Logic and Semantics seminar, University of Cambridge 10 May 2019

Hardness magnification near state-of-the-art lower bounds

Ján Pich

Department of Computer Science
University of Oxford

based on a joint paper with Igor C. Oliveira and Rahul Santhanam + early fragments from a joint work with L.Chen, S.Hirahara, I.C.Oliveira, N.Rajgopal and R.Santhanam

Hardness magnification

In short:

a strategy for deriving strong circuit lower bounds from lower bounds for weaker models

e.g. $n^{1.1}\text{-size formula lower bounds on a variant of MCSP} \\ \Rightarrow \\ \mathsf{NP} \not\subseteq \mathsf{NC}^1$

- o proposed by Oliveira-Santhanam (2018)
- o seems to avoid the natural proofs barrier of Razborov and Rudich

Core issue: Minimum Circuit Size Problem (MCSP)

Definition:

$$MCSP(tt(f), s) = 1 \Leftrightarrow f \in Circuit[s]$$

- $\mathsf{tt}(f)$: truth-table of a Boolean function $f:\{0,1\}^n\mapsto\{0,1\}$
- s: size parameter
- Circuit[s]: circuits of size s
- fundamental problem with a history preceding NP-completeness
- o many natural variants: succinct, average-case, gap version, ...
- meta-computational character explored in many structural results:
 e.g. natural proofs barrier, hardness amplification, learning algorithms

Oliveira-Santhanam (2018): $(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)$

succinct-MCSP[s, t] \in NC¹ \Rightarrow (1,2/3)-MCSP[s] \in Formula[$N^{1.1}$]

```
Oliveira-Santhanam (2018): (s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)

succinct-MCSP[s, t] \in NC<sup>1</sup> \Rightarrow (1, 2/3)-MCSP[s] \in Formula[N^{1.1}] \uparrow

input: y_1, f(y_1), \dots, y_t, f(y_t)

y_i \in \{0, 1\}^n, f(y_i) \in \{0, 1\}

output: 1 \Leftrightarrow \exists s-size circuit C s.t.

\bigwedge_{i \leq t} C(y_i) = f(y_i)
```

Oliveira-Santhanam (2018):
$$(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)$$

succinct-MCSP $[s, t] \in NC^1 \Rightarrow (1, 2/3)$ -MCSP $[s] \in Formula[N^{1.1}]$
 \uparrow
input: $y_1, f(y_1), \dots, y_t, f(y_t)$
 $y_i \in \{0, 1\}^n, f(y_i) \in \{0, 1\}$
output: $1 \Leftrightarrow \exists s$ -size circuit C s.t.
 $\bigwedge_{i \le t} C(y_i) = f(y_i)$
YES inputs: $tt(f)$ s.t. $f \in Circuit[s]$
NO inputs: $tt(f)$ s.t. $\forall |C| \le s$,
 $Pr[C(y) = f(y)] < 2/3$

Oliveira-Santhanam (2018):
$$(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)$$

succinct-MCSP $[s, t] \in NC^1 \Rightarrow (1, 2/3)$ -MCSP $[s] \in Formula[N^{1.1}]$

WHY INTERESTING?

- previous "magnification" results (including a trivial padding) ask for
 - o a lower bound on an artificial problem which is hard to analyze, or for
 - a lower bound on a strong computational model for which we have no lower bound at all

Oliveira-Santhanam (2018):
$$(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)$$

succinct-MCSP[
$$s, t$$
] \in NC¹ \Rightarrow (1,2/3)-MCSP[s] \in Formula[$N^{1.1}$]

WHY INTERESTING?

previous "magnification" results (including a trivial padding) ask for

- o a lower bound on an artificial problem which is hard to analyze, or for
- a lower bound on a strong computational model for which we have no lower bound at all

On the other hand,

Hirahara-Santhanam (2017):

$$MCSP[2^{\sqrt{n}}] \notin Formula[N^{1.99}]$$

where

$$\mathsf{MCSP}(\mathsf{tt}(f)) = 1 \Leftrightarrow f \in \mathsf{Circuit}[2^{\sqrt{n}}]$$

Oliveira-Santhanam (2018): $(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)$

succinct-MCSP[s, t] \in NC¹ \Rightarrow (1,2/3)-MCSP[s] \in Formula[$N^{1.1}$]

WHY INTERESTING?

previous "magnification" results (including a trivial padding) ask for

- o a lower bound on an artificial problem which is hard to analyze, or for
- a lower bound on a strong computational model for which we have no lower bound at all

On the other hand,

Hirahara-Santhanam (2017):

 $MCSP[2^{\sqrt{n}}] \notin Formula[N^{1.99}]$

Additionally, sidesteps the natural proofs barrier: methods seem to work only for specific problems like MCSP, not clear how to naturalize them.

Earlier "magnification" results: e.g.

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Earlier "magnification" results: e.g.

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Proof complexity magnification

```
Earlier "magnification" results: e.g.
```

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Proof complexity magnification

polynomial-size proofs of
$$\mathsf{lb}(f, n^k) \Rightarrow \mathsf{linear}\text{-size proofs of } \mathsf{tt}(f, n^k) \uparrow \uparrow \mathsf{MCSP}"$$

(both $\mathsf{lb}(f, n^k)$ and $\mathsf{tt}(f, n^k)$ encode $f \notin \mathsf{Circuit}[n^k]$)

Earlier "magnification" results: e.g.

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Proof complexity magnification

Müller-P. (2017):

 $\mathsf{tt}(f, n^k)$ hard for constant-depth Frege $\Rightarrow \mathsf{lb}(f, n^k)$ hard for Frege

Earlier "magnification" results: e.g.

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Proof complexity magnification

Müller-P. (2017):

 $\mathsf{tt}(f, n^k)$ hard for constant-depth Frege \Rightarrow $\mathsf{lb}(f, n^k)$ hard for Frege

known lower bounds

central open problem

Earlier "magnification" results: e.g.

Srinivasan (2003): seems hard to analyze his problem/model (approximating clique vs randomized algorithms)

Allender-Koucký (2010), Lipton-Williams (2013):

ask for lower bounds on too strong computational models for which no lower bounds are known

Proof complexity magnification

Müller-P. (2017):

 $\mathsf{tt}(f, n^k)$ hard for constant-depth Frege \Rightarrow $\mathsf{lb}(f, n^k)$ hard for Frege

known lower bounds

central open problem

but proof complexity LBs tend to be harder to obtain than circuit LBs

Problem with Oliveira-Santhanam (2018):

(1,2/3)-MCSP still hard to analyze, i.e. Hirahara-Santhanam LB fails

Problem with Oliveira-Santhanam (2018):

(1,2/3)-MCSP still hard to analyze, i.e. Hirahara-Santhanam LB fails

"Solutions":

- 1. Hardness amplification (error-correcting codes)
- 2. Anticheckers (and approximate counting)
- 3. Compression [McKay-Murray-Williams 2019]

Problem with Oliveira-Santhanam (2018):

(1,2/3)-MCSP still hard to analyze, i.e. Hirahara-Santhanam LB fails

"Solutions":

- 1. Hardness amplification (error-correcting codes)
- 2. Anticheckers (and approximate counting)
- 3. Compression [McKay-Murray-Williams 2019]

A gap emerges: 1.-3. slightly increase the required lower bound

e.g.
$$NQP \in NC^1 \Rightarrow MCSP[2^{\sqrt{n}}] \in Formula[N^{3.1}]$$

(similar gap for TC⁰, branching programs,...) i.e. we end up above any known lower bound

Problem with Oliveira-Santhanam (2018):

(1,2/3)-MCSP still hard to analyze, i.e. Hirahara-Santhanam LB fails

"Solutions":

- 1. Hardness amplification (error-correcting codes)
- 2. Anticheckers (and approximate counting)
- 3. Compression [McKay-Murray-Williams 2019]

A gap emerges: 1.-3. slightly increase the required lower bound

e.g. $NQP \in NC^1 \Rightarrow MCSP[2^{\sqrt{n}}] \in Formula[N^{3.1}]$

(similar gap for TC⁰, branching programs,...) i.e. we end up above any known lower bound

Exceptions: e.g. $NQP \in NC^1 \Rightarrow MCSP[2^{\sqrt{n}}] \in Formula-\oplus[N^{1.1}]$ $Tal\ (2016): IP \notin Formula-\oplus[N^{1.9}]$

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

$$(1,2/3)\text{-MCSP}[n^{O(1)},2^{\sqrt{n}}] \notin Circuit[N^{1.1}]$$

$$\Rightarrow$$

 $\neg \exists P/poly-natural property against P/poly$

A way to avoid natural proofs is to show that there are no natural proofs

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

$$(1,2/3)$$
-MCSP[$n^{O(1)},2^{\sqrt{n}}$] \notin Circuit[$N^{1.1}$] \Rightarrow
¬∃ P/poly-natural property against P/poly

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:

$$(1,2/3)\text{-MCSP}[n^{O(1)},2^{\sqrt{n}}] \notin Circuit[N^{1.1}]$$

$$\Rightarrow$$

 $\neg \exists$ subexponential-size circuits learning P/poly

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

$$(1,2/3)$$
-MCSP $[n^{O(1)},2^{\sqrt{n}}] \notin Circuit[N^{1.1}]$
 \Rightarrow
 $\neg \exists P/poly-natural property against P/poly$

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:

$$(1,2/3)-\mathsf{MCSP}[n^{O(1)},2^{\sqrt{n}}] \not\in \mathsf{Circuit}[N^{1.1}]$$

$$\Leftrightarrow$$
¬∃ subexponential-size circuits learning P/poly
$$(\Leftrightarrow \exists \mathsf{pseudorandom} \mathsf{function} \mathsf{families} [\mathsf{Oliveira-Santhanam} \mathsf{2016}])$$

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

$$(1,2/3)$$
-MCSP $[n^{O(1)},2^{\sqrt{n}}] \notin Circuit[N^{1.1}]$
 \Rightarrow
 $\neg \exists P/poly-natural property against P/poly$

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:

```
(1,2/3)\text{-MCSP}[n^{O(1)},2^{\sqrt{n}}] \not\in \mathsf{Circuit}[N^{1.1}] \\ \Leftrightarrow \\ \neg \exists \; \mathsf{subexponential\text{-}size} \; \mathsf{circuits} \; \mathsf{learning} \; \mathsf{P/poly} \\ (\Leftrightarrow \exists \; \mathsf{pseudorandom} \; \mathsf{function} \; \mathsf{families} \; [\mathsf{Oliveira\text{-}Santhanam} \; 2016]) \\ \Leftrightarrow (\mathsf{Carmosino\text{-}Impagliazzo\text{-}Kabanets\text{-}Kolokolova} \; 2016) \Leftrightarrow \\ \neg \exists \; \mathsf{P/poly\text{-}natural} \; \mathsf{property} \; \mathsf{against} \; \mathsf{P/poly} \\
```

Hardness magnification for (1,2/3)-MCSP is provably non-naturalizable:

```
(1,2/3)-MCSP[n^{O(1)},2^{\sqrt{n}}] \notin Circuit[N^{1.1}]

\Rightarrow

\neg \exists P/poly-natural property against P/poly
```

A way to avoid natural proofs is to show that there are no natural proofs

Crucial observation:

```
(1,2/3)\text{-MCSP}[n^{O(1)},2^{\sqrt{n}}] \not\in \mathsf{Circuit}[N^{1.1}] \\ \Leftrightarrow \\ \neg\exists \; \mathsf{subexponential}\text{-size circuits learning P/poly} \\ (\Leftrightarrow \exists \; \mathsf{pseudorandom} \; \mathsf{function} \; \mathsf{families} \; [\mathsf{Oliveira}\text{-Santhanam} \; 2016]) \\ \Leftrightarrow (\mathsf{Carmosino}\text{-Impagliazzo}\text{-Kabanets}\text{-Kolokolova} \; 2016) \Leftrightarrow \\ \neg\exists \; \mathsf{P/poly}\text{-natural} \; \mathsf{property} \; \mathsf{against} \; \mathsf{P/poly}
```

Open: our non-naturalizability proof does not work for $MCSP[2^{\sqrt{n}}]$

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

succinct-MCSP[
$$s, t$$
] \in NC¹ \Rightarrow (1,2/3)-MCSP[s] \in Formula[$N^{1,1}$] ($s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n$)

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

succinct-MCSP[
$$s, t$$
] \in NC¹ \Rightarrow (1,2/3)-MCSP[s] \in Formula[$N^{1.1}$] ($s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n$)

Proof: Define an algorithm F': given tt(f)

- pick random $y_1, f(y_1), \ldots, y_t, f(y_t)$
- use $F_1 \in NC^1$ to decide if \exists s-size circuit C s.t. $\bigwedge_{i \leq t} C(y_i) = f(y_i)$

Then,

$$\begin{array}{l} (1,\frac{2}{3})\text{-MCSP[s]}(f) = 1 \Rightarrow F'(f) = 1 \\ (1,\frac{2}{3})\text{-MCSP[s]}(f) = 0 \Rightarrow \forall |C| \leq s, \ \Pr_{\overline{y}}[\bigwedge C(y_i) = f(y_i)] \leq (\frac{2}{3})^t \leq e^{-3s\log s} \\ \Rightarrow \Pr[\exists |C| \leq s, \bigwedge C(y_i) = f(y_i)] < \frac{1}{2} \Rightarrow \Pr[F'(f) = 1] < 1/2 \end{array}$$

Derandomization:

F repeats F' N-times and accepts if all rounds accept i.e. $\Pr[\exists f \text{ s.t. } (1,2/3)\text{-MCSP}[s](f) = 0 \land F(f) = 1] < 1$ resulting formula size: Npoly(s)

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

```
succinct-MCSP[s, t] \in NC<sup>1</sup> \Rightarrow (1,2/3)-MCSP[s] \in Formula[N^{1,1}]
(s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)
```

Extending it to MCSP[s]:

```
use hardness amplification H: \{0,1\}^N \mapsto \{0,1\}^{O(N)} s.t.
  f \in Circuit[s] \Rightarrow H(f) \in Circuit[s]
  f \notin Circuit[s] \Rightarrow H(f) hard to 2/3-approximate by s-size circuits
```

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

```
succinct-MCSP[s,t] \in NC^1 \Rightarrow (1,2/3)-MCSP[s] \in Formula[N^{1,1}] (s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)
```

Extending it to MCSP[s]:

```
use hardness amplification H: \{0,1\}^N \mapsto \{0,1\}^{O(N)} s.t. f \in \mathsf{Circuit}[s] \Rightarrow H(f) \in \mathsf{Circuit}[s] f \not\in \mathsf{Circuit}[s] \Rightarrow H(f) hard to 2/3-approximate by s-size circuits
```

Problem: error-correcting codes (ECCs) do not preserve circuit complexity Solution: they do if $QP=TIME[n^{O(\log^2 n)}] \subseteq P/poly$

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

```
succinct-MCSP[s, t] \in NC<sup>1</sup> \Rightarrow (1, 2/3)-MCSP[s] \in Formula[N^{1,1}] (s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)
```

Extending it to MCSP[s]:

```
use hardness amplification H: \{0,1\}^N \mapsto \{0,1\}^{O(N)} s.t.
```

 $f \in \mathsf{Circuit}[s] \Rightarrow H(f) \in \mathsf{Circuit}[s]$

 $f \notin Circuit[s] \Rightarrow H(f)$ hard to 2/3-approximate by s-size circuits

Problem: error-correcting codes (ECCs) do not preserve circuit complexity Solution: they do if $QP=TIME[n^{O(\log^2 n)}] \subseteq P/poly$

Theorem: $NQP \subseteq NC^1 \Rightarrow MCSP[2^{n^{1/3}}, 2^{n^{2/3}}] \in Formula-\oplus[N^{1.1}]$

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

```
succinct-MCSP[s, t] \in NC<sup>1</sup> \Rightarrow (1, 2/3)-MCSP[s] \in Formula[N^{1,1}] (s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)
```

Extending it to MCSP[s]:

```
use hardness amplification H: \{0,1\}^N \mapsto \{0,1\}^{O(N)} s.t.
```

$$f \in \mathsf{Circuit}[s] \Rightarrow H(f) \in \mathsf{Circuit}[s]$$

$$f \not\in \mathsf{Circuit}[s] \Rightarrow H(f)$$
 hard to 2/3-approximate by s-size circuits

Problem: error-correcting codes (ECCs) do not preserve circuit complexity Solution: they do if $QP=TIME[n^{O(\log^2 n)}] \subseteq P/poly$

```
Theorem: NQP \subseteq NC^1 \Rightarrow MCSP[2^{n^{1/3}}, 2^{n^{2/3}}] \in Formula-\oplus[N^{1.1}]
```

- Formula-⊕: formula with XOR-gates at the bottom (implements ECCs)
- $\mathsf{MCSP}[s_1, s_2]$: YES instances $\in \mathsf{Circuit}[s_1]$, NO instances $\notin \mathsf{Circuit}[s_2]$

Recall the **initial magnification** theorem (Oliveira-Santhanam '18):

```
succinct-MCSP[s,t] \in NC^1 \Rightarrow (1,2/3)-MCSP[s] \in Formula[N^{1.1}] (s = 2^{\sqrt{n}}, t = 9s \log s, N = 2^n)
```

Extending it to MCSP[s]:

```
use hardness amplification H: \{0,1\}^N \mapsto \{0,1\}^{O(N)} s.t.
```

```
f \in \mathsf{Circuit}[s] \Rightarrow H(f) \in \mathsf{Circuit}[s]
```

$$f \not\in \mathsf{Circuit}[s] \Rightarrow H(f)$$
 hard to 2/3-approximate by s-size circuits

Problem: error-correcting codes (ECCs) do not preserve circuit complexity Solution: they do if $QP=TIME[n^{O(\log^2 n)}]\subseteq P/poly$

```
Theorem: NQP \subseteq NC^1 \Rightarrow MCSP[2^{n^{1/3}}, 2^{n^{2/3}}] \in Formula-\oplus[N^{1.1}]
```

- Formula- \oplus : formula with XOR-gates at the bottom (implements ECCs)
- $\mathsf{MCSP}[s_1, s_2]$: YES instances $\in \mathsf{Circuit}[s_1]$, NO instances $\notin \mathsf{Circuit}[s_2]$

Hirahara-Santhanam '17: $MCSP[2^{n^{1/3}}, 2^{n^{2/3}}] \notin Formula[N^{1.9}]$

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f)

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f) - employs approximate counting with linear hash functions

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f) - employs approximate counting with linear hash functions

Theorem: $NP \subseteq P/poly \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Circuit[N^{1.1}]$

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f) - employs approximate counting with linear hash functions

Theorem: $NP \subseteq P/poly \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Circuit[N^{1.1}]$

"NP \subseteq NC¹ \Rightarrow MCSP[$2^{\sqrt{n}}/2n, 2^{\sqrt{n}}$] \in Formula[$N^{1.1}$]" would give us NP $\not\subseteq$ NC¹

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f)-employs approximate counting with linear hash functions

Theorem: $NP \subseteq P/poly \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Circuit[N^{1.1}]$

"NP \subseteq NC¹ \Rightarrow MCSP[$2^{\sqrt{n}}/2n, 2^{\sqrt{n}}$] \in Formula[$N^{1.1}$]" would give us NP $\not\subseteq$ NC¹

Theorem: $NP \subseteq NC^1 \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Formula-like[N^{1.1}]$

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f)-employs approximate counting with linear hash functions

Theorem: $NP \subseteq P/poly \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Circuit[N^{1.1}]$

"NP \subseteq NC¹ \Rightarrow MCSP[$2^{\sqrt{n}}/2n, 2^{\sqrt{n}}$] \in Formula[$N^{1.1}$]" would give us NP $\not\subseteq$ NC¹

Theorem: $NP \subseteq NC^1 \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Formula-like[N^{1.1}]$

 $\label{eq:formula-like} \mbox{Formula-like} : \mbox{formula with a few gates with fanout} > 1 \\ \mbox{and a fixed structure}$

Lipton-Young: $f \notin \text{Circuit}[n^{O(1)}] \Rightarrow \exists A \subseteq \{0,1\}^n \text{ of size } n^{O(1)} \text{ s.t.}$ no $n^{O(1)}$ -size circuit computes f on the set of anticheckers A

Clear: $NP \subseteq P/poly \Rightarrow poly(n)$ -size circuits finding A given tt(f) **We show:** $NP \subseteq P/poly \Rightarrow n^{1.1}$ -size circuits finding A given tt(f)-employs approximate counting with linear hash functions

Theorem: $NP \subseteq P/poly \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Circuit[N^{1.1}]$

"NP \subseteq NC¹ \Rightarrow MCSP[$2^{\sqrt{n}}/2n, 2^{\sqrt{n}}$] \in Formula[$N^{1.1}$]" would give us NP $\not\subseteq$ NC¹

Theorem: $NP \subseteq NC^1 \Rightarrow MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \in Formula-like[N^{1.1}]$

 $\label{eq:formula-like} \textbf{Formula-like} : \mbox{ formula with a few gates with fanout } > 1 \\ \mbox{ and a fixed structure}$

Known: PARITY \notin Formula-like[$N^{1.9}$]

Final mystery

We reached the following situation:

- $\circ \mathsf{MCSP}[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \not\in \mathsf{Formula-like}[\mathit{N}^{1.1}] \Rightarrow \mathsf{NP} \not\subseteq \mathsf{NC}^1$
- $\circ \; \mathsf{MCSP}[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \not\in \mathsf{Formula}[\mathit{N}^{1.9}]$
- \circ PARITY \notin Formula-like[$N^{1.9}$]

Final mystery

We reached the following situation:

- $\circ \mathsf{MCSP}[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \not\in \mathsf{Formula-like}[\mathit{N}^{1.1}] \Rightarrow \mathsf{NP} \not\subseteq \mathsf{NC}^1$
- $\circ \; \mathsf{MCSP}[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \not\in \mathsf{Formula}[\mathit{N}^{1.9}]$
- ∘ PARITY \notin Formula-like[$N^{1.9}$]

but $MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}]$ is much harder than PARITY.

Final mystery

We reached the following situation:

- $\circ \mathsf{MCSP}[2^{\sqrt{n}}/2n,2^{\sqrt{n}}] \not\in \mathsf{Formula-like}[\mathit{N}^{1.1}] \Rightarrow \mathsf{NP} \not\subseteq \mathsf{NC}^1$
- $\circ \; \mathsf{MCSP}[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}] \not \in \mathsf{Formula}[\mathit{N}^{1.9}]$
- ∘ PARITY \notin Formula-like[$N^{1.9}$]

but $MCSP[2^{\sqrt{n}}/2n, 2^{\sqrt{n}}]$ is much harder than PARITY.

Thank You for Your Attention