Proof complexity, Dagstuhl 1st February 2018

Provability of weak circuit lower bounds

Ján Pich

Kurt Gödel Research Center University of Vienna

based on a joint work with Moritz Müller

Known circuit lower bounds for f given explicitly: AC^0 , $AC^0[p]$, etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs

Known circuit lower bounds for f given explicitly: AC^0 , $AC^0[p]$, etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs

Razborov-Rudich: Cryptography works \rightarrow no natural proof of P \neq NP.

Known circuit lower bounds for f given explicitly: AC^0 , $AC^0[p]$, etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs

Razborov-Rudich: Cryptography works \rightarrow no natural proof of P \neq NP.

Mathematical logic:

- \circ upper bounds: Prove all known circuit lower bounds in a constructive mathematical theory, e.g. PV_1 (p-time reasoning).
 - exhibit a structure of algorithms recognizing hard functions?

Known circuit lower bounds for f given explicitly: AC^0 , $AC^0[p]$, etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs

Razborov-Rudich: Cryptography works \rightarrow no natural proof of P \neq NP.

Mathematical logic:

- \circ upper bounds: Prove all known circuit lower bounds in a constructive mathematical theory, e.g. PV_1 (p-time reasoning).
 - exhibit a structure of algorithms recognizing hard functions?
- \circ lower bounds: $\mathsf{PV}_1 \not\vdash \mathsf{strong}\ \mathsf{circuit}\ \mathsf{lower}\ \mathsf{bounds}?$
 - stronger 'natural proofs' barrier: P=NP consistent with PV_1 ?
 - circuit lower bounds as hard tautologies witnessing NP \neq coNP?

Bounded arithmetic and propositional logic

PV₁: first-order theory formalizing p-time reasoning (Cook '75)

APC₁: formalizes probabilistic p-time reasoning (Jeřábek '07) APC₁:= $PV_1 + "\exists f \notin SIZE(2^{\epsilon n})"$

Bounded arithmetic and propositional logic

PV₁: first-order theory formalizing p-time reasoning (Cook '75)

APC₁: formalizes probabilistic p-time reasoning (Jeřábek '07) APC₁:= $PV_1 + "\exists f \notin SIZE(2^{\epsilon n})"$

If $PV_1 \vdash \forall xA(x)$ for a p-time predicate A, then tautologies expressing $\forall xA(x)$ have p-size Extended Frege **EF** proofs

If $APC_1 \vdash \forall xA(x)$ for a p-time predicate A, then tautologies expressing $\forall xA(x)$ have p-size WF proofs

WF: EF + " $\exists f \notin SIZE(2^{\epsilon n})$ " (Jeřábek '04)

How to express circuit lower bounds formally

First-order formulation:

 $LB(f, n^k)$: 'every circuit of size n^k fails to compute function f'

First-order formulation:

 $LB(f, n^{k}): \text{ 'every circuit of size } n^{k} \text{ fails to compute function } f'$ $\forall n > n_{0} \forall \text{ circuit } C \text{ of size } \leq n^{k} \exists \text{ input } y, |y| = n; C(y) \neq f(y)$

where n_0 , k are fixed constants

∘ If $f \in NP$, then $LB(f, n^k)$ is Π_3^p (i.e. $\forall \exists \forall$ statement)

First-order formulation:

 $LB(f, n^k)$: 'every circuit of size n^k fails to compute function f'

 $\forall n > n_0 \ \forall \ \text{circuit} \ C \ \text{of size} \ \leq n^k \ \exists \ \text{input} \ y, \ |y| = n; \ C(y) \neq f(y)$

where n_0 , k are fixed constants

∘ If $f \in NP$, then $LB(f, n^k)$ is Π_3^p (i.e. $\forall \exists \forall$ statement)

different scaling:

 $LB_{tt}(f, n^k)$:

 $\forall m, n > n_0, |m| = 2^n \forall$ circuit C of size $\leq n^k \exists y, |y| = n; C(y) \neq f(y)$

• If f = SAT, then $LB_{tt}(f, n^k)$ is coNP

First-order formulation:

 $LB(f, n^k)$: 'every circuit of size n^k fails to compute function f'

 $\forall n > n_0 \; \forall \; \text{circuit} \; C \; \text{of size} \; \leq n^k \; \exists \; \text{input} \; y, \; |y| = n; \; C(y) \neq f(y)$

where n_0 , k are fixed constants

∘ If $f \in NP$, then $LB(f, n^k)$ is Π_3^p (i.e. $\forall \exists \forall$ statement)

different scaling:

 $LB_{tt}(f, n^k)$:

 $\forall m, n > n_0, |m| = 2^n \forall$ circuit C of size $\leq n^k \exists y, |y| = n; C(y) \neq f(y)$

• If f = SAT, then $LB_{tt}(f, n^k)$ is coNP

Easier to reason about $LB_{tt}(f, n^k)$ than about $LB(f, n^k)$.

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young: $f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$ of size poly(n) s.t. $\bigvee_{y \in A} f(y) \neq C(y)$

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young:
$$f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$$
 of size $poly(n)$ s.t.
 $\bigvee_{y \in A} f(y) \neq C(y)$

$$lb_A(f, n^k)$$
: $\bigvee_{y \in A} f(y) \neq C(y)$

- same meaning as $tt(f, n^k)$ but poly(n) size

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young:
$$f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$$
 of size $poly(n)$ s.t.
 $\bigvee_{y \in A} f(y) \neq C(y)$

$$lb_{A}(f, n^{k}): \bigvee_{y \in A} f(y) \neq C(y)$$

- same meaning as $tt(f, n^{k})$ but $poly(n)$ size

 $lb_w(f, n^k)$: poly(n) size formula expressing $LB(f, n^k)$ with existential quantifiers witnessed feasibly by w

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young:
$$f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$$
 of size $poly(n)$ s.t.
 $\bigvee_{y \in A} f(y) \neq C(y)$

$$lb_{A}(f, n^{k}): \bigvee_{y \in A} f(y) \neq C(y)$$

- same meaning as $tt(f, n^{k})$ but $poly(n)$ size

 $lb_w(f, n^k)$: poly(n) size formula expressing $LB(f, n^k)$ with existential quantifiers witnessed feasibly by w

Possible witnessing w of $LB(f, n^k)$: a p-time algorithm with **input**: circuit C of size n^k **output**: y s.t. $C(y) \neq f(y)$

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young:
$$f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$$
 of size $poly(n)$ s.t.
 $\bigvee_{y \in A} f(y) \neq C(y)$

$$lb_{A}(f, n^{k}): \bigvee_{y \in A} f(y) \neq C(y)$$

- same meaning as $tt(f, n^{k})$ but $poly(n)$ size

 $lb_w(f, n^k)$: poly(n) size formula expressing $LB(f, n^k)$ with existential quantifiers witnessed feasibly by w- $\exists w$ follows e.g. from $PV_1 \vdash LB(f, n^k)$

$$tt(f, n^k): \qquad \qquad \bigvee_{y \in \{0,1\}^n} f(y) \neq C(y) \qquad (\text{expresses } LB_{tt}(f, n^k))$$

 2^n bits f(y), poly(n) variables for circuit C of size n^k , total size: $2^{O(n)}$

Lipton-Young:
$$f \notin SIZE(n^{O(1)}) \Rightarrow \exists A \subseteq \{0,1\}^n$$
 of size $poly(n)$ s.t.
 $\bigvee_{y \in A} f(y) \neq C(y)$

$$\begin{aligned} lb_A(f, n^k): \bigvee_{y \in A} f(y) \neq C(y) \\ - \text{ same meaning as } tt(f, n^k) \text{ but } poly(n) \text{ size } \end{aligned}$$

 $lb_w(f, n^k)$: poly(n) size formula expressing $LB(f, n^k)$ with existential quantifiers witnessed feasibly by w- $\exists w$ follows e.g. from $PV_1 \vdash LB(f, n^k)$

Fact: If $tt(f, n^k)$ has no poly-size constant-depth Frege proofs, then $Ib_A(f, n^k)$ has no poly-size (full) Frege proofs.

Lower bounds:

Razborov: $S_2^2(\alpha) \not\vdash ``LB_{tt}(SAT, n^k)''$ unless cryptography breaks **P.:** $VNC^1 \not\vdash LB(SAT, n^k)$ unless $SIZE(n^k) \subseteq_{approx}$ "subexp $NC^{1"}$ **Krajíček-Oliveira:** $\forall k \exists f \in P \text{ s.t. } PV_1 \not\vdash f \in SIZE(cn^k)$ **Buss:** $PV_1 \not\vdash NP = coNP$ unless P=NP"folklore": $V^0 \not\vdash SAT \in P/poly$

Lower bounds:

Razborov: $S_2^2(\alpha) \not\vdash ``LB_{tt}(SAT, n^k)''$ unless cryptography breaks **P.:** $VNC^1 \not\vdash LB(SAT, n^k)$ unless $SIZE(n^k) \subseteq_{approx}$ "subexp $NC^{1"}$ **Krajíček-Oliveira:** $\forall k \exists f \in P \text{ s.t. } PV_1 \not\vdash f \in SIZE(cn^k)$ **Buss:** $PV_1 \not\vdash NP = coNP$ unless P=NP"folklore": $V^0 \not\vdash SAT \in P/poly$

Razborov-Krajíček: Propositional systems with feasible interpolation property have no p-size proofs of $tt(f, n^k)$ unless cryptography breaks. **Raz:** Resolution has no p-size proofs of $tt(f, n^k)$ (unconditionally). **Razborov:** $Res(\epsilon \log n)$ does not have p-size proofs of $tt(f, n^{\omega(1)})$.

Lower bounds:

Razborov: $S_2^2(\alpha) \not\vdash ``LB_{tt}(SAT, n^k)''$ unless cryptography breaks **P.:** $VNC^1 \not\vdash LB(SAT, n^k)$ unless $SIZE(n^k) \subseteq_{approx}$ "subexp $NC^{1"}$ **Krajíček-Oliveira:** $\forall k \exists f \in P \text{ s.t. } PV_1 \not\vdash f \in SIZE(cn^k)$ **Buss:** $PV_1 \not\vdash NP = coNP$ unless P=NP"folklore": $V^0 \not\vdash SAT \in P/poly$

Razborov-Krajíček: Propositional systems with feasible interpolation property have no p-size proofs of $tt(f, n^k)$ unless cryptography breaks. **Raz:** Resolution has no p-size proofs of $tt(f, n^k)$ (unconditionally). **Razborov:** $Res(\epsilon \log n)$ does not have p-size proofs of $tt(f, n^{\omega(1)})$.

 $tt(f, n^k)$ considered as cadidate hard tautologies for EF.

Upper bounds:

Razborov: $PV_1 \vdash LB_{tt}(PARITY, AC^0(n^k))$ $- AC^0(n^k)$: constant depth circuits of size n^k $PV_1 \vdash LB_{tt}(MOD_q, AC^0[p](n^k))$ for p, q distinct primes $- AC^0[p](n^k)$: $AC^0(n^k)$ with mod_p gates $PV_1 \vdash LB_{tt}(CLI, mSIZE(n^k))$ $- mSIZE(n^k)$: monotone circuits of size n^k

Upper bounds:

Razborov: $PV_1 \vdash LB_{tt}(PARITY, AC^0(n^k))$ $- AC^0(n^k)$: constant depth circuits of size n^k $PV_1 \vdash LB_{tt}(MOD_q, AC^0[p](n^k))$ for p, q distinct primes $- AC^0[p](n^k)$: $AC^0(n^k)$ with mod_p gates $PV_1 \vdash LB_{tt}(CLI, mSIZE(n^k))$ $- mSIZE(n^k)$: monotone circuits of size n^k

Corollary: **p-size** EF **proofs** of the corresponding $tt(f, n^k)$ formulas In fact: Razborov's formalization are below PV₁ resp. EF

Upper bounds:

Razborov: $PV_1 \vdash LB_{tt}(PARITY, AC^0(n^k))$ $- AC^0(n^k)$: constant depth circuits of size n^k $PV_1 \vdash LB_{tt}(MOD_q, AC^0[p](n^k))$ for p, q distinct primes $- AC^0[p](n^k)$: $AC^0(n^k)$ with mod_p gates $PV_1 \vdash LB_{tt}(CLI, mSIZE(n^k))$ $- mSIZE(n^k)$: monotone circuits of size n^k

Corollary: **p-size** EF **proofs** of the corresponding $tt(f, n^k)$ formulas In fact: Razborov's formalization are below PV₁ resp. EF

Krajíček: APC₁ \vdash *LB*(*PARITY*, AC⁰(n^k))

Complexity theory formalizable in PV_1 and APC_1

Theory	Theorem
PV_1	Cook-Levin's theorem the PCP theorem
	Hardness amplification
APC ₁	AC ⁰ lower bounds AC ⁰ [p] lower bounds (with $2^{\log^{O(1)} n} \in Log$) Monotone circuit lower bounds Nisan-Wigderson's derandomization Impagliazzo-Wigderson's derandomization Goldreich-Levin's theorem Natural proofs barrier

Table: A list of formalizations.

. . .

```
APC_1 \vdash LB(PARITY, AC^0(n^k))
```

 $APC_1 \vdash LB(MOD_q, AC^0[p](n^k))$ for p, q distinct primes

 $APC_1 \vdash LB(CLI, mSIZE(n^k))$

 $APC_1 \vdash LB(PARITY, AC^0(n^k))$

standard proof using Jeřábek's machinery of approximate counting
Pr[A] > p, for A ⊆ 2ⁿ, witnessed by a p-time surjection s : A → p2ⁿ
size of each set approximated by sampling poly(n) elements
e.g. there are poly(n) restrictions ρ₁,..., ρ_t, t ≤ poly(n) s.t.
each n^k-size d-depth circuit is collapsed by some ρ ∈ {ρ₁,..., ρ_t}
(ρ leaving many variables unassigned)

 $APC_1 \vdash LB(MOD_q, AC^0[p](n^k))$ for p, q distinct primes $APC_1 \vdash LB(CLI, mSIZE(n^k))$

 $APC_1 \vdash LB(PARITY, AC^0(n^k))$

standard proof using Jeřábek's machinery of approximate counting
Pr[A] > p, for A ⊆ 2ⁿ, witnessed by a p-time surjection s : A → p2ⁿ
size of each set approximated by sampling poly(n) elements
e.g. there are poly(n) restrictions ρ₁,..., ρ_t, t ≤ poly(n) s.t.
each n^k-size d-depth circuit is collapsed by some ρ ∈ {ρ₁,..., ρ_t}
(ρ leaving many variables unassigned)

 $APC_1 \vdash LB(MOD_q, AC^0[p](n^k))$ for p, q distinct primes

• standard proof infeasible: counts all 2^{2^n} functions with *n* inputs • we scale the argument: count only functions with $\log^{O(1)} n$ inputs • $\exists m, |m| = 2^{\log^{O(1)} n}$ needed

 $APC_1 \vdash LB(CLI, mSIZE(n^k))$

 $APC_1 \vdash LB(PARITY, AC^0(n^k))$

standard proof using Jeřábek's machinery of approximate counting
Pr[A] > p, for A ⊆ 2ⁿ, witnessed by a p-time surjection s : A → p2ⁿ
size of each set approximated by sampling poly(n) elements
e.g. there are poly(n) restrictions ρ₁,..., ρ_t, t ≤ poly(n) s.t.
each n^k-size d-depth circuit is collapsed by some ρ ∈ {ρ₁,..., ρ_t}
(ρ leaving many variables unassigned)

 $APC_1 \vdash LB(MOD_q, AC^0[p](n^k))$ for p, q distinct primes

• standard proof infeasible: counts all 2^{2^n} functions with *n* inputs • we scale the argument: count only functions with $\log^{O(1)} n$ inputs • $\exists m, |m| = 2^{\log^{O(1)} n}$ needed

 $APC_1 \vdash LB(CLI, mSIZE(n^k))$

 \circ standard proof with p-time surjections witnessing probabilities

```
APC_1 \vdash LB(PARITY, AC^0(n^k))

APC_1 \vdash LB(MOD_q, AC^0[p](n^k)) \text{ for } p, q \text{ distinct primes}

APC_1 \vdash LB(CLI, mSIZE(n^k))
```

Corollary: p-size EF proofs of the corresponding lb_w formulas from the assumption that " $\exists g, tt(g, 2^{\epsilon n})$ ".

```
APC_1 \vdash LB(PARITY, AC^0(n^k))APC_1 \vdash LB(MOD_q, AC^0[p](n^k)) \text{ for } p, q \text{ distinct primes}APC_1 \vdash LB(CLI, mSIZE(n^k))
```

Corollary: p-size EF proofs of the corresponding lb_w formulas from the assumption that " $\exists g, tt(g, 2^{\epsilon n})$ ".

Problem: APC₁ \vdash *LB*(*f*, *n^k*) $\Rightarrow \exists$ efficient witnessing *w* of *LB*(*f*, *n^k*) but *w* is probabilistic resp. *w* depends on a hard function *g* so unconditional WF proofs of *lb_w*(*f*, *n^k*) do not follow directly

```
APC_1 \vdash LB(PARITY, AC^0(n^k))APC_1 \vdash LB(MOD_q, AC^0[p](n^k)) \text{ for } p, q \text{ distinct primes}APC_1 \vdash LB(CLI, mSIZE(n^k))
```

Corollary: p-size EF proofs of the corresponding Ib_w formulas from the assumption that " $\exists g, tt(g, 2^{\epsilon n})$ ".

Problem: APC₁ ⊢ LB(f, n^k) ⇒ ∃ efficient witnessing w of LB(f, n^k) but w is probabilistic resp. w depends on a hard function g so unconditional WF proofs of Ib_w(f, n^k) do not follow directly
 Possible solution (the road not taken): Derandomize the probabilistic witnessing of AC⁰, AC⁰[p] and monotone circuit lower bounds in APC₁.

```
APC_1 \vdash LB(PARITY, AC^0(n^k))APC_1 \vdash LB(MOD_q, AC^0[p](n^k)) \text{ for } p, q \text{ distinct primes}APC_1 \vdash LB(CLI, mSIZE(n^k))
```

Corollary: p-size EF proofs of the corresponding lb_w formulas from the assumption that " $\exists g, tt(g, 2^{\epsilon n})$ ".

Problem: APC₁ ⊢ LB(f, n^k) ⇒ ∃ efficient witnessing w of LB(f, n^k) but w is probabilistic resp. w depends on a hard function g so unconditional WF proofs of Ib_w(f, n^k) do not follow directly
 Possible solution (the road not taken): Derandomize the probabilistic witnessing of AC⁰, AC⁰[p] and monotone circuit lower bounds in APC₁.

To get WF proofs of $lb_A(f, AC^0[p](n^k))$ formulas (unconditionally) we give a **succinct naturalization** of Razborov-Smolensky's $AC^0[p]$ lower bound.

- want a p-time algorithm which given $Ib_A(f, n^k)$ finds its proof if it exists
- i.e. succinct natural proof

- want a p-time algorithm which given $Ib_A(f, n^k)$ finds its proof if it exists

- i.e. succinct natural proof

Learning: - given bits $f(x_1), \ldots, f(x_k)$ for k *n*-bit tuples x_1, \ldots, x_k - want to predict $f(x_{k+1})$ on a new input $x_{k+1} \in \{0, 1\}^n$

• minimal circuit C computing f on x_1, \ldots, x_k has to determine $f(x_{k+1})$ • say that the size of the minimal circuit C is s

- want a p-time algorithm which given $lb_A(f, n^k)$ finds its proof if it exists - i.e. succinct natural proof

Learning: - given bits $f(x_1), \ldots, f(x_k)$ for k n-bit tuples x_1, \ldots, x_k

- want to predict $f(x_{k+1})$ on a new input $x_{k+1} \in \{0,1\}^n$

• minimal circuit C computing f on x_1, \ldots, x_k has to determine $f(x_{k+1})$ • say that the size of the minimal circuit C is s

To predict $f(x_{k+1})$ prove an *s*-size circuit lower bound (for $\epsilon \in \{0, 1\}$)

$$\bigvee_{i=1,\ldots,k} C(x_i) \neq f(x_i) \lor C(x_{k+1}) \neq \epsilon$$

- want a p-time algorithm which given $lb_A(f, n^k)$ finds its proof if it exists - i.e. succinct natural proof

Learning: - given bits $f(x_1), \ldots, f(x_k)$ for k n-bit tuples x_1, \ldots, x_k

- want to predict $f(x_{k+1})$ on a new input $x_{k+1} \in \{0,1\}^n$

• minimal circuit C computing f on x_1, \ldots, x_k has to determine $f(x_{k+1})$ • say that the size of the minimal circuit C is s

To predict $f(x_{k+1})$ prove an *s*-size circuit lower bound (for $\epsilon \in \{0, 1\}$)

$$\bigvee_{i=1,\ldots,k} C(x_i) \neq f(x_i) \lor C(x_{k+1}) \neq \epsilon$$

A more sophisticated connection between circuit lower bounds and learning algorithms recently demonstrated by Carmosino et al.

- want a p-time algorithm which given $Ib_A(f, n^k)$ finds its proof if it exists

- i.e. succinct natural proof

Learning: - given bits $f(x_1), \ldots, f(x_k)$ for k *n*-bit tuples x_1, \ldots, x_k - want to predict $f(x_{k+1})$ on a new input $x_{k+1} \in \{0, 1\}^n$

• minimal circuit C computing f on x_1, \ldots, x_k has to determine $f(x_{k+1})$ • say that the size of the minimal circuit C is s

To predict $f(x_{k+1})$ prove an *s*-size circuit lower bound (for $\epsilon \in \{0, 1\}$)

$$\bigvee_{i=1,\ldots,k} C(x_i) \neq f(x_i) \lor C(x_{k+1}) \neq \epsilon$$

A more sophisticated connection between circuit lower bounds and learning algorithms recently demonstrated by Carmosino et al.

Theorem: quasipolynomial-time algorithm generating WF proofs of $Ib_A(f, AC^0[p](n^k))$ for many functions f.

- Derandomize known circuit lower bounds, i.e. prove them inside PV₁.
 1st step: Derandomize witnessing of known circuit lower bounds.
 Prove APC₁ ⊢ LB(MOD_q, AC⁰[p](n^k)) without ∃m, |m| = 2^{log^{O(1)} n}.
- ∘ $V^0 \vdash LB(PARITY, AC^0(n^k))$?

- Derandomize known circuit lower bounds, i.e. prove them inside PV₁.
 1st step: Derandomize witnessing of known circuit lower bounds.
 Prove APC₁ ⊢ LB(MOD_q, AC⁰[p](n^k)) without ∃m, |m| = 2^{log^{O(1)} n}.
- ∘ $V^0 \vdash LB(PARITY, AC^0(n^k))$?

Thank You for Your Attention