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Kurt Gödel Research Center
University of Vienna

based on a joint work with Moritz Müller

1 / 11



Constructive proofs of circuit lower bounds

Known circuit lower bounds for f given explicitly: AC0, AC0[p], etc.
very constructive: p-time algorithm often recognizing when f is hard
a.k.a natural proofs

Razborov-Rudich: Cryptography works → no natural proof of P6=NP.

Mathematical logic:

◦ upper bounds: Prove all known circuit lower bounds in a constructive
mathematical theory, e.g. PV1 (p-time reasoning).

- exhibit a structure of algorithms recognizing hard functions?

◦ lower bounds: PV1 6` strong circuit lower bounds?
- stronger ’natural proofs’ barrier: P=NP consistent with PV1?
- circuit lower bounds as hard tautologies witnessing NP 6=coNP?
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Bounded arithmetic and propositional logic

PV1: first-order theory formalizing p-time reasoning (Cook ’75)

APC1: formalizes probabilistic p-time reasoning (Jěrábek ’07)

APC1:= PV1 + “∃f /∈ SIZE(2εn)”

If PV1 ` ∀xA(x) for a p-time predicate A, then tautologies expressing
∀xA(x) have p-size Extended Frege EF proofs

If APC1 ` ∀xA(x) for a p-time predicate A, then tautologies expressing
∀xA(x) have p-size WF proofs

WF: EF + “∃f /∈ SIZE (2εn)” (Jěrábek ’04)
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How to express circuit lower bounds formally

First-order formulation:

LB(f , nk): ’every circuit of size nk fails to compute function f ’

∀n > n0 ∀ circuit C of size ≤ nk ∃ input y , |y | = n; C (y) 6= f (y)

where n0, k are fixed constants

◦ If f ∈ NP, then LB(f , nk) is Πp
3 (i.e. ∀∃∀ statement)

different scaling:

LBtt(f , n
k):

∀m, n > n0, |m| = 2n ∀ circuit C of size ≤ nk ∃ y , |y | = n; C (y) 6= f (y)

◦ If f = SAT, then LBtt(f , n
k) is coNP

Easier to reason about LBtt(f , n
k) than about LB(f , nk).
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Propositional formulation:

tt(f , nk):
∨

y∈{0,1}n
f (y) 6= C (y) (expresses LBtt(f , n

k))

2n bits f (y), poly(n) variables for circuit C of size nk , total size: 2O(n)

Lipton-Young: f /∈ SIZE (nO(1))⇒ ∃A ⊆ {0, 1}n of size poly(n) s.t.∨
y∈A f (y) 6= C (y)

lbA(f , nk):
∨

y∈A f (y) 6= C (y)

- same meaning as tt(f , nk) but poly(n) size

lbw (f , nk): poly(n) size formula expressing LB(f , nk)
with existential quantifiers witnessed feasibly by w

Possible witnessing w of LB(f , nk): a p-time algorithm with

input: circuit C of size nk

output: y s.t. C (y) 6= f (y)

- ∃w follows e.g. from PV1 ` LB(f , nk)

Fact: If tt(f , nk) has no poly-size constant-depth Frege proofs, then
lbA(f , nk) has no poly-size (full) Frege proofs.
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Previous results

Lower bounds:

Razborov: S2
2 (α) 6`“LBtt(SAT , n

k)” unless cryptography breaks

P.: VNC1 6` LB(SAT , nk) unless SIZE (nk) ⊆approx “subexp NC1”

Kraj́ıček-Oliveira: ∀k ∃f ∈ P s.t. PV1 6` f ∈ SIZE (cnk)

Buss: PV1 6` NP = coNP unless P=NP

“folklore”: V 0 6` SAT ∈ P/poly

Razborov-Kraj́ıček: Propositional systems with feasible interpolation
property have no p-size proofs of tt(f , nk) unless cryptography breaks.

Raz: Resolution has no p-size proofs of tt(f , nk) (unconditionally).

Razborov: Res(ε log n) does not have p-size proofs of tt(f , nω(1)).

tt(f , nk) considered as cadidate hard tautologies for EF.
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Upper bounds:

Razborov: PV1 ` LBtt(PARITY ,AC0(nk))

- AC0(nk): constant depth circuits of size nk

PV1 ` LBtt(MODq,AC0[p](nk)) for p, q distinct primes

- AC0[p](nk): AC0(nk) with modp gates

PV1 ` LBtt(CLI ,mSIZE (nk))

- mSIZE (nk): monotone circuits of size nk

Corollary: p-size EF proofs of the corresponding tt(f , nk) formulas

In fact: Razborov’s formalization are below PV1 resp. EF

Kraj́ıček: APC1 ` LB(PARITY ,AC0(nk))
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Complexity theory formalizable in PV1 and APC1

Theory Theorem

PV1 Cook-Levin’s theorem
the PCP theorem
Hardness amplification
. . .

APC1 AC0 lower bounds

AC0[p] lower bounds (with 2log
O(1) n ∈ Log)

Monotone circuit lower bounds
Nisan-Wigderson’s derandomization
Impagliazzo-Wigderson’s derandomization
Goldreich-Levin’s theorem
Natural proofs barrier
. . .

Table: A list of formalizations.
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New results

APC1 ` LB(PARITY ,AC0(nk))

APC1 ` LB(MODq,AC0[p](nk)) for p, q distinct primes

APC1 ` LB(CLI ,mSIZE (nk))

Corollary: p-size EF proofs of the corresponding lbw formulas
from the assumption that “∃g , tt(g , 2εn)”.

Problem: APC1 ` LB(f , nk)⇒ ∃ efficient witnessing w of LB(f , nk)
but w is probabilistic resp. w depends on a hard function g
so unconditional WF proofs of lbw (f , nk) do not follow directly

◦ Possible solution (the road not taken): Derandomize the probabilistic
witnessing of AC0, AC0[p] and monotone circuit lower bounds in APC1.

To get WF proofs of lbA(f ,AC0[p](nk)) formulas (unconditionally) we give
a succinct naturalization of Razborov-Smolensky’s AC0[p] lower bound.
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witnessing of AC0, AC0[p] and monotone circuit lower bounds in APC1.

To get WF proofs of lbA(f ,AC0[p](nk)) formulas (unconditionally) we give
a succinct naturalization of Razborov-Smolensky’s AC0[p] lower bound.
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Naturalization / automatizability

- want a p-time algorithm which given lbA(f , nk) finds its proof if it exists
- i.e. succinct natural proof

Learning: - given bits f (x1), . . . , f (xk) for k n-bit tuples x1, . . . , xk
- want to predict f (xk+1) on a new input xk+1 ∈ {0, 1}n

◦ minimal circuit C computing f on x1, . . . , xk has to determine f (xk+1)
◦ say that the size of the minimal circuit C is s

To predict f (xk+1) prove an s-size circuit lower bound (for ε ∈ {0, 1})∨
i=1,...,k

C (xi ) 6= f (xi ) ∨ C (xk+1) 6= ε

A more sophisticated connection between circuit lower bounds and
learning algorithms recently demonstrated by Carmosino et al.

Theorem: quasipolynomial-time algorithm generating WF proofs of
lbA(f ,AC0[p](nk)) for many functions f .
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Problems

◦ Derandomize known circuit lower bounds, i.e. prove them inside PV1.

1st step: Derandomize witnessing of known circuit lower bounds.

◦ Prove APC1 ` LB(MODq,AC0[p](nk)) without ∃m, |m| = 2log
O(1) n.

◦ V 0 ` LB(PARITY ,AC0(nk))?

Thank You for Your Attention
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