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Known circuit lower bounds for f given explicitly: ACO ACO[p], etc.
very constructive: p-time algorithm often recognizing when f is hard
a.k.a natural proofs

Razborov-Rudich: Cryptography works — no natural proof of P£NP.

Mathematical logic:

o upper bounds: Prove all known circuit lower bounds in a constructive
mathematical theory, e.g. PV (p-time reasoning).
- exhibit a structure of algorithms recognizing hard functions?

o lower bounds: PV; I/ strong circuit lower bounds?
- stronger 'natural proofs’ barrier: P=NP consistent with PV17?
- circuit lower bounds as hard tautologies witnessing NP£coNP?

2/11



Bounded arithmetic and propositional logic

PV;: first-order theory formalizing p-time reasoning (Cook '75)

APC;: formalizes probabilistic p-time reasoning (Jefdbek '07)
APCy:= PV; + “If ¢ SIZE(2°")"
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Bounded arithmetic and propositional logic

PV;: first-order theory formalizing p-time reasoning (Cook '75)

APC;: formalizes probabilistic p-time reasoning (Jefdbek '07)
APCy:= PV; + “If ¢ SIZE(2°")"

If PV F VxA(x) for a p-time predicate A, then tautologies expressing
VxA(x) have p-size Extended Frege EF proofs

If APC; I VxA(x) for a p-time predicate A, then tautologies expressing
VxA(x) have p-size WF proofs

WF: EF + “3f ¢ SIZE(2°")" (JeFabek '04)
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different scaling:
LBtt(f, nk):

VYm,n > ng,|m| =2" ¥ circuit C of size < nk 3y, |y| =n; C(y) # f(y)
o If f = SAT, then LBy (f,n*) is coNP

Easier to reason about LB (f,n¥) than about LB(f, n).
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Propositional formulation:

tt(f, nk): \/ f(y) # C(y) (expresses LBy (f, n))
ye{0,1}"
2" bits f(y), poly(n) variables for circuit C of size n¥, total size: 29(")
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Iba(f, 0 ): Vyeaf(y) # C(y)
- same meaning as tt(f, nX) but poly(n) size

Iby(f, n%): poly(n) size formula expressing LB(f, n*)
with existential quantifiers witnessed feasibly by w

Possible witnessing w of LB(f, n*): a p-time algorithm with

input: circuit C of size n¥

output: y s.t. C(y) # f(y)
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Lipton-Young: f ¢ SIZE(n®®")) = 3A C {0,1}" of size poly(n) s.t.
Vyeaf(y) # Cly)

Iba(f, 0 ): Vyeaf(y) # C(y)
- same meaning as tt(f, nX) but poly(n) size

Iby(f, n%): poly(n) size formula expressing LB(f, n*)
with existential quantifiers witnessed feasibly by w
- 3w follows e.g. from PVy - LB(f, n¥)

Fact: If tt(f,n¥) has no poly-size constant-depth Frege proofs, then
Iba(f, n*) has no poly-size (full) Frege proofs.
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Previous results

Lower bounds:

Razborov: S2(a) I/“LBy(SAT, n¥)" unless cryptography breaks
P.: VNC! I/ LB(SAT, n¥) unless SIZE(n*) Capprox “subexp NC*"
Krajitek-Oliveira: Yk 3f € P s.t. PV I/ f € SIZE(cn*)

Buss: PV I/ NP = coNP unless P=NP

“folklore”: VO SAT € P/poly
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Raz: Resolution has no p-size proofs of tt(f, n*) (unconditionally).

Razborov: Res(elogn) does not have p-size proofs of tt(f, n*(1)).

tt(f, n¥) considered as cadidate hard tautologies for EF.
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Upper bounds:

Razborov: PVy b LBy (PARITY ,AC’(n¥))

- AC%(n¥): constant depth circuits of size n
PV1 F LBy (MOD,, AC°[p](n¥)) for p, q distinct primes
- AC%[p](n¥): AC®(n*) with mod, gates
PVi - LBe(CLI, mSIZE(n¥))

- mSIZE(n¥): monotone circuits of size n

k

k
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- mSIZE(n¥): monotone circuits of size n

k

k

Corollary: p-size EF proofs of the corresponding tt(f, n*) formulas

In fact: Razborov's formalization are below PV; resp. EF

Krajigek: APCy - LB(PARITY,ACO(n%))
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Complexity theory formalizable in PV; and APC;

Theory Theorem

PV, Cook-Levin's theorem
the PCP theorem
Hardness amplification

APC;  AC° lower bounds
AC%[p] lower bounds (with 2log?n ¢ Log)
Monotone circuit lower bounds
Nisan-Wigderson's derandomization
Impagliazzo-Wigderson's derandomization
Goldreich-Levin's theorem
Natural proofs barrier

Table: A list of formalizations.
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New results

APCy - LB(PARITY ,AC%(nk))
APCy F LB(MOD,, AC°[p](n¥)) for p, q distinct primes
APCy - LB(CLI, mSIZE(n¥))
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o standard proof using Jefabek's machinery of approximate counting
o Pr[A] > p, for A C 2", witnessed by a p-time surjection s : A +— p2"
o size of each set approximated by sampling poly(n) elements
e.g. there are poly(n) restrictions p1,...,ps, t < poly(n) s.t.
each n*-size d-depth circuit is collapsed by some p € {p1,...,p:}
(p leaving many variables unassigned)

APCy - LB(MODy, AC°[p](n¥)) for p, q distinct primes

o standard proof infeasible: counts all 22 functions with n inputs
o we scale the argument: count only functions with Iogo(l) n inputs

o(1
o 3m, |m| = 2'g “'n needed

APCy - LB(CLI, mSIZE(n¥))
o standard proof with p-time surjections witnessing probabilities
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New results

APCy - LB(PARITY ,AC%(nk))
APCy F LB(MOD,, AC°[p](n¥)) for p, q distinct primes
APCy - LB(CLI, mSIZE(n¥))

Corollary: p-size EF proofs of the corresponding Ib,, formulas
from the assumption that “Jg, tt(g,2")".

Problem: APC; - LB(f,n¥) = 3 efficient witnessing w of LB(f, n)
but w is probabilistic resp. w depends on a hard function g
so unconditional WF proofs of Ib,,(f, n*) do not follow directly
o Possible solution (the road not taken): Derandomize the probabilistic
witnessing of AC®, AC%[p] and monotone circuit lower bounds in APC;.

To get WF proofs of Iba(f, AC°[p](n*)) formulas (unconditionally) we give

a succinct naturalization of Razborov-Smolensky’s AC°[p] lower bound.
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- want a p-time algorithm which given Ibs(f, n¥) finds its proof if it exists
- i.e. succinct natural proof

Learning: - given bits f(x1),..., f(xk) for k n-bit tuples xi, ..., xk
- want to predict f(xx11) on a new input xx41 € {0,1}"

o minimal circuit C computing f on xi, ..., x, has to determine f(xyx1)
o say that the size of the minimal circuit C is s

To predict f(xx+1) prove an s-size circuit lower bound (for e € {0,1})

\  C(0) # F(xi) Vv Clxupn) # e

i=1,..k

A more sophisticated connection between circuit lower bounds and
learning algorithms recently demonstrated by Carmosino et al.

Theorem: quasipolynomial-time algorithm generating WF proofs of
Iba(f, AC°[p](n*)) for many functions f.
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o Derandomize known circuit lower bounds, i.e. prove them inside PV;.
1st step: Derandomize witnessing of known circuit lower bounds.

o Prove APC; - LB(MODq, AC’[p](1)) without 3m, m| = 2%6°"

o VO LB(PARITY,AC(n¥))?
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Thank You for Your Attention
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