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Hardness magnification

In short:
a strategy for deriving strong circuit lower bounds from lower
bounds for weaker models
e.g.
L_size formula lower bounds on a variant of MCSP
=
NP ¢ NC!

nt

o proposed by Oliveira-Santhanam (2018)
o seems to avoid the natural proofs barrier of Razborov and Rudich
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Core issue: Minimum Circuit Size Problem (MCSP)

Definition:
MCSP(tt(f),s) =1 <« f € Circuit|s]

- tt(f): truth-table of a Boolean function £ : {0,1}" — {0, 1}
- s: size parameter
- Circuit[s]: circuits of size s

o fundamental problem with a history preceeding NP-completeness

o many natural variants: succinct, average-case, gap version, ...

o meta-computational character explored in many structural results:
e.g. natural proofs barrier, hardness amplification, learning algorithms

3/10



Initial Magnification Theorem

Oliveira-Santhanam (2018): (s = 2", t = 9slogs, N = 2")
succinct-MCSP[s, t] € NC! = (1,2/3)-MCSP[s] € Formula[N!]
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Oliveira-Santhanam (2018): (s = 2", t = 9slogs, N = 2")
succinct-MCSP[s, t] € NC! = (1,2/3)-MCSP[s] € Formula[N!]

WHY INTERESTING?
previous “magnification” results (including a trivial padding) ask for
o a lower bound on an artificial problem which is hard to analyze, or for
o a lower bound on a strong computational model for which we have no
lower bound at all

On the other hand,
Hirahara-Santhanam (2017):

MCSP[2V"] ¢ Formula[N'°]

Additionally, sidesteps the natural proofs barrier: methods seem to work

only for specific problems like MCSP, not clear how to naturalize them.
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Earlier “magnification” results: e.g.
Srinivasan (2003): seems hard to analyze his problem/model
(approximating clique vs randomized algorithms)
Allender-Koucky (2010), Lipton-Williams (2013):
ask for lower bounds on too strong computational models
for which no lower bounds are known
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ask for lower bounds on too strong computational models
for which no lower bounds are known

Proof complexity magnification

polynomial-size proofs of Ib(f,n*) = linear-size proofs of tt(f, n*)

T T
"succinct-MCSP” "MCSP”

(both Ib(f, n¥) and tt(f, n*) encode f ¢ Circuit[n*])
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Allender-Koucky (2010), Lipton-Williams (2013):
ask for lower bounds on too strong computational models
for which no lower bounds are known

Proof complexity magnification
Miiller-P. (2017):

tt(f, n*) hard for constant-depth Frege = Ib(f, nX) hard for Frege
N S T

known lower bounds central open problem

but proof complexity LBs tend to be harder to obtain than circuit LBs
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“Solutions”:
1. Hardness amplification (error-correcting codes)
2. Anticheckers (and approximate counting)
3. Compression [McKay-Murray-Williams 2019]

A gap emerges: 1.-3. slightly increase the required lower bound

&8 NQP € NC!' = MCSP[2V"] € Formula[N3"]

(similar gap for TC?, branching programs,...)
i.e. we end up above any known lower bound

Exceptions: e.g. NQP € NC! = MCSP[2V"] € Formula-®[N]
Tal (2016): IP ¢ Formula-®[N]
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New results: non-naturalizability

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

(1,2/3)-MCSP[n®(1) 2V7] ¢ Circuit[N11]
=
—3 P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

7/10



New results: non-naturalizability

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

(1,2/3)-MCSP[n®(1) 2V7] ¢ Circuit[N11]
=
—3 P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:
(1,2/3)-MCSP[nO1) 2V7] ¢ Circuit[N11]
=
— subexponential-size circuits learning P/poly

7/10



New results: non-naturalizability

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

(1,2/3)-MCSP[n®(1) 2V7] ¢ Circuit[N11]
=
—3 P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:
(1,2/3)-MCSP[nO1) 2V7] ¢ Circuit[N11]
=
—- subexponential-size circuits learning P/poly

(& 3 pseudorandom function families [Oliveira-Santhanam 2016])

7/10



New results: non-naturalizability

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

(1,2/3)-MCSP[n®(1) 2V7] ¢ Circuit[N11]
=
—3 P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:
(1,2/3)-MCSP[nO1) 2V7] ¢ Circuit[N11]
=
—- subexponential-size circuits learning P/poly

(< 3 pseudorandom function families [Oliveira-Santhanam 2016])
< (Carmosino-Impagliazzo-Kabanets-Kolokolova 2016) <
—3 P/poly-natural property against P/poly

7/10
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Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

(1,2/3)-MCSP[n®(1) 2V7] ¢ Circuit[N11]
=
—3 P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:
(1,2/3)-MCSP[nO1) 2V7] ¢ Circuit[N11]
=
—- subexponential-size circuits learning P/poly

(< 3 pseudorandom function families [Oliveira-Santhanam 2016])
< (Carmosino-Impagliazzo-Kabanets-Kolokolova 2016) <
—3 P/poly-natural property against P/poly

Open: our non-naturalizability proof does not work for MCSP[2V"]
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Hardness magnification via error-correcting codes

Recall the initial magnification theorem (Oliveira-Santhanam '18):

succinct-MCSP[s, t] € NC* = (1,2/3)-MCSP[s] € Formula[N*]
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Hardness magnification via error-correcting codes

Recall the initial magnification theorem (Oliveira-Santhanam '18):

succinct-MCSP[s, t] € NC* = (1,2/3)-MCSP[s] € Formula[N*]
(s=2V" t =9slogs, N = 2")

Proof: Define an algorithm F’: given tt(f)

- pick random y1, f(y1), ..., ye, F(yt)

- use F1 € NC! to decide if 3 s-size circuit C s.t. A, C(vi) = f(v;)
Then, -
(1, g) MCSP[s](f)=1 = F'(f) =1
(L3)-MESPS|(£)=0 = ¥|C| < s, Pry[A C(yi) = £(yi)] = (

= Pr3|C| <s,AC(yi) = f(y;))] < % 5 = Pr[F'(f
Derandomization:
F repeats F’ N-times and accepts if all rounds accept
i.e. Pr[3f s.t. (1,2/3)-MCSP[s](f) =0AF(f)=1] <1
resulting formula size: Npoly(s) O

%) < e —3slogs
)=1]<1/2
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Problem: error-correcting codes (ECCs) do not preserve circuit complexity
Solution: they do if QP:TIME[nO('Og2 ")]C P/poly

Theorem: NQP C NC! = MCSP[2”1/ n2/3

] € Formula-®[N11]

- Formula-&: formula with XOR-gates at the bottom (implements ECCs)
- MCSP[sy, sp] : YES instances € Circuit[s1], NO instances ¢ Circuit[sy]
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no n®(M_size circuit computes f on the set of anticheckers A

Lipton-Young: f ¢ Circuit[n®®)] = 3A C {0,1}" of size n°) s.t.

Clear: NP C P/poly = poly(n)-size circuits finding A given tt(f)
We show: NP C P/poly = n'l-size circuits finding A given tt(f)
- employs approximate counting with linear hash functions

Theorem: NP C P/poly = MCSP[2V"/2n,2V"] € Circuit[N']

“NP C NC! = MCSP[2V"/2n,2V"] € Formula[N1]"
would give us NP ¢ NC?

Theorem: NP C NC! = MCSP[2V"/2n,2V"] € Formula-like[N11]

Formula-like: formula with a few gates with fanout > 1
and a fixed structure

Known: PARITY ¢ Formula-like[N!]
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Final mystery

We reached the following situation:

o MCSP[2V"™/2n,2V"] ¢ Formula-like[N*1] = NP ¢ NC!
o MCSP[2V™/2n,2V"] & Formula[N'9]
o PARITY ¢ Formula-like[N']
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Thank You for Your Attention
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