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Abstract

We show unconditionally that Cook’s theory PV1 formalizing poly-time reasoning can-
not prove, for any non-deterministic poly-time machine M defining a language L(M), that
L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact,
our unprovability result holds also for a theory which supports a fragment of Jeřábek’s
theory of approximate counting APC1. We also show similar unconditional unprovability
results for the conjecture of Rudich about the existence of super-bits.

1 Introduction

It is widely accepted that strong complexity lower bounds are difficult to prove. Despite signif-
icant efforts over the past half a century and more, we have not even made much progress on
showing super-linear circuit size lower bounds for NP, let alone flagship problems in the area
such as the NP vs P problem or the NP 6⊆ P/poly problem.

But is this difficulty fundamental, or have we simply not been lucky enough or ingenious
enough? Recently the Sensitivity Conjecture, a major problem in Boolean function analysis
open for nearly 30 years, was settled with a simple one-page proof [18]. Might flagship com-
plexity lower bound problems yield similarly to clever tricks or combinations of known ideas?

Since very early in the history of complexity theory, there have been attempts to show that
the difficulty in proving lower bounds is indeed fundamental. It has been speculated that the
NP vs P problem might be independent of Peano Arithmetic. More relevant to the practice of
complexity theory, various barriers have been formalized, such as the relativization barrier [3],
the natural proofs barrier [45] and the algebraization barrier [2], to show that certain classes of
techniques are unlikely to be able to show strong complexity lower bounds.
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A natural goal in this direction is to identify a logical system within which much of current-
day complexity theory can be formalized, but so that strong complexity lower bounds are hard
to show in the system. For example, one could consider subsystems of Peano arithmetic such as
Cook’s system PV1 of bounded arithmetic formalizing polynomial-time reasoning [11], or else
a standard propositional proof system such as the Extended Frege proof system, and attempt
to establish that super-polynomial circuit size lower bounds for SAT are unprovable in these
systems.

Such attempts have also not been successful so far. Indeed, some of the same difficulties
that apply to showing strong complexity lower bounds seem also to apply to showing these
same unprovability results. Just as we don’t understand the power of poly-time computation
well enough to separate NP from P, we don’t understand the power of poly-time reasoning well
enough to show that NP 6⊆ P/poly is unprovable using poly-time reasoning. It seems possible
that we could live in the worst of all possible worlds for complexity theorists - a world where
complexity lower bounds are hard but it is also difficult to understand why they are hard!

In this paper, we rule out this pessimistic situation for certain kinds of strong complexity
lower bounds, namely for lower bounds for NP against co-nondeterministic circuits. As our main
result, we show unconditionally that average-case lower bounds for NP against sub-exponential
size co-nondeterministic circuits are unprovable in PV1. In fact, the unprovability holds for
a stronger theory T0

APC1
defined as TPV, the true universal theory of natural numbers in the

language consisting of function symbols for all p-time algorithms, extended by the so called
dual weak pigeonhole principle for all p-time functions (without parameters1), cf. Section 2.1.
In particular, T0

APC1
contains a significant fragment of Jeřábek’s theory APC1 which formal-

izes probabilistic poly-time reasoning [20, 21, 19] and proves the existence of a hard Boolean
function, cf. Section 2.1. Our techniques also allow us to rule out provability in T0

APC1
of the

existence of Rudich’s super-bits, a version of pseudorandom generator safe against nondeter-
ministic circuits [46]. Since much of current-day complexity theory is formalizable in PV1 and
APC1, cf. Section 2.1, this gives evidence that simple tricks or clever combinations of known
techniques are not sufficient to prove the complexity separations we consider. New techniques
or strategies of higher logical complexity are required.

Before stating our results in more detail, we give more motivation for the specific setting
we consider. Our starting point for this discussion is the influential natural proofs framework
of Razborov and Rudich [45]. A natural proof against a circuit class C is a property of Boolean
functions (given by their truth tables) that is dense (i.e., contain a significant fraction of Boolean
functions), constructive (i.e., checkable in polynomial time as a function of the size of the truth
table) and elusive (i.e., implies hardness against C). Razborov and Rudich showed that known
circuit lower bounds yielded natural proofs, in the sense that a dense, constructive and elusive
property can be extracted from the lower bound proof. On the other hand, under the stan-
dard cryptographic assumption that exponentially hard one-way functions exist, natural proofs
against super-polynomial size circuits do not exist. This suggests that new ”non-naturalizing”
techniques are required to prove the strong circuit lower bounds we desire.

The Razborov-Rudich framework is very interesting conceptually because it demonstrates

1The superscript 0 refers to the fact that p-time functions in the dual weak pigeonhole principle are not
allowed to have hidden parameters.
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the self-defeating nature of circuit lower bounds. The assumption about one-way functions
is itself a circuit lower bound assumption, and this implies a barrier to actually establishing
circuit lower bounds. This is reminiscent of diagonal arguments such as the ones in Gödel’s
celebrated Incompleteness Theorems, but in a resource-bounded setting.

However, as a meta-mathematical result, the Razborov-Rudich framework suffers from some
defects. Natural proofs are computational objects, not proofs in some logical system. It is
unclear precisely what it means for a proof technique to be “naturalizable”. Moreover, “nat-
uralness” is not closed under logical implication - it leaves open the possibility that some
naturalizing lower bound against a weak circuit class could imply a strong non-naturalizing
circuit lower bound using a reduction or some other form of logical implication. Indeed, this
possibility has been explored in recent work on hardness magnification, cf. [9] and references
therein.

In recent work [40], we showed that an analogue of the self-defeating phenonemon of nat-
ural proofs holds in the setting of propositional proof complexity. We considered two natural
candidate distributions on formulas that are believed to be hard for any propositional proof
system, namely random circuit lower bound tautologies and random k-DNFs of large enough
linear size. We showed that if random circuit lower bound tautologies are indeed hard for every
propositional proof system (with advice), then there exists a propositional proof system Q such
that it is hard for any propositional proof system to prove lower bounds on the Q-proof size of
these tautologies or for random k-DNFs. Thus, again, the very truth of proof complexity lower
bounds for these tautologies implies that they are hard to prove.

Our motivation in [40] was to understand better why proof complexity lower bounds have
been hard to show, but the results also have implications for the ability of propositional proof
systems to argue about specific cases of the NP vs coNP/poly question. The results about
random truth table tautologies in [40] have implications for the propositional provability of an
implicit formulation of the average-case hardness of MCSP against co-nondeterministic circuits,
and similarly the results about random k-DNFs have implications for the provability of average-
case hardness of SAT.

In the present work, we are interested in pursuing further this direction concering meta-
mathematics of circuit complexity - what inherent limitations do logical systems have in arguing
about questions such as NP not in coNP/poly on average? In addressing such questions, there
are significant advantages to working with the uniform setting of theories of bounded arithmetic
rather than with the non-uniform setting of propositional proof complexity. First, as complex-
ity theorists, our reasoning in practice is far closer to the setting of bounded arithmetic using
first-order statements and induction, than to propositional proof complexity. Second, bounded
arithmetic offers much more flexibility in formalizing and studying complexity questions, since
we are allowed to deal with first-order statements with multiple quantifiers rather than with
propositional tautologies. The NP vs P question, for instance, is naturally formalized as a
Π2 statement. Third, we can consider the more natural explicit formulation of a complexity-
theoretic statement than the implicit formulation of [40] where the complexity-theoretic impli-
cations follow from unprovability results of an ensemble of statements rather than of a single
statement. Note that dealing with the explicit formulation makes unprovability harder to show.
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1.1 Our Results

Our main result is that average-case lower bounds for NP against sub-exponential size co-
nondeterministic circuits are unprovable in T0

APC1
.

Theorem 1 (Informal Statement, cf. Theorem 6). Let n0 be any positive integer, δ > 0 be
any positive rational, and M be a non-deterministic Turing machine running in polynomial
time. Then the following statement is unprovable in T0

APC1
: “For every n > n0 and every co-

nondeterministic circuit D on n variables of size ≤ 2n
δ
, there are 2n/n inputs xi of length n

such that for each i, D(xi) 6= M(xi)”.

Namely, for any non-deterministic machine M running in poly-time defining a language
L(M), T0

APC1
cannot prove that L(M) cannot be approximated on almost all of its inputs

by co-nondeterministic circuits of sub-exponential size. Note that this unprovability result is
unconditional and that it holds for any NP language L(M). This is an advantage over the results
in [40] which apply to the specific NP languages MCSP and SAT, and where the formalization
of the lower bound is non-standard.

Theorem 1 provides yet another illustration of the self-defeating nature of strong complex-
ity lower bounds. The proof of Theorem 1 proceeds by contradiction - it is shown that the
provability of the complexity lower bound statement implies its falsehood, which contradicts the
soundness of T0

APC1
.

While at a high level this argument might seem similar to the argument in [40], the details are
completely different. We use the KPT witnessing theorem and Nisan-Wigderson pseudorandom
generators, in contrast to [40] which builds on an idea of Razborov [43] and connections between
hitting set generators and the zero-error average case hardness of MCSP.

In more detail, the proof proceeds by contradiction, and exploits a technique of Kraj́ıček
[26] (further elaborated on in [38]). If we assume that the lower bound for L(M) is provable
in T0

APC1
, we can employ the KPT theorem [32] to conclude the existence of an interactive

game witnessing errors of co-nondeterministic circuits attempting to compute L(M). The next
crucial step is to interpret a Nisan-Wigderson (NW) generator based on L(M) as a particular
co-nondeterministic circuit. Therefore, the interactive game allows us to witness errors of
the NW-generator based on L(M). This can be used to construct a deterministic circuit
approximating L(M), which contradicts the assumption that L(M) is hard.

The similarity in the high level structure of the proof to that in [40] does suggest the presence
of a more general self-defeating phenomenon, which would be interesting to investigate further.
Both the argument in [40] and in this paper can be thought of as diagonalization arguments
which go via pseudorandomness, one in the setting of propositional proof complexity and the
other in the setting of bounded arithmetic.

Theorem 1 also has implications for proof complexity lower bounds. Consider non-uniform
propositional proof systems defined as standard propositional proof systems but with proofs
verifiable by p-size circuits rather than p-time algorithms. Such proof systems have been inves-
tigated by Cook-Kraj́ıček [12]. Theorem 1 shows that T0

APC1
cannot show that any samplable

distribution on formulas is hard for every non-uniform propositional proof system. This is sig-
nificant since all known proof complexity lower bounds (expressed as Πb

1 statements, cf. Section
2.1) are provable in TPV.
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Theorem 1 talks about average-case lower bounds for NP against co-nondeterministic cir-
cuits. Using known connections from pseudorandomness, we are also able to show that T0

APC1

cannot prove the existence of injective super-bits, a version of pseudorandom generator secure
against nondeterministic adversaries introduced by Rudich [46] (cf. Section 3.4).

Theorem 2 (Informal Statement, cf. Theorem 7). Let {gn} be any poly-time computable family
of injective functions from n bits to n+ 1 bits. T0

APC1
cannot prove that {gn} is a super-bit.

Finally, in Section 4 we provide a propositional version of our results. We define a no-
tion of KPT interpolation property, generalizing the standard notion of feasible interpolation
for propositional proof systems, and show conditional lower bound for all propositional proof
systems admitting KPT interpolation.

1.2 Related Work

Investigations of complexity theory in bounded arithmetic have a long history. In particular,
formalizations of complexity-theoretic concepts, constructions and results started with Paris,
Wilkie and Buss. We refer to [28, Section 22.5] for a robust list of references. These results
involve circuit complexity but at that time there were no circuit lower bounds to consider. After
the development of the first circuit lower bounds for weak circuit classes, Razborov [43] was
the first to consider unprovability of strong circuit lower bounds in bounded arithmetic. He
used the natural proofs framework [45] to show unprovability of circuit lower bounds for SAT
in a rather weak first-order theory. These ideas formed a part of the motivation for the later
development of the notion of proof complexity generators [1, 24]. Razborov has also shown, in a
tour de force [44], that circuit lower bounds for SAT are not efficiently provable propositionally
in k-DNF Resolution. It is, however, unclear if k-DNF Resolution is strong enough to capture
any interesting reasoning with respect to the formalization of circuit lower bounds used by
Razborov.

Buss [4] in his seminal work on bounded arithmetic showed that if S1
2 proves that a predicate

is in NP∩coNP, then the predicate is already in P. This is a direct consequence of his witnessing
theorem for the theory S1

2 introduced in [4]. Buss’s result, however, does not say that S1
2

cannot prove a p-time lower bound for an NP ∩ coNP predicate. The conclusion that an
S1
2-provably NP ∩ coNP predicate is in P is derived outside S1

2. In [26, 27] Kraj́ıček showed
that theories such as PV1 cannot prove specific NP/poly ∩ coNP/poly lower bounds unless
NP/poly ∩ coNP/poly can be approximated by circuits of subexponential size.2 Note that
in a world where NP/poly ∩ coNP/poly ⊆ P/poly and NP ∩ coNP = P, both results would
trivialize - this distinguishes them from our results, which are unconditional and concerned
with separations between NP and coNP. Pich [38] adapted the result of Kraj́ıček to show that
theories below PV1, such as VNC1, cannot prove that SAT is hard for p-size circuits, unless
standard hardness assumptions break. Our results expand on [26] and [38] by making them
unconditional at the price of strengthening the lower bound which is shown to be unprovable.

2Kraj́ıček’s result was formulated as an unprovability of a statement expressing that some string is outside
the range of a suitable Nisan-Wigderson generator, but it yields the claimed unprovability using observations
from [38] or the present paper.
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In more detail, we first show that the methods from [26, 38] can be adapted to the case of
nondeterministic lower bounds where they achieve a ‘fixpoint’ yielding an unconditional result.
Next, we strengthen [26, 38] by employing hardness amplification within NP. We then employ
methods from pseudorandomness to establish unprovability of a version of Rudich’s conjecture.
We also obtain the unprovability for theory T0

APC1
which is stronger than theories considered in

[26, 38]. This required a proof of the KPT theorem for T0
APC1

, a theory which is not universal,
cf. Section 3.1.

There are also results based on incompleteness. It follows from the second incompleteness
theorem that a sufficiently strong consistent theory, e.g. ZFC if we assume its consistency,
cannot prove even a superlinear lower bound on lengths of proofs in itself (seen as a proof system
for proving tautologies). Otherwise, ZFC would prove its own consistency. Our unprovability
result is incomparable to the impossibility of proving super-linear lower bounds on systems
such as ZFC inside ZFC. This is because the nondeterministic lower bounds we show to be
unprovable do not ask for a proof of consistency of any proof system, i.e. the nondeterministic
lower bounds do not postulate soundness of any specific proof system, they state only that if a
given proof sytem is sound then it does not have short proofs.

A similar more involved result of Kraj́ıček [25, Corollary 3.2] says that Buss’s theory of
bounded arithmetic S1

2, which formalizes p-time reasoning, cannot prove a superlinear lower
bound on lengths of proofs in the so called implicit Extended Frege system. The implicit
Extended Frege system is defined as an extension of the well-known Extended Frege system EF
which can conclude that a formula φ is a tautology even if EF proves that a circuit encodes an
EF-proof of φ.

A difference between our setting and the setting above is that in the setting above, lower
bound statements pertain to individual formulas, while our analogous lower bound statement
is in an explicit formulation and talks about the entire language of satisfiable formulas. In our
formalization the theory ‘knows’ if a given propositional formula is a tautology or not. More
formally, in Theorem 1 the whole truth-table of the language of satisfiable formulas of size n
is encoded by a string of length 2n, where 2n is a length of a number3. This means that the
theory T0

APC1
is able to reason properly about p-time concepts with respect to the input length

2n, i.e. about 2O(n)-time concepts. Therefore, it is significantly harder to show unprovability
in our setting.

Finally, it is possible to consider the provability of circuit upper bounds as well. This has
been investigated systematically by Cook-Kraj́ıček [12] and in a sequence of more recent works
by Bydžovský, Kraj́ıček, Müller and Oliveira [6, 7, 30].

1.3 Subsequent Work

After an initial version of the present paper had been circulated, Kraj́ıček [29] answered a
question we asked about the plausibility of the KPT interpolation for strong proof systems. As
it turns out, the general form of the KPT interpolation defined in Section 4 fails essentially
in all proof systems where the standard feasible interpolation fails. It remains possible that

3Later in the paper we denote this by n ∈ LogLog
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a restricted version of the KPT interpolation which holds only for the formulas considered in
Corollary 1 holds.

2 Preliminaries

2.1 Bounded arithmetic

Theories of bounded arithmetic capture various levels of feasible reasoning and present a uni-
form counterpart to propositional proof systems.

The first theory of bounded arithmetic formalizing p-time reasoning was introduced by
Cook [11] as an equational theory PV. The definition of PV is very long so we provide only a
high-level description and refer to [22] for full details. The language of PV, denoted PV as well,
consists of symbols for all polynomial-time algorithms introduced inductively using Cobham’s
characterization of polynomial-time functions, cf. [10]. Axioms and derivations of the theory
are introduced simultaneously with the symbols from the language. The theory is equational,
i.e. its statements assert only that two terms are equal. We work with a conservative extension
of PV, denoted PV1, which is an ordinary first-order theory in the language PV, cf. [32].
Axioms of PV1 are universal sentences and contain all equations provable in PV. In addition,
PV1 contains axioms replacing the induction axiom for open formulas.

A PV-formula is a first-order formula in the language PV. Σb
0 (=Πb

0) denotes PV-formulas
with only sharply bounded quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length of the
binary representation of t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i resp. Σb
i under

positive Boolean combinations, sharply bounded quantifiers, and bounded quantifiers ∃x, x ≤ t
resp. ∀x, x ≤ t. Predicates definable by Σb

i resp. Πb
i formulas are in the Σp

i resp. Πp
i level of

the polynomial hierarchy, and vice versa. We often write ∃x ≤ t instead of ∃x, x ≤ t. Similarly
for the universal quantifier.

Buss [4] introduced a theory S1
2 extending PV1 with the length induction

A(0) ∧ ∀x < |a|, (A(x)→ A(x+ 1))→ A(|a|)

for A ∈ Σb
1. S1

2 is ∀Σb
1-conservative over PV1. This is a consequence of Buss’s witnessing theorem

stating that S1
2 ` ∃y, A(x, y) for A ∈ Σb

1 implies PV1 ` A(x, f(x)) for some PV-function f .
Following a work by Kraj́ıček [23], Jeřábek [21] systematically developed a theory APC1 cap-

turing probabilistic p-time reasoning by means of approximate counting.4 The theory APC1 is
defined as PV1 +dWPHP (PV) where dWPHP (PV) stands for the dual (surjective) pigeonhole
principle for PV-functions, i.e. for the set of all formulas

x > 0→ ∃v < x(|y|+ 1)∀u < x|y|, f(u) 6= v

4Kraj́ıček [23] introduced a theory BT defined as S12 + dWPHP (PV) and proposed it as a theory for proba-
bilistic p-time reasoning. The notation APC1 comes from Buss-Ko lodziejczyk-Thapen [5]. Approximate counting
in bounded arithmetic was also studied already by Paris and Wilkie [36].
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where f is a PV-function, which might possibly involve other parameters not explicitly shown.
We will also consider a version of dWPHP (PV) for PV-functions f which are not allowed to
involve other parameters than u. We denote the resulting principle dWPHP ′(PV).

PV1 vs. APC1. While the theory PV1 is already very strong and proves sophisticated results
such as the PCP theorem [39], it is not known how to formalize in PV1 some standard proba-
bilistic arguments available in APC1. In particular, APC1 proves the existence of a hard Boolean
function [20] which is not known to be provable in PV1. This difference is manifested also on
the provability of more involved results from complexity theory. For example, APC1 proves
AC0,AC0[p] and monotone circuit lower bounds for explicit Boolean functions [34] but it is not
known if these are provable in PV1. Here, we are referring to the formalization of circuit lower
bounds which does not assume n ∈ LogLog, i.e. that the whole truth table of the hard Boolean
function is a length of a number. Otherwise, the mentioned lower bounds are provable already
in PV1 [42].

dWPHP (PV) vs dWPHP ′(PV). dWPHP (PV) and dWPHP ′(PV) are equivalent over S1
2,

cf. [47], but to the best of our knowledge the equivalence is not known to hold over PV1.
Nevertheless, PV1 + dWPHP ′(PV) still supports a substantial fragment of the machinery of
approximate counting developed in APC1. For example, PV1 + dWPHP ′(PV) proves the exis-
tence of hard Boolean functions and the main theorem of approximate counting [21, Theorem
2.7] formalizing the construction of Nisan-Wigderson generators. In fact, S1

2 + dWPHP (PV) is
∀Σb

1-conservative over PV1 + dWPHP ′(PV), which means that whenever we can prove a ∀Σb
1-

statement in S1
2 + dWPHP (PV1) (or in APC1), we can prove it also in PV1 + dWPHP ′(PV),

cf. [48, 19].

Theory Theorem Reference
PV1 Cook-Levin’s theorem folklore [39]

Resolution lower bounds [13]
the PCP theorem [39]
Hardness amplification [20]
AC0, AC0[p] and monotone circuit lower bounds (if n ∈ LogLog) [42]

APC1 AC0, AC0[p] and monotone circuit lower bounds [34]
HARDA Nisan-Wigderson’s derandomization [21]

Impagliazzo-Wigderson’s derandomization [20]
Goldreich-Levin’s theorem [15]
Natural proofs barrier [34]

Table 1: A list of formalizations. The theory HARDA is essentially APC1. More precisely, it is a
conservative extension of APC1 with a function symbol for approximate counting which allows
to formulate e.g. a difference of two probabilities, cf. [21].
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3 Unprovability of lower bounds in T0
APC1

3.1 Theories TAPC1
, T0

APC1
and the KPT theorem

The theory TAPC1 is defined as TPV + dWPHP (PV ). Here, TPV is the true universal theory
of natural numbers in the language of PV1, i.e. the theory of all universal statements which
are true in the natural numbers and use the language consisting of function symbols for all
p-time algorithms. The theory T0

APC1
is defined as TPV + dWPHP ′(PV ), i.e. using dual weak

pigeonhole principle which does not allow parameters.
TPV is much stronger than Cook’s theory PV1. For example, TPV proves the consistency

of Peano arithmetic while Gödel’s incompleteness theorem shows that PV1 cannot prove it.
Further, TPV proves the reflection principle for all propositional proof systems.

One of the main properties of TPV, and the only one we will use, stems from the KPT
theorem, which is a form of Herbrand’s theorem.

Theorem 3 (KPT [32]). Let T be a universal theory over a language L which contains at least
one constant or function symbol. Let φ(x, y, z) be an open (i.e. quantifier-free) L-formula and
suppose that T ` ∀x∃y∀zφ(x, y, z). Then there are finitely many L-terms t1(x), t2(x, z1), . . . ,
tl(x, z1, . . . , zl−1) (containing only the displayed variables) such that

T ` ∀x, z1, . . . , zl; φ(x, t1(x), z1) ∨ φ(x, t2(x, z1), z2) ∨ · · · ∨ φ(x, tl(x, z1, . . . , zl−1), zl).

If T = TPV, then the terms t1, . . . , tl from the KPT theorem are p-time functions. The KPT
theorem can be applied in the case of TAPC1 as well.5

Theorem 4. Assume that TAPC1 ` ∀x∃y∀zφ(x, y, z) for an open PV-formula φ(x, y, z). Then,
there is a constant l and l randomized p-time functions f1(x), f2(x, z1), . . . , fl(x, z1, . . . , zl−1)
such that for every x, z1, . . . , zl, with probability ≥ 1/poly(|x|, |z1|, . . . , |zl−1|) over the internal
randomness of f1, . . . , fl,

φ(x, f1(x), z1) ∨ φ(x, f2(x, z1), z2) ∨ · · · ∨ φ(x, fl(x, z1, . . . , zl−1), zl).

Moreover, if T0
APC1

` ∀x∃y∀zφ(x, y, z) for an open PV-formula φ(x, y, z), then there is a con-
stant l′ and l′ functions f ′1(x), f ′2(x, z1), . . . , f ′l′(x, z1, . . . , zl′−1) computable by p-size circuits such
that for every x, z1, . . . , zl′,

φ(x, f ′1(x), z1) ∨ φ(x, f ′2(x, z1), z2) ∨ · · · ∨ φ(x, f ′l′(x, z1, . . . , zl′−1), zl′).

Proof. We skolemize TAPC1 and then apply the original KPT theorem.
Define a theory T as TPV extended with a witnessed version of dWPHP (PV),

x > 0→ h(x, y) < x(|y|+ 1) ∧ ∀u < x|y|, e(u) 6= he(x, y), (3.1)

where he is a new function symbol corresponding to PV-function e.

5It was pointed out to us by Kraj́ıček that a version of KPT theorem for APC1 can be obtained via skolem-
ization.
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If TAPC1 proves ∀x∃y∀zφ(x, y, z), then T proves the formula too. Since T is a universal
theory, by Theorem 3, there are finitely many terms t1, . . . , tl (in the language of T ) such that

∀x, z1, . . . , zl; φ(x, t1(x), z1) ∨ φ(x, t2(x, z1), z2) ∨ · · · ∨ φ(x, tl(x, z1, . . . , zl−1), zl). (3.2)

Each term ti is obtained by a composition of finitely many PV-function symbols and finitely
many function symbols he.

6 That is, each ti defines a p-time function gi querying oracles he
a constant k number of times. Consider a computation of gi on a given input. Replace each
query he(a, b) by random bits representing a number < a(|b|+1). This defines partial functions
h′e. The resulting computation defines a computation of a randomized p-time function fi. The
probability that random r < x(|y|+ 1) satisfies ∀u < x|y|, e(u) 6= r is ≥ 1/(|y|+ 1). Thus, the
probability that all partial functions h′e can be extended to functions he satisfying dWPHP (e)
is at least 1/poly(|x|, |z1|, . . . , |zl−1|)k. Since terms t1, . . . , tl satisfy (3.2) for all he satisfying
dWPHP (e), it follows that for each x, z1, . . . , zl, the probability that

φ(x, f1(x), z1) ∨ φ(x, f2(x, z1), z2) ∨ · · · ∨ φ(x, fl(x, z1, . . . , zl−1), zl)

holds, is at least 1/poly(|x|, |z1|, . . . , |zl−1|)kl.

The ‘moreover’ part is proved by replacing queries to he by strings outside the range of e,
which are provided as a nonuniform advice. A complication is that for each input a, b of he we
need a priori a different advice. Fortunately, it turns out that a single advice can serve well for
many inputs a, b so that in the end we need only polynomially many different strings. We will,
however, need an additional assumption that he does not have other parameters (i.e. inputs)
than the ones displayed in definition (3.1). This is guaranteed by replacing TAPC1 by T0

APC1
.

Specifically, if we consider gi on a fixed input length n, there is an absolute polynomial p such
that all queries of gi (on input length n) to h have length ≤ p(n). For each b such that |b| ≤ p(n),
partition the interval [0, 2p(n)+1|b|] into the interval [0, 2|b||b|] and poly(n) intervals of the form
[c|b|, (c+c/|b|−1)|b|] for c ≥ 2|b|. To see that this is possible, note that c+c/|b|−1 ≥ c+c/2|b|
for c ≥ 2|b| and since (1 + 1/2|b|)2|b| ≥ 2, poly(n) intervals [c|b|, (c + c/|b| − 1)|b|] suffice to
cover interval [c|b|, 2c|b|]. Now, given a query to h on input a, b we will respond with a fixed
advice h(a, b) < a(|b| + 1) assigned to the interval [c|b|, (c + c/|b| − 1)|b|] containing a|b|. By
the pigeonhole principle there exists a single advice < c(|b| + 1) working for each a, b such
that a|b| ∈ [c|b|, (c + c/|b| − 1)|b|]. For each a, b such that a|b| ∈ [0, 2|b||b|] we will use a new
advice h(a, b). As there are ≤ p(n) possible values |b| on input length n and for each of them
only poly(n) intervals covering the whole range [0, 2p(n)+1|b|] of possible values of a|b|, the total
number of strings of advice we need is poly(n). They can be hardwired into a p-size circuit
simulating the computation of gi by accessing efficiently the right string for each a, b.

Note that the argument would not go through if he contained additional parameters besides
a and b, corresponding to x and y in (3.1), since for each such input we would need to get a
different set of advice.

6Importantly, terms of T are not constructed using limited recursion on notation as in Cobham’s definition
of p-time which is used to define function symbols of PV1 (and, hence, a subset of function symbols of T ).
This would result in terms using he a polynomial number of times and make the subsequent estimations of
probabilities that f1, . . . , fl work exponentially small.
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3.2 Formalizing non-deterministic lower bounds

Let M be a nondeterministic Turing machine running in time s ≤ 2O(n). Abusing the notation,
we denote by M(x, y) the poly(s, n)-time predicate representing the computation of M on input
x ∈ {0, 1}n with nondeterministic bits y ∈ {0, 1}s.

Given a constant n0, rational δ ∈ (0, 1), and a 2O(n)-time constructible function m(n) ≤ 2n,
we can write down a ∀Σb

2 formula LBcoN
tt (M, 2n

δ
,m) stating that for all n > n0 every co-

nondeterministic circuits of size 2n
δ

makes at least m errors when computing the problem
defined by M . More precisely, LBcoN

tt (M, 2n
δ
,m) states the following.

For each n0 < n ∈ LogLog, and each co-nondeterministic circuit D(x, z) with n-bit input
x, nondeterministic inputs z, and size 2n

δ
, there are m tuples xi, yi, zi, i ∈ [m] witnessing that

at least m n-bit inputs x satisfy M(x) 6= D(x). That is, for every i ∈ [m],

∀y′i, z′i (M(xi, yi) = 1 ∧D(xi, zi) = 0) ∨ (M(xi, y
′
i) = 0 ∧D(xi, z

′
i) = 1)

Note that the displayed formula is equivalent to the formula in which the universal quanti-
fiers ∀y′i, z′i are moved inside the disjunction so that they appear in front of the second disjunct.
The notation n ∈ LogLog is a shortcut for ‘n = ||u|| for some u’, where || · || is a double
application of the length function | · |, i.e. n ∈ LogLog stands for ‘2n is a length of some
u’. Since the length of all quantified numbers in the formula above are bounded by 2O(n), the
assumption n ∈ LogLog implies that these quantifiers are bounded (even if we do not display
these bounds above) and LBcoN

tt (M, 2n
δ
,m) is indeed a ∀Σb

2 formula, resp. in the language of
TPV it is a formula of the form ∀∃∀φ for an open formula φ representing a p-time predicate.
The choice of n0 will be always clear from the context so we do not display it in LBcoN

tt . The
subscript tt refers to the fact that n ∈ LogLog and so the whole truth-table of M is a feasible
object from the perspective of the theory in which we are working with formula LBcoN

tt .
Note also that we do not specify what is |zi|, |z′i| and |yi|, |y′i|, these can be arbitrary and

are bounded just by the size of D and M respectively. Further, the assumption n ∈ LogLog,
which means that 2n is a length of some number, also implies that p-time function symbols
from the language of PV1 given such a number of length 2n as input can express properties such
as M(x, y) = 1 even though M runs in exponential time in n.

3.3 Unprovability of strong co-nondeterministic lower bounds

First, we show the unprovability of strong average-case co-nondeterministic lower bounds for
nondeterministic predicates.

Theorem 5. Let n0, δ ∈ (0, 1) be rational constants and M be a nondeterministic Turing

machine running in time 2n
o(1)

. Then,

T0
APC1

6` LBcoN
tt (M, 2n

δ
, 2n/2− 2n

2nδ
).

Proof. To prove the theorem we build on the conditional unprovability results of [38, 26]. We,
however, obtain an unconditional unprovability result by first showing that the truth of the
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statement implies its unprovability. By the soundness of T0
APC1

, the statement is unprovable if
it is false, hence the unprovability of the statement follows unconditionally.

For the sake of contradiction assume T0
APC1

` LBcoN
tt (M, 2n

δ
,m) with m = 2n/2−2n/2n

δ
. By

Theorem 4, there are finitely many functions f1, . . . , fl computable by circuits of size 2O(n) such
that for each n > n0 and each co-nondeterministic circuit D of size 2n

δ
, either f1(D) outputs

x1, y1, z1 satisfying formula Err(x1, y1, z1) defined as

∀y′1, z′1 (M(x1, y1) = 1 ∧D(x1, z1) = 0) ∨ (M(x1, y′1) = 0 ∧D(x1, z′1) = 1)

or there are counterexamples y′1, z′1 witnessing ¬Err(x1, y1, z1). In the latter case, f2(D, y′11 , z
′1
1 )

generates x2, y2, z2 potentially satisfying Err(x2, y2, z2) and the protocol continues in the same
way, but after t ≤ l many rounds some ft will succeed in finding the right xt, yt, zt. Note that
then M(xt) 6= D(xt).

We will apply the witnessing functions f1, . . . , fl on co-nondeterministic circuits defining
a Nisan-Wigderson generator based on (the negation of) M to show that they allow us to
compute M by subexponential-size deterministic circuits. Specifically, for c ≥ 4 and nc ≤ m′ ≤
2nc, let A = {ai,j}i=1,...,2n

j=1,...,m′ be 2n × m′ 0-1 matrix with nc/2 ones per row and Ji(A) := {j ∈
{1, . . . ,m′}; ai,j = 1}. Then define an NW-generator, NW¬M : {0, 1}m′ 7→ {0, 1}2n as

(NW¬M(w))i = ¬M(w|Ji(A))

where w|Ji(A) are wj’s such that j ∈ Ji(A).

For any c ≥ 4, Nisan and Wigderson [35] constructed 2n × m′ 0-1 matrix A with nc/2

ones per row and nc ≤ m′ ≤ 2nc which is also an (n, nc/2)-design meaning that for each
i 6= j, |Ji(A) ∩ Jj(A)| ≤ n. Moreover, there are n9c/2-size circuits which given i ∈ {0, 1}n and
w ∈ {0, 1}m′ output w|Ji(A), cf. [8]. Therefore, if M is computable by 2n

ε
-size nondeterministic

circuits, then for each w ∈ {0, 1}m′ , (NW¬M(w))x is a function on n inputs x computable by
co-nondeterministic circuits of size 2n

2cε
, which is < 2n

δ
if ε < δ/2c.

For u ∈ {0, 1}nc/2 and v ∈ {0, 1}m′−nc/2 define rx(u, v) ∈ {0, 1}m′ by putting bits of u
into positions Jx(A) and filling the remaining bits by v (in the natural order). Let fCi (D, . . . )
be the first of the three strings generated by fi(D, . . . ), i.e. xi. For all w ∈ {0, 1}m′ and co-
nondeterministic circuitsD(x) = NW¬M(w)x there is a trace tr(w) = fC1 (D), . . . , fCt (D, . . . ), t ≤
l of outputs of functions fl such that M(fCt (D, . . . )) 6= NW¬M(w)fCt (D,... ). That is, tr(w) is
a sequence of inputs of circuit D on which D is expected to fail to compute M . The trace
is defined w.r.t. a fixed ‘helpful’ adversary Y providing counterexamples to the claims that
Err(x, y, z) holds. If there is no such counterexample, Y provides 0. The advice of Y depends
only on x and w|Jx(A).

Claim 3.1. There is a trace Tr = X1, . . . , Xt, t ≤ l and a ∈ {0, 1}m′−nc/2 such that for
s ≥ 1/(n3t−12nt) fraction of all u’s trace tr(rXt(u, a)) starts with Tr and for at least (2/3−1/n)s
fraction of all u’s trace tr(rXt(u, a)) is exactly Tr, i.e. tr(rXt(u, a)) = Tr.

Tr and a can be constructed inductively. There are at most 2n strings Xj, hence there is
X1 such that for ≥ 1/2n fraction of all w’s trace tr(w) begins with X1. Assume we have a trace
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X1, . . . , Xi such that for s′′ ≥ 1/(3i−1(2n)i) fraction of all w’s trace tr(w) begins with X1, . . . , Xi.
Either for at least 2s′′/3 of all w’s trace tr(w) = X1, . . . , Xi or for at least s′′/3 of w’s tr(w)
extends X1, . . . , Xi. In the latter case, there is Xi+1 such that for s′ ≥ 1/(3i(2n)i+1) fraction of
all w’s trace tr(w) begins with X1, . . . , Xi+1. Since the trace is finite, there is X1, . . . , Xt, t ≤ l
such that for s′′′ ≥ 1/(3t−12nt) of all w’s trace tr(w) begins with X1, . . . , Xt and for ≥ 2s′′′/3 of

w’s tr(w) = X1, . . . , Xt. Therefore, by an averaging argument, there is a ∈ {0, 1}m′−nc/2 such
that for at least s ≥ s′′′/n of all u’s tr(rXt(u, a)) starts with X1, . . . , Xt (possibly extending it)

and tr(rXt(u, a)) = X1, . . . , Xt for ≥ (2/3− 1/n)s2n
c/2

of u’s. This proves the claim.

Fix now Tr and a from the previous claim.

Let rXt(·, a) be the bits of a in the positions of [m′]\JXt(A). Since A is (n, nc/2)-design, for
any row x 6= Xt at most n bits of rXt(·, a)|Jx(A) are not set by a. Let Yx, x 6= Xt be the set of
all counterexamples y′x, z

′
x provided by Y on x and rXt(u, a)|Jx(A) for all u. The size of each

set Yx is 2O(n).

Now we define a circuit D′ that approximates ¬M using as advice Tr, rXt(·, a) and t − 1

sets YX1 , . . . , YXt−1 . For each u ∈ {0, 1}nc/2 produce rXt(u, a). Let V be the set of those inputs
u for which tr(rXt(u, a)) either is Tr or starts as Tr and let U be the complement of V . Define
d0 to be the majority value of ¬M on U , this will be another bit of a nonuniform advice. Then
use f1 to produce x1. If X1 from Tr is not x1, output d0. Otherwise, use the advice in YX1 to
generate a counterexample against the claim that M(x1) 6= NW¬M(rXt(u, a))x1 . If the advice
does not work, output d0. Otherwise use the resulting counterexample in f2 and continue in
the same manner until ft produces xt. If Xt from Tr is not xt, output d0. Otherwise, output
0 iff M(Xt) = 1. Since Xt is fixed, M(Xt) can be decided by a final single bit of a nonuniform
advice.

D′ is a circuit with nc/2 inputs and size 2O(n).

By the choice of Tr, for at least (2/3−1/n)s fraction of all u ∈ {0, 1}nc/2 , D′ will successfully
predict ¬M(u). Moreover, at most (1/3 + 1/n)s of all traces tr(rXt(u, a)) extend Tr. Because
s ≥ 1/(n3t−12nt) and d0 is the correct value on at least half of u ∈ U , Pu[D

′(u) = ¬M(u)] ≥
1/2 + (1/6 − 1/n)/(n3t−12nt). This contradicts the assumption that every circuits of size 2m

δ

errs in computing M on ≥ 2m/2−2m/2m
δ

inputs of length m, assuming c is sufficiently big.

We now weaken the average-case lower bound which is shown to be unprovable in Theorem
5 by employing hardness amplification of Healy, Vadhan and Viola [17]. The following lemma
combines Corollary 10.1 in [17] with a simple padding argument that enables the hardness
amplification to work almost everywhere.

Lemma 1 (Healy-Vadhan-Viola [17]). If f : {0, 1}n 7→ {0, 1} is a Boolean function computable
by p-size nondeterministic circuits such that each circuit of size s(n) fails to compute f on
≥ 1/poly(n) inputs for all large enough n, then there is a function f ′ : {0, 1}m 7→ {0, 1}
computable by p-size nondeterministic circuits such that each circuit of size s(m1/4)Ω(1) fails to
compute f ′ on ≥ 1/2− 1/s(m1/4)Ω(1) inputs for all large enough m.

Theorem 6. Let n0, δ ∈ (0, 1) be rational constants and M be a p-time nondeterministic Turing
machine. Then,
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T0
APC1

6` LBcoN
tt (M, 2n

δ
, 2n

n
).

Proof. We proceed as in the proof of Theorem 5 but instead of basing the Nisan-Wigderson
generator on ¬M we use amplified version of ¬M from Lemma 1. More precisely, given M ,
Lemma 1 produces a function Amp(M) computable by p-size nondeterministic circuits. Using
¬Amp(M) instead of ¬M in the proof of Theorem 5, we then obtain deterministic circuits of size
2O(m) computing Amp(M) on inifinitely many mc/2-bit inputs with probability ≥ 1/2+1/2O(m).
If c is sufficiently big, Lemma 1 implies that there are 2O(n4)-size circuits computing M on
infinitely many inputs of length nc/2 with probability ≥ 1 − 1/poly(n), which contradicts the
assumption.

3.4 Unprovability of the existence of super-bits

In [46] Rudich conjectured the existence of so called super-bits and showed that the existence
of super-bits refutes the existence of NP-natural proofs against P/poly.

Definition 1 (Rudich’s super-bit [46]). A sequence of functions gn : {0, 1}n → {0, 1}n+1

computable by polynomial-size circuits is a super-bit if there exists ε > 0 such that for every
nondeterministic circuit C with n+ 1 inputs and size S ≤ 2n

ε
,

Pr
y∈{0,1}n+1

[C(y) = 1]− Pr
x∈{0,1}n

[C(gn(x)) = 1] < 1/S.

The statement that a map g : {0, 1}n 7→ {0, 1}n+1 is a super-bit can be also formalized by
a ∀Σb

2-formula assuming g is computable not just in P/poly but in p-time. Specifically, we say
that a theory T in the language PV proves that a sequence of functions gn : {0, 1}n 7→ {0, 1}n+1

computable in p-time is a super-bit if there exists ε > 0 such that T proves that for each
n ∈ LogLog, N = 2n and each nondeterministic circuit C with n+ 1 inputs and size S ≤ 2n

ε
,

Pr
y∈{0,1}n+1

[C(y) = 1]− Pr
x∈{0,1}n

[C(gn(x)) = 1] < 1/S, (3.3)

where the inequality (3.3) is expressed by the following Σb
2-formula: there exist rational numbers

p1, p2 ∈ [0, 1] and S-bit strings zp1,11 , . . . , zp1,12N , zp2,11 , . . . , zp2,1N such that for all S-bit strings
zp1,01 , . . . , zp1,02N , zp2,01 , . . . , zp2,0N the following holds

• Pry∈{0,1}n+1 [C(y) = 1] = p1 is witnessed by strings zp1,1y , zp1,0y , i.e. C ′(y, zp1.1y ) = 1 for 2p1N
strings y ∈ {0, 1}n+1 and C ′(y, zp1,0y ) = 0 for 2(1 − p1)N strings y ∈ {0, 1}n+1 such that
C ′(y, zp1,1y ) = 0, where C ′(a, b) denotes C(a) with nondeterministic bits b.

• Prx∈{0,1}n [C(gn(x)) = 1] = p2 is witnessed by strings zp2,1x , zp2,0x , i.e. C ′(gn(x), zp2,1x ) = 1
for p2N strings x ∈ {0, 1}n and C ′(gn(x), zp2,0x ) = 0 for (1− p2)N strings x ∈ {0, 1}n such
that C ′(gn(x), zp2,1x ) = 0,

• p1 − p2 < 1/S.

14



The rational numbers p1, p2 have the form a/b, where a, b ∈ [2N ].

On the choice of formalization. An alternative formalization of the statement that gn is a
super-bit would say that for each p1, p2, if there are strings zp1,1i , zp2,1i such that for all strings
zp1,0i , zp2,0i the strings witness Pry∈{0,1}n+1 [C(y) = 1] = p1 and Prx∈{0,1}n [C(gn(x)) = 1] = p2,
then p1 − p2 < 1/S. It is, however, unclear if a theory such as TAPC1 can prove that these
formalizations are equivalent. This is because the concepts involved in this claim are defined
by nondeterministic circuits and TAPC1 is a priori not well-equiped for reasoning about them. A
concrete obstacle towards establishing the equivalence in TAPC1 is the so called sharply bounded
collection scheme for PV-formulas, which has the form

∀i < |a|∃x B(i, x)→ ∃w∀i < |a| B(i, [w]i)

where B is an open PV-formula and [w]i is the i-th element of the sequence of strings coded
by w. While S1

2 proves the scheme, Cook and Thapen [14] showed that PV1 does not prove it
unless factoring is easy. We do not use the alternative formalization in the rest of the paper.

We will show that there is no sequence of p-time functions gn such that T0
APC1

proves that
gn is a super-bit satisfying Pry∈{0,1}n+1 [y ∈ Rng(gn)] = 1/2, i.e. there is no gn such that T0

APC1

proves that gn is an injective super-bit. The proof will proceed by a reduction to Theorem 5.
Let R := Rng(gn) and R = {0, 1}n+1\R. The crucial observation is that if gn is such a super-bit
then R, which is a coNP language, cannot be computed by any nondeterministic circuit C of
size S ≤ 2n

ε
with probability ≥ 1/2 + 1/S. To see that, note that

Pr
y∈{0,1}n+1

[C(y) = 1]− Pr
x∈{0,1}n

[C(gn(x)) = 1] =

= Pr
y

[C(y) = 1 ∧ y ∈ R] + Pr
y

[C(y) = 1 ∧ y 6∈ R]− 2 Pr
y

[C(y) = 1 ∧ y ∈ R]

=1/2− Pr
y

[C(y) = 0 ∧ y 6∈ R]− Pr
y

[C(y) = 1 ∧ y ∈ R]

=1/2− Pr[C(y) = R(y)] ≥ 1/S

where the first two equalities use |R| = 1/2 and the last inequality assumes Pr[C(y) = R(y)] ≥
1/2 + 1/S.

Theorem 7 (Breaking super-bits in T0
APC1

). There is no p-time gn : {0, 1}n 7→ {0, 1}n+1 and
ε > 0 such that T0

APC1
proves that gn is a super-bit satisfying Pry∈{0,1}n+1 [y ∈ Rng(gn)] = 1/2.

Proof. For the sake of contradiction assume that this is not the case. We claim that then for
some ε > 0, T0

APC1
proves that for each sufficiently big n ∈ LogLog for each nondeterministic

circuit C of size S ≤ 2n
ε

there exists y such that C(y) 6= R(y). Otherwise, we could conclude in
T0

APC1
that for some S-size C, Prx∈{0,1}n [C(gn(x)) = 1] = 0 and since Pry∈{0,1}n+1 [y ∈ R] = 1/2

also Pry∈{0,1}n+1 [C(y) = 1] = 1/2, which would contradict the assumption that gn is a super-bit.
However, since the claim involves reasoning with nondeterministic circuits we need to be more
careful when showing that it is indeed formalizable in T0

APC1
.
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In more detail, we perform the following argument in T0
APC1

. Assume that the conclusion
does not hold for some C, i.e. ∀y [∃z C ′(y, z) = 1↔ y 6∈ R], which we express as

∀y∀z1, . . . , z2N∃z′1, . . . , z′2N [(C ′(y, zy) = 0 ∨ y 6∈ R) ∧ (C ′(y, z′y) = 1 ∨ y ∈ R)]. (3.4)

Then, for each p2 ≥ 1/N for all strings zp2,11 , . . . , zp2,1N there are strings zp2,01 , . . . , zp2,0N satisfying
C ′(gn(x), zp2,1x ) 6= 1 for all x, and hence falsifying Prx∈{0,1}n [C(gn(x)) = 1] = p2,. Next, note
that the probability Pry∈{0,1}n+1 [y ∈ R] = 1/2 can be counted exactly in T0

APC1
because n ∈

LogLog and the predicate y ∈ R is in 2O(n)-time. This can be done, for example, by listing
all y’s satisfying y ∈ R. We now claim that, for each p1 6= 1/2 for all strings zp1,11 , . . . , zp1,12N

there are strings zp1,01 , . . . , zp1,02N refuting Pry∈{0,1}n+1 [C(y) = 1] = p1, i.e. either not satisfying
C ′(y, zp1,1y ) = 1 for 2p1N y’s or not satisfying C ′(y, zp1,0y ) = 0 for the remaining y’s. If the claim
holds, this contradicts the assumption that gn is a super-bit and proves our original claim.

To see that the claim is true, suppose it is false. There are two cases. In the first case, p1 >
1/2 and there are strings zp1,11 , . . . , zp1,12N such that for all strings zp1,01 , . . . , zp1,02N , C ′(y, zp1,1y ) = 1

for > 1/2 of y’s, while by (3.4) for all strings zp1,11 , . . . , zp1,12N there are strings zp1,01 , . . . , zp1,02N such
that C ′(y, zp1,1y ) = 0 for ≥ 1/2 of y’s. This is a contradiction. In the second case, p1 < 1/2

and there are strings zp1,11 , . . . , zp1,12N such that for all strings zp1,01 , . . . , zp1,02N , C ′(y, zp1,0y ) = 0 for

> 1/2 of y’s, while by (3.4) for all strings zp1,11 , . . . , zp1,12N there are strings zp1,01 , . . . , zp1,02N such
that C ′(y, zp1,0y ) = 1 for ≥ 1/2 of y’s. This is again a contradiction, which proves our claim.

Given the T0
APC1

-provability of S-size nondeterministic lower bound for R expressed with the
negation of formula (3.4), we can follow the proof of Theorem 5 adapted to the symmetric case
where M is co-nondeterministic and D nondeterministic and derive that for infinitely many n,
we can approximate R. More precisely, choosing a sufficiently big c, there is a circuit of size
2O(nε/2) computing R with probability ≥ 1/2 + 1/2O(nε/2), which by the argument presented
before Theorem 7 contradicts the assumption that gn is a super-bit.

Note that in the proof of Theorem 7 it is crucial that we avoided using the sharply bounded
collection scheme. In particular, it is not clear how to adapt the proof of Theorem 7 to the case
of the alternative formalization of super-bits discussed earlier.

4 KPT-interpolation property

Abstracting on the notion of KPT witnessing which played a crucial role in the proof of The-
orem 5 we define a generalized notion of feasible interpolation property, which we call KPT-
interpolation property. We then point out that the lower bound method of Kraj́ıček [26]
yields conditional lower bounds for systems admitting KPT-interpolation. This strengthens
a result from [37] showing that Razborov’s conjecture [44] about a conditional hardness of
Nisan-Wigderson generators for strong propositional proof systems holds for proof systems
with feasible interpolation.

Definition 2. We say that a propositional proof system P admits KPT-interpolation property,
if there exists a constant k and p-time functions f1, . . . , fk such that whenever π is a P -proof
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of
A1(x, y1) ∨ · · · ∨ Am(x, ym)

where yi are disjoint tuples of variables and x are the only common variables of A1, . . . , Am, for
each x, either f1(x, π) outputs j1 such that Aj1(x, yj1) is a tautology, or if it is not then having a
counterexample a1 witnessing that ¬Aj1(x, a1), f2(x, π, a1) generates j2 such that Aj2(x, yj2) is
a tautology, or there is a counterexample a2 and the protocol proceeds with each f` having access
to all counterexamples obtained so far, but one of the functions f1, . . . , fk definitely succeeds in
finding a tautology among A1, . . . , Am

The notion of feasible interpolation, one of the most powerful methods for proving proof
complexity lower bounds, can be seen as a special case of KPT interpolation for m = 2 and
k = 1. In fact, the ordinary feasible interpolation often yields p-time functions not only deciding
which of the two given disjuncts is a tautology but even constructing its proof. In such case
repeating the construction logm times, we can treat m-size disjunctions as well, without a need
for counterexamples. The results deriving the impossibility of feasible interpolation for strong
proof systems such as EF, cf. [31], do not go through directly with the KPT interpolation simply
because witnessing a disjunction of length 2 is always easy for the interactive process from the
KPT interpolation. We thus originally hoped that KPT interpolation could be used to derive
lower bounds for some proof systems for which feasible interpolation fails. This would present
an alternative to a similar weakening of feasible interpolation, the so called feasible disjunction
property [28, Problem 17.9.1]. However, in light of the subsequent work of Kraj́ıček [29] this
possibility seems less likely. Nevertheless, it is still possible that the KPT interpolation could
hold in a specific case needed to derive the conditional lower bound from Corollary 1 below, or
that it can be further modified into a property which is not ruled out by [29].

Our introduction of the KPT-interpolation was motivated by the attempts to turn the
unprovability result of Kraj́ıček [26] into a lower bound for strong proof systems. As discussed
in [26, 29], a direct attempt to get the lower bound out of the unprovability fails on the fact
that theories such as PV1 are unlikely to prove sharply bounded collection schemes discussed
in Section 3.4. The KPT-interpolation is designed to avoid the obstacle.

We now want to prove a lower bound on lengths of proofs in proof systems with KPT
interpolation by simulating the proof of Theorem 5 in propositional logic. A complication
is that Theorem 5 speaks about unprovability of a Σb

2-statement and it is not clear how to
translate it into propositional formulas.

In order to avoid this problem we will follow Kraj́ıček [26] and focus on NP ∩ coNP lower
bounds of a specific form given by a NW-generator. More precisely, we will consider proposi-
tional formulas f /∈ Rng(NWh) expressing that a Boolean function f with n inputs represented
by its truth table is outside of the range of NW generator based on a function h ∈ NP∩ coNP.
The NW generator will have the same input/output ratio as the one in the proof of Theo-
rem 5, i.e. nc columns and 2n rows, for c ≥ 4, and it will be based on the same (n, nc/2)-
combinatorial design. Since the function h is in NP∩ coNP, there are nondeterministic circuits
H1(z, w), H0(z, w) of polynomial-size with nondeterministic inputs w such that

h(z) = ε⇔ ∃w Hε(z, w).
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We can thus express f /∈ Rng(NWh) as a disjunction∨
y∈[2n]

fy 6= (NWh(x))y

where fy 6= (NWh(x))y is ¬H1(x|Jy, w) if fy = 1 and ¬H0(x|Jy, w) if fy = 0. Here, x|Jy is
a restriction of x to the inputs specified by the combinatorial design. The total size of the
formula f /∈ Rng(NWh) is 2O(n).

Corollary 1. Let h ∈ NP ∩ coNP be hard to approximate by circuits of size 2O(n2/c) with
advantage 1/2O(n2/c). Then, no propositional proof system P admitting KPT-interpolation has
p-size proofs of propositional formulas f /∈ Rng(NWh). This holds regardless of the choice of
f .

Proof. Corollary 1 follows directly from the main result of Kraj́ıček [26] formulated in the
setting of propositional proof systems with KPT interpolation. Assume the proof system P
proves f /∈ Rng(NWh) efficiently. We proceed analogously as in the proof of Theorem 5 while
replacing the application of KPT theorem by the KPT-interpolation. Further, instead of using
¬M as the base function of the NW-generator, we use h. The rest of the proof still works and
gives us a circuit of subexponential size approximating h with subexponential advantage.

Finally, we show that if constant-depth Frege admits KPT interpolation, a conditional lower
bound on (unbounded) Frege follows. This is a consequence of a proof complexity magnification
from [34].

Proof complexity magnification exploits the possibility of expressing circuit lower bounds
succinctly. As proved by Lipton and Young [33], whenever f : {0, 1}n 7→ {0, 1} is hard for
circuits of size poly(s(n)), there is a set Sn of poly(s(n)) n-bit strings such that each s(n)-size
circuit fails to compute f on some input from the ‘anti-checking’ set Sn. The s(n)-size circuit
lower bound for f can be thus expressed by a poly(s(n))-size formula

∨
y∈Sn f(y) 6= C(y) where

the formula f(y) 6= C(y) says that a circuit C represented by poly(s) variables does not output
f(y) on input y.

This implication works for nondeterministic circuits as well, cf. also [9], i.e. whenever
f : {0, 1}n 7→ {0, 1} is hard for nondeterministic circuits of size poly(s(n)), there is a set Sn
of poly(s(n)) n-bit strings such that each s(n)-size nondeterministic circuit fails to compute f
on some input from the set Sn. In particular, this means that for every f /∈ NP/poly we can
express f /∈ Rng(NWh) more succinctly by formulas f /∈Sn Rng(NWh):∨

y∈Sn

fy 6= (NWh(x))y,

for an appropriate set Sn of size poly(n).

Theorem 8. Let h ∈ NP∩ coNP be hard to approximate by circuits of size 2O(n2/c) with advan-
tage 1/2O(n2/c) and f /∈ NP/poly. If constant-depth Frege admits KPT-interpolation, then there
are no p-size Frege proofs of f /∈Sn Rng(NWh). This holds for each set Sn of size poly(n).
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Proof sketch. Assume Frege has p-size proofs of f /∈Sn Rng(NWh) for some Sn. A generic
collapse of Frege to constant-depth Frege by Filmus, Pitassi and Santhanam [16] implies that
there is a constant K such that for any d, Frege proves f /∈Sn Rng(NWh) by proofs of size

2O(dnK/d) and depth d+2. Tautologies f /∈ Rng(NWh) can be then derived by weakening which
increases the size of the proof to 2O(n). This contradicts Corollary 1.

5 Concluding remarks and open problems

Worst-case lower bounds, APC1 and S1
2. Is it possible to improve our unprovability from

Theorem 5 into unprovability of a worst-case lower bound? A step in this direction could be
to show the unprovability of the nonexistence of natural proofs, which is a zero-error average-
case lower bound. More precisely, can we show T0

APC1
-unprovability of the nonexistence of

NP-natural proofs against P/poly? Another possible improvement of Theorem 5 would be to
make it work for a stronger theory. In particular, can we prove it for the theory APC1 or S1

2?

Witnessing hard tautologies. The methods for proving our unprovability statements show
that under certain hardness assumptions it is impossible to efficiently witness errors of com-
putations of Nisan-Wigderson generators. For example, Kraj́ıček [26, 27] used this to show
that under the assumption of the existence of one-way permutations secure against circuits
of exponential-size, there is no subexponential-time algorithm which given a nondeterministic
circuit C generates a C-proof of an invalid formula or a tautology which is hard for C. It would
be very interesting to achieve the non-existence of such witnessing under the promise that the
given circuit C is sound. This question has been investigated already in [27].

Question 1. Is there a p-time algorithm which for any nondeterministic circuit C of p-size
accepting only tautologies outputs a tautology which has no C-proof?
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