
D (without a single query to D) with probability ≥ 1/3 over R. Using t rounds the
probability of witnessing an error can be increased to 1−1/(3/2)t. This can be done with
≤ nO(kt) witnessing circuits W i

j . More precisely, we can let W i
1, . . . ,W

i
t to be the i-th

possible t-tuple of inputs from the set of anticheckers, for i < nO(kt). Theorem 1 shows
that it is not possible to increase this probability further to 1 − 3/n3 using log n rounds
unless p-size circuits can be learned efficiently.

Gutfreund, Shaltiel and Ta-Shma [12] showed that if P 6= NP there is a p-time algo-
rithm which, given a description of an nk-time machine D, generates a set of ≤ 3 formulas
such that D fails to solve SAT on one of them. Atserias [2] extended this by showing that
if NP 6⊆ BPP there is a probabilistic p-time algorithm which, given an oracle access to
an nk-time machine D, outputs with probability ≥ 1/8 a set of formulas such that D
fails to solve SAT on one of them. These algorithms differ from the witnessing in The-
orem 1 in several ways: they find errors of uniform algorithms, are allowed to generate
errors of different lengths, generate errors with a significantly smaller probability than the
probability required in Theorem 1 and the set of formulas generated by the algorithm of
Atserias includes formulas on which the algorithm queried D.

4 Learning from breaking pseudorandom generators

Circuit lower bounds can be used to construct PAC learning algorithms also if we assume
that they break pseudorandom generators. The construction goes back to a relation be-
tween predictability and pseudorandomness which can be interpreted in terms of learning
algorithms, as shown by Blum, Furst, Kearn and Lipton [3] and later extended by several
other works. In this section we survey some of these connections, derive a construction of
learning algorithms from the non-existence of succinct nonuniform pseudorandom func-
tion families and show how these connections relate to a question of Rudich about turning
demibits to superbits.

We start by recalling the construction from [3], which underlies all results in this
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section.

For an nc-size circuit C with n inputs define a generator

GC : {0, 1}mn 7→ {0, 1}mn+m

which maps m n-bit strings x1, . . . , xm to x1, C(x1), . . . , xm, C(xm).

Lemma 2 (from [3]). There is a randomized p-time function L such that for every nc-size
circuit C, if an s-size circuit D satisfies

Pr[D(x) = 1]− Pr[D(GC(x)) = 1] ≥ 1/s,

then the circuit C is learnable by L(D) over the uniform distribution with random exam-
ples, confidence 1/2m2s, up to error 1/2− 1/2ms.

Proof. Given D, L(D) chooses a random i ∈ [m], random bits ri, . . . , rm, random n-bit
strings x1, . . . , xn except xi and queries the bits C(x1), . . . , C(xi−1). For xi ∈ {0, 1}n,
let pi := D(x1, C(x1), . . . , xi−1, C(xi−1), xi, ri, . . . , xm, rm). Then L(D) on xi predicts the
value C(xi) by outputting ¬ri if pi = 1 and ri otherwise. By triangle inequality, random
i ∈ [m] satisfies

Pr[pi = 1]− Pr[pi+1 = 1] ≥ 1/ms

with probability 1/m. Since the probability over ri . . . , rm, x1, . . . , xm that L(D) predicts
C(xi) correctly is

1

2
Pr[pi = 1 | ri 6= C(xi)] +

1

2
(1− Pr[pi = 1 | ri = C(xi)]),

and Pr[pi = 1] = 1
2

Pr[pi = 1 | ri = C(xi)] + 1
2

Pr[pi = 1 | ri 6= C(xi)], it follows that

Pr
xi

[L(D)(xi) = C(xi)] ≥ 1/2 + 1/2ms

with probability 1/2m2s over the internal randomness of L(D).

The proof of Lemma 2 implies that learning on average follows from breaking pseu-
dorandom generators. Specifically, let R be a p-size circuit which given r bits outputs
an nc-size circuit C and consider a generator G : {0, 1}mn+r 7→ {0, 1}mn+m which applies
R on its first r input bits in order to output a circuit C and then computes as a gener-
ator GC on the remaining mn inputs. Breaking G implies that we can break GC with
significant probability over C drawn from the distribution induced by R. Consequently,
breaking G means that we can learn a big fraction of nc-size circuits w.r.t. R. Can we
improve this average-case learning into a worst-case learning which works for all nc-size
circuits? Since efficient learning algorithms for p-size circuits yield natural properties
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useful against p-size circuits, which by [40] break pseudorandom generators, a positive
answer would present an important dichotomy: cryptographic pseudorandom generators
do not exist if and only if there are efficient learning algorithms for small circuits (with
suitable parameters). This possibility has been explored by Oliveira-Santhanam [32] and
Santhanam [43], cf. Section 4.3.

Question 2 (Dichotomy). Assume that for each ε < 1 there is no pseudorandom generator
g : {0, 1}n 7→ {0, 1}n+1 computable in P/poly and safe against circuits of size 2n

ε
for

infinitely many n. Does it follow that p-size circuits are learnable by circuits of size
2O(nδ), for some δ < 1, with confidence 1/n, up to error 1/2− 1/2O(nδ)?

4.1 Worst-case learning from strong lower bound methods

The proof of Lemma 2 shows also that we can construct a worst-case learning algorithm as-
suming that given an oracle access to a pseudorandom generator we can efficiently produce
its distinguisher. In particular, a single method breaking all pseudorandom generators
would suffice.

Definition 4. The circuit size problem GCSP[s, k] is the problem to decide whether for
a given list of k samples (yi, bi), yi ∈ {0, 1}n, bi ∈ {0, 1}, there exists a circuit C of size
s computing the partial function defined by samples (yi, bi), i.e. C(yi) = bi for the given
k samples (yi, bi). The parameterized minimum circuit size problem MCSP[s] stands for
GCSP[s, 2n] where the list of 2n samples defines the whole truth-table of a Boolean function.

If we were extraordinary in proving circuit lower bounds, we could solve GCSP effi-
ciently. Note that MCSP[nO(1)] ∈ P/poly is stronger assumption than the existence of
P/poly-natural property useful against P/poly, which breaks pseudorandom generators.

The following theorem appeared (in different terminology) in Vadhan [45], see also [15].

Theorem 2 (Learning from succinct natural proofs). Assume GCSP[nc, nd] ∈ P/poly for
constants d > c+ 1. Then, Circuit[nc] is learnable by P/poly over the uniform distribution
with random examples, confidence 1/poly(n), up to error 1/2− 1/poly(n).

Proof. As the number of partial Boolean functions on a given set of m inputs is 2m and
the number of nc-size circuits is bouded by 2n

c+1
, GCSP[nc, nd] ∈ P/poly implies that for

m = nd there are p-size circuits D such that for each nc-size circuit C,

Pr[D(x) = 1]− Pr[D(GC(x)) = 1] ≥ 1/2.

Now, it suffices to apply Lemma 2.
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4.2 Worst-case learning from natural proofs

In Theorem 2, we can learn f ∈ Circuit[nc] even if the algorithm for GCSP works just
for a significant fraction of partial truth-tables (y1, b1), . . . , (ynd , bnd) with zero-error on
easy partial truth-tables. Carmosino, Impagliazzo, Kabanets and Kolokolova [5] proved
that the assumption of Theorem 2 can be weakened to the existence of a standard natural
property. The price for this is that the resulting learning uses membership queries instead
of random examples. The crucial idea is similar to the proof of Theorem 1: apply the
natural property (as an algorithm for suitable GCSP) on a Nisan-Wigderson generator
NWf based on the function f , which we want to learn.

Theorem 3 (Learning from natural proofs [5]). Let R be a P/poly-natural property useful
against Circuit[nd] for some d ≥ 1. Then, for each γ ∈ (0, 1), Circuit[nk] is learnable
by Circuit[2O(nγ)] over the uniform distribution with non-adaptive membership queries,
confidence 1, up to error 1

nk
, where k = dγ

a
and a is an absolute constant.

4.3 Learning from breaking pseudorandom function families

Oliveira and Santhanam [32] showed that the assumption of the existence of natural proofs
from Theorem 3 can be further weakened to the existence of a distinguisher breaking
non-uniform pseudorandom function families. Their result follows from a combination of
Theorem 3 and the Min-Max Theorem. Using their strategy but combining the Min-Max
Theorem with Theorem 2, learning algorithms with random examples can be obtained
from distinguishers breaking succinct non-uniform pseudorandom function families

A two-player zero-sum game is specified by an r×c matrix M and is played as follows.
MIN, the row player, chooses a probability distribution p over the rows. MAX, the column
player, chooses a probability distribution q over the columns. A row i and a column j are
drawn randomly from p and q, and MIN pays Mi,j to MAX. MIN plays to minimize the
expected payment, MAX plays to maximize it. The rows and columns are called the pure
strategies available to MIN and MAX, respectively, while the possible choices of p and q
are called mixed strategies. The Min-Max theorem states that playing first and revealing
one’s mixed strategy is not a disadvantage:

minpmaxj
∑
i

p(i)Mi,j = maxqmini
∑
j

q(j)Mi,j.

Note that the second player need not play a mixed strategy - once the first player’s
strategy is fixed, the expected payoff is optimized for the second player by playing some
pure strategy. The expected payoff when both players play optimally is called the value
of the game. We denote it v(M).

A mixed strategy is k-uniform if it chooses uniformly from a multiset of k pure strate-
gies. Let Mmin = mini,jMi,j and Mmax = maxi,jMi,j. Newman [28], Althöfer [1] and
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Lipton-Young [24] showed that each player has a near-optimal k-uniform strategy for k
proportional to the logarithm of the number of pure strategies available to the opponent.

Theorem 4 ([28, 1, 24]). For each ε > 0 and k ≥ ln(c)/2ε2,

minp∈Pkmaxj
∑
i

p(i)Mi,j ≤ v(M) + ε(Mmax −Mmin),

where Pk denotes the k-uniform strategies for MIN. The symmetric result holds for MAX.

Definition 5 (Succinct non-uniform PRF). An (m,m′)-succinct non-uniform pseudoran-
dom function family from circuit class C safe against circuits of size s is a set S of partial
truth-tables 〈(x1, b1), . . . , (xm, bm)〉 where each xi is an n-bit string and bi ∈ {0, 1} such
that each partial truth-table from S is computable by one of m′ circuits from C and for
every circuit D of size s,

Pr
x

[D(x) = 1]− Pr
x∈S

[D(x) = 1] < 1/s

where the first probability is taken over x ∈ {0, 1}m(n+1) chosen uniformly at random and
the second probability over partial truth-tables chosen uniformly at random from S.

Theorem 5 (Learning or succinct non-uniform PRF). Let c ≥ 1 and s > n,m ≥ 1.
There is an (m, 8s4)-succinct non-uniform PRF in Circuit[nc] safe against Circuit[s] or
there are circuits of size poly(s) learning Circuit[nc] over the uniform distribution with
random examples, confidence 1/poly(s), up to error 1/2− 1/poly(s).

Proof. Consider a two-player zero-sum game specified by a matrix M with rows indexed
by nc-size circuits with n inputs and columns indexed by s-size circuits with m(n + 1)
inputs. Define the entry MC,D of M corresponding to a row circuit C and a column circuit
D as

MC,D := |Pr
x

[D(x) = 1]− Pr
x

[D(GC(x)) = 1]|

for the generator GC from the proof of Lemma 2. Hence Mmax −Mmin ≤ 1.
If v(M) ≥ 1/4s, then by Theorem 4 (with ε = 1/8s), there exist a multiset of k ≤

32nc+1s2 s-size circuits D1, . . . , Dk such that for every nc-size circuit C, a random D from
D1, . . . , Dk satisfies

E[|Pr[D(x) = 1]− Pr[D(GC(x)) = 1]|] ≥ 1/8s.

By Lemma 2, for every nc-size circuit C, one of the circuits D1, . . . , Dk (or their
negations) can be used to learn C with confidence 1/poly(s), up to error 1/2− 1/poly(s).
A poly(s)-size circuit using a random Di from D1, . . . , Dk or its negation thus learns
Circuit[nc] with random examples, confidence 1/poly(s), up to error 1/2− 1/poly(s).
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If v(M) < 1/4s, then by Theorem 4 (with ε = 1/4s), there exists a multiset of
k ≤ 8s4 nc-size circuits C1, . . . , Ck such that for every s-size circuit D, a random C from
C1, . . . , Ck satisfies

E[|Pr[D(x) = 1]− Pr[D(GC(x)) = 1]|] ≤ 1/2s.

Since E[|Pr[D(x) = 1] − Pr[D(GC(x)) = 1]|] ≥ |Pr[D(x) = 1] − E[Pr[D(GC(x)) = 1]]| a
generator

G : {0, 1}mn+dlog ke 7→ {0, 1}mn+m

which takes as input a string of length mn+dlog ke encoding (an index of) a circuit C from
C1, . . . , Ck together with m n-bit strings x1, . . . , xm and outputs x1, C(x1), . . . , xm, C(xm)
is safe against circuits of size s. The range of G defines an (m, 8s4)-succinct non-uniform
PRF in Circuit[nc] safe against Circuit[s].

Note that the existence of a generator G from the proof of Theorem 5 follows directy
from a counting argument if we do not require that G defines a PRF of small complexity: a
random set of poly(s, n) strings (yielding a non-uniform pseudorandom generator mapping
{0, 1}O(log s) to {0, 1}n) fools circuits of size s.

4.4 Superbits vs demibits

Rudich [42] proposed a conjecture about the existence of superbits, a version of pseudo-
random generators safe against nondeterministic circuits, and showed that it rules out the
existence of NP-natural properties against P/poly. He then asked whether the existence
of superbits follows from a seemingly weaker assumption of the existence of so called
demibits. We note that an affirmative answer to his question would resolve Question 2 in
nondeterministic setting.

Definition 6 (Superbit). A function g : {0, 1}n 7→ {0, 1}n+1 computable by p-size cir-
cuits is a superbit if there is ε < 1 such that for infinitely many input lengths n, for all
nondeterministic circuits C of size |C| ≤ 2n

ε
,

Pr
x∈{0,1}n+1

[C(x) = 1]− Pr
x∈{0,1}n

[C(g(x)) = 1] < 1/|C|.

Definition 7 (Demibit). A function g : {0, 1}n 7→ {0, 1}n+1 computable by p-size circuits
is a demibit if there is ε < 1 such that for infinitely many input lengths n, no nondeter-
ministic circuit C of size |C| ≤ 2n

ε
satisfies

Pr
x∈{0,1}n+1

[C(x) = 1] ≥ 1/|C| and Pr
x∈{0,1}n

[C(g(x)) = 1] = 0.
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Proposition 1 (Question 2 vs Rudich’s problem). Assume the existence of demibits
implies the existence of superbits. Then, either superbits exist or for each c ≥ 1, for each
ε < 1, Circuit[nc] is learnable by Circuit[2O(nε)] over the uniform distribution with random
examples, confidence 1/2O(nε) up to error 1/2 − 1/2O(nε), where the learner is allowed
to generate a nondeterministic or co-nondeterministic circuit approximating the target
function.

Proof. Assume superbits do not exist and their non-existence implies the non-existence
of demibits. Consider a generator G : {0, 1}mn+nc+1 7→ {0, 1}mn+m, with m = nc+1 + 1,
which interprets the first nc+1 bits of its input as a description of an nc-size circuit C and
then computes on the remaining mn inputs as generator GC from Lemma 2. Since G is
not a demibit, for each ε < 1 there are nondeterministic circuits D of size 2(mn+m−1)ε ,
such that for each nc-size circuit C,

Pr[D(x) = 1]− Pr[D(GC(x)) = 1] ≥ 1/|D|.

By the proof of Lemma 2, this means that nc-size circuits are learnable by circuits of
size poly(|D|) with confidence 1/poly(|D|) up to error 1/2− 1/poly(|D|), except that the
learner might generate nondeterministic (if ri = 0) or co-nondeterminitic (if ri = 1) circuit
approximating the target function.

5 Learning speedup

A striking consequence of the relation between natural proofs and learning algorithms is
a learning speedup of Oliveira and Santhanam [32].

Suppose P/poly is learnable by circuits of weakly subexpoential size 2n/nω(1). The
learning circuits can be used to accept truth-tables of all functions in P/poly while their
size guarantees that many hard functions are going to be rejected. This implies the
existence of a P/poly-natural property useful against P/poly, which by Theorem 3, gives
us circuits of strongly subexponential size 2n

γ
, γ < 1, learning P/poly.

The argument of Oliveira and Santhanam can be generalized to a speedup of learners
of arbitrary size s. Here, we show how to derive such a generalized version more directly
without constructing natural proofs and invoking Theorem 3. This is possible thanks to a
more direct exploitation of a slightly modified NW-generator. A drawback of the approach
is that we need to assume learning with random examples instead of membership queries.

Theorem 6 (Generalized speedup). Let d, k ≥ 1 and n ≤ s(n) ≤ 2n/n. Assume
Circuit[n10dk] is learnable by Circuit[s(n)] over the uniform distribution with random exam-
ples, confidence 1, up to error 1/2−5/n. Then circuits of size mk with m = nd inputs are
learnable by circuits of size ndK(s(n))3 over the uniform distribution with non-adaptive
membership queries, confidence 1/n3, up to error 1/2 − 1/n. Here, K is an absolute
constant.
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Theorem 6 implies, for example, that if p-size circuits are learnable with random
examples by circuits of quasipolynomial size nO(logn), then p-size circuits are learnable
with membership queries by circuits of size O(nε logn), for each ε > 0. The speedup
is achieved w.r.t. the input length of target functions at the expense of their circuit
complexity.

Proof. Let A be a 2b×u 0-1 matrix forming a (b, nd)-design with |Ji(A)| = nd for n2d ≤ u ≤
2n2d, a constant d and parameter b such that ns ≤ 2b ≤ 2ns. The design is constructed
in the usual way by evaluating polynomials of degree ≤ b on nd points of a field with
nd ≤ p ≤ 2nd elements. In particular, there are n9d-size circuits which given i ∈ {0, 1}b
and w ∈ {0, 1}u output w|Ji(A). Define NWf -generator mapping strings w of length u
to strings of length 2n as

(NWf (w))x1,...,xn = f(w|Jx1,...,xb(A)).

Then for each m-input function f ∈ Circuit[mk] and w ∈ {0, 1}u, (NWf (w))x is com-
putable as a function of x ∈ {0, 1}n by a circuit of size n10dk.

By the assumption of the theorem every such circuit (NWf (w))x is learnable by a
circuit L of size s with confidence δ = 1, up to error 1/2 − ε. Consequently, there is a
circuit Df of size O(s3) such that

Pr
w,x,y1,...,yt

[Df (x1, . . . , xn, w, y
1, . . . , yt) = f(w|Jx1,...,xb(A))] ≥ (1/2 + ε)δ (5.1)

where Df queries values f(w|Jyj(A)) for t ≤ s random strings yj ∈ {0, 1}b, j = 1, . . . , t.
The size of Df takes into account the need to simulate the circuit described by L. Now,
random y1, . . . , yt satisfy

Pr
w,x

[Df (x1, . . . , xn, w, y
1, . . . , yt) = f(w|Jx1,...,xb(A))] ≥ 1/2 + ε− 1/n (5.2)

with probability at least 1/n. Otherwise, the probability in (5.1) would be < 1/n+(1/2+
ε− 1/n). Similarly, given y1, . . . , yt such that (5.2) holds, a random x ∈ {0, 1}n satisfies

Pr
w

[Df (x1, . . . , xn, w, y
1, . . . , yt) = f(w|Jx1,...,xb(A))] ≥ 1/2 + ε− 3/n (5.3)

with probability at least 2/n. Moreover, since every yj specifies 2n−b values of (NWf (w))x,
given y1, . . . , yt, a random x ∈ {0, 1}n equals some yj on the first b bits with probability
≤ t/2b ≤ 1/n. Applying the same averaging one more time, for y1, . . . , yt and x which
differs on the first b bits from each yj and satisfies (5.3), randomly fixed u− nd bits of w
on the positions of [u]\Jx(A) preserve the probability (5.3) up to an additional error 1/n
with probability at least 1/n.

For each y1, . . . , yt, each x which differs on the first b bits from every yj and for each
fixation of u − nd bits of w on the positions of [u]\Jx(A), (b, nd)-design guarantees that
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the number of all queries f(w|Jyj(A)), j = 1, . . . , t, of Df for all possible w with the
u − nd fixed bits is ≤ t2b. We can thus learn a circuit D′ approximating f ∈ Circuit[mk]
with m = nd inputs with advantage 1/2 + ε− 4/n in the following way. Choose random
y1, . . . , yt, x, random u− nd bits of w corresponding to [u]\Jx(A) and query ≤ t2b values
f(w|Jyj(A)) for all possible w with the u−nd fixed bits. Then the circuit D′, given nd bits
of w corresponding to Jx(A), generates w and computes as Df with the provided queries
f(w|Jyj(A)). Since w can be constructed from given nd bits, x and the u−nd fixed bits of
w by a circuit of size nO(d), each w|Jyj(A) can be constructed from w and yj by a circuit
of size n9d and for each query to f the right value can be selected by a circuit of size
O(ndt2b), the size of D′ is O(s3 + tn9d + ndt22b + nO(d)) ≤ nO(d)s3. D′ can be described
by ndKs3 bits, for an absolute constant K, and constructed by a circuit of the same size
which just substitutes yj, x and u− nd bits of w in the otherwise fixed description of D′.

Since random y1, . . . , yt satisfy (5.2) with probability at least 1/n, a random x differs
on the first b bits from each y1, . . . , yt and satisfies (5.3) with probability at least 1/n
while the randomly fixed u − nd bits of w have the desired property with probability at
least 1/n as well, the confidence of the learning algorithm is at least 1/n3.

We give one more proof of the learning speedup which also addresses the issue of
membership queries.

Theorem 7 (Alternative speedup). Let d ≥ 2; k ≥ 1 and ε < 1. Assume Circuit[n10dk] is
learnable by Circuit[2εn] over the uniform distribution (possibly with membership queries)
with confidence 1, up to error 1/n5. Then, circuits of size ndk with nd inputs are learnable
by circuits of size 2Kn over the uniform distribution with confidence 1/2Kn up to error
1/2− 2Kn, where K is an absolute constant.

Proof. By a counting argument there exists H which is not (1 − 1/n)-approximable by
circuits of size 2εn. Here, n is w.l.o.g. sufficiently big. By Lemma 1, learnability of
Circuit[n10dk] by Circuit[2εn] up to error 1/n5 implies the existence of circuits of size 2O(n)

witnessing errors of circuits of size n10dk with probability ≥ 1−2/n4. The conclusion thus
follows by applying Theorem 1. The improved confidence and approximation parameter
is the consequence of the fact that our witnessing circuits succeed in the first round, i.e.
t = 1.

Proof-search speedup. The core trick behind Theorem 6 can be formulated in the
context of proof complexity. Assume that an n10dk-size lower bound is provable in a proof
system P by a proof of size s(n). Then, a substitutional instance of the same P -proof
of size s(n) proves an mk-size lower bound for circuits with m = nd inputs, on inputs
given by the NW-generator from the proof of Theorem 6. Here, the base function of the
NW-generator is not specified but represented by free variables encoding a circuit of size
mk.
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Nonlocalizable hardness magnification. Theorem 6 and the original speedup of
Oliveira and Santhanam can be interpreted as hardness magnification theorems. Hardness
magnification is an approach to strong complexity lower bounds by reducing them to
seemingly much weaker lower bounds developed in a series of recent papers [33, 27, 31,
25, 9, 10, 7, 6, 8, 26, 11], see [6] for a more comprehensive survey. For example, it turns out
that in order to prove that functions computable in nondeterministic quasipolynomial-
time are hard for NC1 it suffices to show that a parameterized version of the minimum
circuit size problem MCSP is hard for AC0[2]. However, [6] identified a locality barrier
which explains why direct adaptations of many existing lower bounds do not yield strong
complexity lower bounds via hardness magnification. Essentially, the reason is that the
existing lower bounds for explicit Boolean functions work often even for models which are
allowed to use arbitrary oracles with no(1)-small fan-in. This is easy to see in the case of
AC0[2] lower bounds: oracles of small fan-in can be simulated by polynomials of low degree.
On the other hand, hardness magnification theorems typically yield (unconditional) upper
bounds in the form of weak computational models extended with local oracles computing
specific problems such as the abovementioned version of MCSP. In fact, even irrespective
of hardness magnification it is important to develop lower bound methods which do not
localize: proving the nonexistence of subexponential-size learning algorithms for P/poly
would imply the nonexistence of P/poly natural properties against P/poly but it is not hard
to see that natural properties against P/poly are computable by p-size circuits with local
oracles. Overcoming the locality barrier is thus essential for proving strong complexity
lower bounds in general.6

Theorem 6, if read counterpositively, is a magnification of O(nε logn)-size lower bounds
for learning p-size circuits to nO(logn)-size lower bounds. This differs from previous hard-
ness magnification theorems by avoiding localization: the size of the learner plays a crucial
role in the reduction and therefore cannot be simply replaced by an arbitrary oracle. The
same trick is behind non-blackbox worst-case to average-case reductions within NP of Hi-
rahara [13]. To the best of my knowledge, the only other hardness magnification theorems
with this property appeared in [6] and [14].7 [6, Theorem 1], like Hirahara [13] and the

6Some known circuit lower bounds above the magnification threshold are provably nonlocalizable but
they do not fit to the framework of the so called Hardness Magnification frontier [6], one reason being that
they do not work for explicit and natural problems, cf. [6, 8]. For example, a nonlocalizable lower bound
from [6] works for a function in E which is artificial in the sense that it is designed to avoid localization,
not for a problem of independent interest such as MCSP. Oliveira [30] showed that near superlinear-
size lower bounds for a version of MCSP defined w.r.t. a notion of randomized Kolmogorov complexity
imply strong circuit lower bounds while the same problem is provably hard for probabilistic p-time. The
lower bound of Oliveira works, however, only against uniform models of computation. Moreover, the
magnification theorem concludes at best a ‘weak’ lower bound of the form quasipolynomial-time QP
being hard for P/poly. Similarly, an approach of Chen, Jin and Williams [8] via derandomizations and
uniform obstructions appears to avoid the locality barrier but yields at best lower bounds of the form
QP 6⊆ P/poly.

7There are two more results which could be potentially classified as nonlocalizable hardness magni-
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speedup of Oliveira-Santhanam, is based on the result of Carmosino, Impagliazzo, Ka-
banets and Kolokolova [5]. However, the hardness magnification from [6] is still captured
by the locality barrier: it asks for a lower bound for a version of MCSP whose localized
version does not hold (as witnessed by other hardness magnification theorems). Theorem
6 does not seem to localize in this sense either: it asks for an nε logn-size lower bound
on learning algorithms while there seems to be no reason to expect that p-size circuits
are learnable by circuits of size O(nlogn) extended with oracles of fan-in no(1). (Such a
localization would mean that p-size circuits are learnable in subexponential size.) The
magnification theorems of Hirahara [14] face similar complications.8

Unfortunately, Theorem 6 does not reduce p-size lower bounds to, say, subquadratic
lower bounds: It magnifies nO(d)s3-size lower bounds for learning functions with m = nd

inputs (and circuit complexity mk) to an s-size lower bound for learning functions with
n inputs (and circuit complexity n10dk). That is, a polynomial speedup w.r.t. the input-
length of target functions is traded for a polynomial decrease of the circuit size of target
functions. Ideally, we would like to magnify, say, n1.9-size formula lower bound for learning
circuits of size n1.1 with n inputs to nO(1)-size formula lower bounds for learning circuits
of size n2.1 with n inputs. If the existing methods for proving the required formula
lower bounds were applicable to prove subquadratic formula lower bounds for learning
algorithms (note that such lower bounds are allowed to localize and naturalize), such a
strengthening of Theorem 6 would lead to explicit NC1 lower bounds.

6 Concluding remarks and open problems

The methods for deriving learning algorithms from circuit lower bounds presented in this
paper might be improvable in many ways.

fications. A theorem of Buresh-Oppenheim and Santhanam [4, Theorem 1] is based on an exploitation
of Nisan-Wigderson generators similar to that of [6] but it seems less practical in its current form, as
it magnifies only lower bounds for nondeterministic circuits. The other result of Tal [44] shows that an
average-case hardness for formulas of size s can be magnified to the worst-case hardness for slightly bigger
formulas. A problem is that [44] magnifies at best to an s2-size lower bound. Moreover, if we wanted to
strenghten it further by connecting it with another magnification theorem, it is not clear how to preserve
the nonlocalizability - the weak lower bound obtained via [44] would likely localize.

8Hirahara [14, Theorem 11 and 13] proves two types of magnification theorems. The first type essen-
tially adapts the result from [6] in the context of weaker computational models. The second type extends
it by introducing metacomputational circuit lower bound problems MCLPs and showing that weak lower
bounds for MCLPs can be magnified as well. MCLPs are not solvable by any algorithm whatsoever
unless standard hardness assumptions break. This implies that there is no unconditional upper bound
for MCLPs and the locality barrier does not apply. Unfortunately, we do not have any interesting lower
bound for MCLPs either. The corresponding magnification theorems thus do not establish a Hardness
Magnification frontier [6]. Nevertheless, as suggested in [14], developing such methods might be a way to
strong lower bounds.
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Safe cryptography or efficient learning. Perhaps the most appealing question asks
for bridging cryptography and learning theory. Showing that efficient learning follows from
breaking pseudorandom generators, i.e. answering positively Question 2, would establish
a remarkable win-win situation. As discussed in Section 4.4 the question is closely related
to a problem of Rudich about turning demibits to superbits.

Instance-specific learning vs PAC learning. Circuit lower bounds correspond to
a simple instance-specifc learning model described in Section 3. Can we improve our
understand of the model and its relation to PAC learning? In particular, can we determine
how much we can learn from a single circuit lower bound? A possible formalization of the
problem is given by Question 1.

Connections to proof complexity. The present paper brings several methods from
proof complexity to learning theory. It seems likely that these connections can be strength-
ened. A particularly relevant part of proof complexity is the theory of proof complexity
generators, cf. [18]. An interesting conjecture in the area due to Razborov [39] implies
a conditional hardness of circuit lower bounds in strong proof systems. In other words,
Razborov’s conjecture asks for turning short proofs of circuit lower bounds into upper
bounds breaking standard hardness assumptions.

Notably, strengthening Theorem 1 by allowing white-box access in the witnessing of
lower bounds would lead to a conditional unprovability of p-size lower bounds for SAT in
Cook’s theory PV1. A complication is that under standard hardness assumptions such a
witnessing exists. That is, in order to obtain the conditional unprovability, one might need
to exploit the PV1-provability in a deeper way. Nevertheless, this suggests a simplified
version of Question 2: Can we prove a disjunction stating the PV1-consistency of the
existence of strong pseudorandom generators or the PV1-consistency of efficient learning?
Since, by witnessing theorems in PV1, both the PV1-provability of the non-existince of
pseudorandom generators and the PV1-provability of the impossibility of effficient learning
imply uniform efficient algorithms witnessing these facts, it could be possible to combine
them with a version of uniform MinMax [46] to get a contradiction.

Nonlocalizable hardness magnification near the existing lower bounds. Can we
push forward the program of hardnness magnification by strengthening the magnification
from Theorem 6 to a setting in which strong circuit lower bounds follow from lower bounds
near the already existing ones? The importance of the question stems from the necessity
of developing nonlocalizable magnification theorems or nonlocalizable constructive lower
bound methods as discussed in Section 5.

SAT solving circuit lower bounds. It would be interesting to investigate practical
consequences of the provability of circuit lower bounds. Circuit lower bounds for explicitly
given Boolean functions are coNP statements which means that they are encodable into
propositional tautologies resp. SAT instances. Could SAT solvers be successful in proving
interesting instances of circuit lower bounds for some fixed input lengths? If so, this could
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provide an experimental verification of central results and conjectures from complexity
theory such as P 6= NP up to some finite domain. As discussed in the present paper,
efficient algorithms proving circuit lower bounds can be also transformed into learning
algorithms, which provides a separate motivation for this line of research.

In particular, SAT solving of circuit lower bounds could lead to an interesting com-
parison with the research on neural networks. The task of training a neural network is
to design a circuit C of size s, typically with a specific architecture, coinciding with some
training input samples (yi, f(yi)), and apply it to predict the value f(y) on a new input y.
As discussed in Section 3, this problem can be addressed by proving a circuit lower bound.
Since proving a circuit lower bound can give us a reliable instance-specific prediction one
could try to use SAT solvers to verify outcomes of neural networks. More generally, one
could try to simulate neural networks by SAT solving circuit lower bounds. A potential
advantage of SAT solvers is that they do not need to construct a circuit coinciding with
training data - it is enough to prove its properties (lower bounds). On the othe hand,
SAT solvers need to prove a universal statement which might turn out to be even harder.
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