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A type 2 biomarker separates
relapsing-remitting from secondary
progressive multiple sclerosis

ABSTRACT

Objective: We tested whether it is possible to differentiate relapsing-remitting (RR) from second-
ary progressive (SP) disease stages in patients with multiple sclerosis (MS) using a combination
of nuclear magnetic resonance (NMR) metabolomics and partial least squares discriminant anal-
ysis (PLS-DA) of biofluids, which makes no assumptions on the underlying mechanisms of
disease.

Methods: Serum samples were obtained from patients with primary progressive MS (PPMS),
SPMS, and RRMS; patients with other neurodegenerative conditions; and age-matched controls.
Samples were analyzed by NMR and PLS-DA models were derived to separate disease groups.

Results: The PLS-DA models for serum samples from patients with MS enabled reliable differen-
tiation between RRMS and SPMS. This approach also identified significant differences between
the metabolite profiles of each of the MS groups (PP, SP, and RR) and the healthy controls, as well
as predicting disease group membership with high specificity and sensitivity.

Conclusions: NMR metabolomics analysis of serum is a sensitive and robust method for differen-
tiating between different stages of MS, yielding diagnostic markers without a priori knowledge of
disease pathogenesis. Critically, this study identified and validated a type II biomarker for the RR
to SP transition in patients with MS. This approach may be of considerable benefit in categorizing
patients for treatment and as an outcome measure in future clinical trials.

Classification of evidence: This study provides Class II evidence that serum metabolite profiles accu-
rately distinguish patients with different subtypes and stages of MS. Neurology® 2014;83:1492–1499

GLOSSARY
AD5 Alzheimer disease; ALS 5 amyotrophic lateral sclerosis; AUC5 area under the curve;MS5multiple sclerosis; NMR5
nuclear magnetic resonance; PLS-DA 5 partial least squares discriminant analysis; PP 5 primary progressive; ROC 5
receiver operator characteristic; RR 5 relapsing-remitting; SP 5 secondary progressive.

The transition from relapsing-remitting (RR) to secondary progressive (SP) multiple sclerosis
(MS) occurs subtly and is difficult to define clinically.1 Identifying biomarkers that can distin-
guish between the different clinical phenotypes of MS is an important goal to ensure that the
appropriate treatment regimens are adopted in a timely fashion.2–4 Furthermore, such bio-
markers may provide new insight into the pathologic basis for the progressive process and lead
to the development of effective treatments for disability prevention.5

Metabolomic profiling of biofluids with high-resolution proton nuclear magnetic resonance
(NMR) spectroscopy and partial least squares discriminant analysis (PLS-DA),6 a multivariate
statistical pattern recognition technique, can be used to identify metabolites that vary in a
correlated fashion within individual groups.7,8 This approach enables patterns of metabolite
variation that are characteristic of a specific disease to be defined, rather than requiring identi-
fication of a unique, candidate-led biomarker.9 We have previously used this technique to show
that animals with either predominantly macrophage-rich or neutrophil-rich brain pathologies
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can be differentiated from each other solely on
the basis of their urine metabolite composi-
tion.10 Using a similar approach, characteris-
tic metabolite patterns were identified in
urine samples in a marmoset model of MS,
as well as in samples from patients with MS
compared with either healthy volunteers or
other neurologic controls.11 These findings
support the concept that biofluids analyzed
by NMR/PLS-DA may be highly sensitive,
not just to the presence of pathology within
the brain, but to differences and changes in
pathologic processes. In this study, we used
NMR/PLS-DA analysis of serum metabolite
composition to determine whether it is possi-
ble to objectively differentiate between MS
clinical subtypes on the basis of metabolomic
biofluid analysis.

METHODS Biofluid samples. We obtained serum samples

from 3 independent cohorts (A, B, and C) of patients with MS

(RR, SP, and primary progressive [PP]), as well as age- and sex-

matched control volunteers, recruited from the John Radcliffe

Hospital, Oxford, UK (see STARD flowchart of patient

recruitment, exclusion, and methodology in figure 1). We

diagnosed patients with MS using the gold standard 2001 and

2005 McDonald criteria, with at least 2 clinical attacks for RR

phenotypes12,13 and continuous worsening of neurologic

impairment over at least 12 months, not explained by

incomplete recovery from relapses, for those defined as SPMS.

Of the 58 patients with SPMS in the study, 53 did not have a

relapse in the 2 years before and after sampling, 3 had one relapse,

and data on the remaining 2 are not available. No patients with

PPMS had any recorded relapses. A consultant neurologist

performed the clinical assessments of all patients with MS (J.P.).

Overall patient demographics are shown in table 1, and a more

detailed breakdown together with a list of therapies is provided in

table e-1 on the Neurology® Web site at Neurology.org. Blood

samples were collected and allowed to clot for 30 minutes at room

temperature in Vacutainers containing clot-activator and gel (BD,

UK). Samples were centrifuged (3,000 gn, 10 minutes) and the

serum aliquoted and stored at 280°C. Samples were excluded

Figure 1 STARD flowchart of multiple sclerosis patient recruitment and general methodology

MS 5 multiple sclerosis; NMR 5 nuclear magnetic resonance; PPMS 5 primary progressive multiple sclerosis; ROC 5 receiver operator characteristic;
RRMS 5 relapsing-remitting multiple sclerosis; SPMS 5 secondary progressive multiple sclerosis.
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from analysis if patients were found to have another major disease

(e.g., diabetes mellitus [n5 1]), if the spectral quality was poor or

grossly distorted (n5 15), or if the prepared sample was found to

have a lipid content greater than 2 3 SD from the mean of the

group (n 5 13, appendix e-1). For comparison to other

neurologic diseases, serum was obtained from patients with

either amyotrophic lateral sclerosis (ALS, n 5 20, diagnosed

by M.R.T.) or Alzheimer disease (AD, n 5 10, diagnosed by

G.K.W.) and compared with age-matched samples from healthy

volunteers at the respective disease clinics (n 5 14 and 20,

respectively).

Standard protocol approvals, registrations, and patient
consents. MS samples were collected and analyzed with ethical

approval between 1995 and 2012 under project 08/H0604/

155. ALS and AD patient samples were obtained from tissue

banks and analyzed as part of the Oxford Study for Biomarkers

in Motor Neurone Disease (BioMOx, approved by the South

Oxfordshire Research Ethics Committee 08/H0605/85) or the

OPTIMA and Challenge cohorts with prior approval from the

local research ethics committee (COREC 1656 and 96.243,

respectively).

NMR spectroscopy. A 1D proton NMR spectrum was ob-

tained for each sample using a Carr-Purcell-Meiboom-Gill

pulse sequence as previously described,14 with some slight

modifications. Prior to spectroscopy, samples were defrosted at

4°C, then further centrifuged (100,000 3 g, 30 minutes, 4°C).

Serum (150 mL) was mixed with 0.24 M sodium phosphate

NMR buffer prepared in D2O (pH 7.4) to a final volume of

600 mL. Mixed samples were transferred to a 5-mm NMR

tube and spectra acquired using a 700-MHz spectrometer

operating at 16.4T (Bruker Avance III, Billerica, MA). One

sample from each batch was analyzed by 2D spectroscopy to

aid metabolite identification. More detailed NMR methods are

provided in appendix e-1.

Data preprocessing. Spectra were imported into MATLAB

(Mathworks, Natick, MA) and scaled using the internal standard

to ensure correct amplitude. Further preprocessing corrected for

subtle shifts in peak position arising from pH differences between

samples.15 The remaining processing was carried out as previously

described,14 with slight modifications. Briefly, the spectra were

subdivided into 0.02-ppm buckets from 0.20 to 9.60 ppm (d 5

midpoint of integral region). In each spectrum, buckets in the

4.30–5.00 ppm region, which is highly variable owing to

imperfect water suppression, were excluded. In addition,

buckets containing gross contaminants (e.g., organic solvent)

were excluded from analysis. Each remaining bucket was

integrated, yielding 420 independent variables for each sample.

Prior to multivariate statistical analysis, data were scaled using the

Pareto variance to suppress noise. More detailed methodology is

available in appendix e-1.

Multivariate statistical analysis. For each comparison, we

used SIMCA 13 (Umetrics, Sweden) to construct a PLS-DA

model that best explained the differences between the variables

for the groups being studied. Each model was assessed for

predictivity by calculating the q2 value. A q2 . 0 is predictive

and it is generally accepted that q2 . 0.4 is the threshold for

significance in biological modeling.14 Models were further

validated by a Monte Carlo method where 100 models were

built using random group assignments. Only models where the

genuine q2 was higher than 95% of the randomly generated q2

values were considered significant. More detailed statistical

methods are included in appendix e-1.

Buckets driving separations were identified using variable

importance and contribution plots for each model. Metabolites

within buckets were identified using 2D spectroscopy, literature

values, and reference to the human metabolome database.16–18

To confirm identity of singlet peaks, predicted metabolites were

spiked into samples as authentic references.

Independent validation. Two sets of patients, A and B, were

used to build independent predictive models. Each model’s load-

ings and contributions were compared to ensure similarity in

variables driving separation. In addition, a third independent

set of samples, C, was used as a testing set. A researcher blinded

to all clinical information tested the ability of the Set B model to

predict group membership of the unknown Set C samples. The

results were expressed as a 2 3 2 contingency table and receiver

operator characteristic (ROC) curves were constructed. Model

membership probability thresholds derived from the model-

building set were used to determine sensitivity and specificity

in the prediction set (Set C).

RESULTS Initial MS sample set (Set A). Spectra were
obtained from the Set A serum samples and processed
as described above to give integral values for each

Table 1 Patient demographic information

PPMS RRMS SPMS Control

Median (range) age, y 58 (43–63)a 40 (22–62) 51 (28–65)b 54 (18–75)

Female, n (%) 6 (46) 15 (58) 43 (74) 16 (67)

Male, n (%) 7 (54) 11 (42) 15 (26) 8 (33)

Median (IQR) EDSS 6 (4.4–6.4) 2 (1–5.4) 6 (5.75–6.5)c 0 (0–0)d

Median (range) TSR, mo NA 20 (1–161) NA NA

Median (range) DD, mo 73 (17–333) 72 (6–318) 160 (65–430)c 0 (0–0)d

Abbreviations: DD 5 disease duration; EDSS 5 Expanded Disability Status Scale; IQR 5 interquartile range; NA 5 not
applicable; PPMS 5 primary progressive multiple sclerosis; RRMS 5 relapsing-remitting multiple sclerosis; SPMS 5 sec-
ondary progressive multiple sclerosis; TSR 5 time since relapse.
More detailed breakdown of demographics and therapies received is given in table e-1.
ap , 0.001 vs RRMS.
bp , 0.05 vs RRMS.
cp , 0.001 with respect to RRMS.
dp , 0.001 vs PPMS, RRMS, and SPMS.
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independent bucket. Example spectra from a patient
with RRMS and from a patient with SPMS are shown
in figure e-1. Models built with data from Set A
serum samples showed a significant separation
between RR and SP groups (q2 5 0.45, figure 2A).
Examination of the loadings revealed that fatty acids
(dx-y 5 0.88, 1.30, 5.35), phosphocholine (dx-y 5

3.23), an N-acetyl species (dx-y 5 2.03), and glucose

(dx-y 5 3.25, 3.75, 3.91) were decreased in SPMS
with respect to RRMS, whereas other fatty acids and
b-hydroxybutyrate (dx-y 5 1.19) were increased. For
other intra-MS comparisons, the model comparing
the PP and RR groups appeared to differentiate 2
clear groups (figure e-2). However, a small number
of overlapping patients in each group resulted in a
nonpredictive q2 value (20.11). The PP vs SP
model also returned a nonpredictive q2 value
(20.02), with marked overlap (figure e-2).

We subsequently investigated the separation of pa-
tients with MS from an age- and sex-matched control
cohort. A model differentiating all patients with MS
from the control cohort was significantly predictive
(q2 5 0.41). Furthermore, the comparisons between
individual stages of MS and control groups were also
significant (figure 2, B and C). All models were suc-
cessfully validated using the cross-validation method
described above. Interestingly, when comparing each
of the individual stages of MS against the controls, 2
metabolites were consistent across the groups: glucose
(dx-y5 3.25, 3.75, 3.91) and phosphocholine (dx-y5
3.23) were both reduced. Further examination of
both the RR vs control and SP vs control model
loadings showed lactate (dx-y 5 1.32), a broad
singlet-like resonance tentatively assigned to N-acetyl
species (dx-y 5 2.03, previously assigned as N-acetyl
glycoproteins10), and some fatty acids were decreased
in the patients with RRMS or patients with SPMS
relative to controls. A separate subset of fatty acids
was found to be elevated in the patients with RRMS
and patients with SPMS relative to controls. Exami-
nation of the PP vs control model loadings showed
that, in contrast to RRMS and SPMS, lactate,
N-acetyl species, and some fatty acids were increased
in patients with PPMS relative to controls. Detailed
metabolite findings are presented in table e-2.

Independent MS sample set analysis (Sets B and C). Sam-
ples from independent Set B were used in the same
manner as the samples from Set A and 3 new models
were generated: ControlB vs RRMSB, ControlB vs
SPMSB, and RRMSB vs SPMSB. In each case, the
models from Set B were significantly predictive
(q2 . 0.4) and were all validated in the same manner
as the models from Set A. (ControlB vs RRMSB, q2 5
0.62; ControlB vs SPMSB, q2 5 0.77; and RRMSB vs
SPMSB, q2 5 0.48.) Moreover, upon examination of
the loadings, the same metabolites were found to be
responsible for the separations observed between
groups in this secondary dataset with the exception
of glucose, which had a lower variable importance in
separating patients with SPMS from patients with
RRMS in Set B.

Each new model generated from Set B was tested
for its predictive ability using Set C, the independent

Figure 2 1H nuclear magnetic resonance and metabolomics on serum samples
can differentiate relapsing-remitting from secondary progressive
multiple sclerosis

Serum analysis: (A) Partial least squares discriminant analysis plot of serum samples com-
paring patients with relapsing-remitting multiple sclerosis (RRMS) (orange triangles) and pa-
tients with secondary progressive multiple sclerosis (SPMS) (blue squares). (B) Table to show
the q2 values of the models from Set A serum samples. n.p. 5 not predictive (i.e., q2 , 0). (C)
Patients with RRMS (orange diamonds) and control volunteers (green circles). PPMS 5 pri-
mary progressive multiple sclerosis.
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dataset that had not been used in building models. All
Set B models were both sensitive and specific at pre-
dicting group membership for patients: RRMSB vs
SPMSB, sensitivity 5 0.9 and specificity 5 0.8;
RRMSB or SPMSB vs ControlB, sensitivity and speci-
ficity 5 1.0. Graphical representations of models and
prediction results (figure 3, A–C), and contingency

tables (figure 3, D–F), demonstrate sensitivity and
specificity of the models (Fisher exact test, 2-tailed).
ROC plots (figure 3G) yielded areas under the curve
(AUC) significantly greater than 0.5, indicating good
predictive power (control vs RRMS, AUC 5 1.00,
p 5 0.0045; control vs SPMS, AUC 5 1.00, p 5

0.0006; SPMS vs RRMS, AUC5 0.94, p5 0.0071).

Figure 3 Partial least squares discriminant analysis models and receiver operator characteristic curves demonstrate the selectivity and
specificity of the model separating relapsing-remitting and secondary progressive multiple sclerosis

Set B partial least squares discriminant analysis plots (darker hue) overlaid with Set C prediction results (lighter hue); misclassified patients are shown with
open symbols. (A) Relapsing-remitting multiple sclerosis (RRMS) (orange triangles) vs control (green circles), (B) secondary progressive multiple sclerosis
(SPMS) (blue squares) vs control (green circles), and (C) RRMS (orange triangles) vs SPMS (blue squares). Receiver operator characteristic (ROC) curves
and contingency tables: (D–F) 2 3 2 contingency tables for serum model prediction results summarizing correct and incorrect identifications. In each case,
Fisher exact 2-tailed p values are less than 0.05 (ControlB vs RRMSB, p5 0.0013; ControlB vs SPMSB, p, 0.0001; SPMSB vs RRMSB, p5 0.017). (G) ROC
curves constructed for each of the 3 serum models validated with a testing set of patients. ControlB vs SPMSB is black squares and black line. ControlB vs
RRMSB is gray triangles and gray line. SPMSB vs RRMSB is open circles and black line. (ControlB vs RRMSB area under the curve [AUC] 5 1.00, p5 0.0045;
ControlB vs SPMSB AUC 5 1.00, p , 0.0001; SPMSB vs RRMSB AUC 5 0.94, p 5 0.007.)
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Comparison with other neurologic diseases. The control
vs RRMS model (figure 2C) was compared with
models separating ALS and AD from age-matched
control samples (figure 4, A and B, respectively).
Neither of the latter 2 models was predictive, with a
strong overlap of groups in both cases.

Effect of therapeutic agents, age, and sex. No significant
models could be generated when modeling patients
within our study randomized to either active therapy
or placebo arms of the Cupid trial (tetrahydrocannab-
inol, q2 520.08) or BioMS trial (Dirucotide, MBP-
8298, q2 5 20.16). Thus, the presence of these
therapeutic agents did not contribute to the
separations observed. Full details of therapies
received are given in table e-1. Furthermore, when
considering age as a factor within the control
population, a model between older ($46) and

younger volunteers (,46) was not predictive (q2 5
20.19). The cutoff of 46 was chosen as it lay halfway
between the mean ages of the RRMS and SPMS
cohorts. Likewise, when the sex of patients was
highlighted on existing models (e.g., the Set A
SPMS vs RRMS model), no discernible patterns
were evident, with both sexes being distributed
evenly. Thus, none of these variables (presence of
therapeutic agent, age, or sex) contributed to the
significant separations observed in our MS models.

DISCUSSION Using PLS-DA metabolomics
analysis of serum NMR spectra, it was possible to
generate validated predictive models that
distinguished RRMS from SPMS, as well as
separating each of the MS patient groups (RRMS,
SPMS, or PPMS) from healthy control cohorts.
This is Class II evidence. The majority of serum
metabolites that underlay the model separations
were identified. The sensitivity of the models to
specific metabolites varied between each of the MS
groups when compared with the control cohort,
and most notably between PPMS and either of the
other 2 groups, indicating sensitivity to the
different disease states. The findings in other
diseases (ALS and AD) served as a negative control,
and confirmed that the predictive models generated
in the MS cohorts were based on disease-specific
metabolite changes and did not reflect common
neurodegenerative processes per se.

It is of particular interest that our serum models
generated a positive and significant separation
between RR and SP patient groups. This separation
was highly robust, with 2 independent sample sets
(A and B) producing equivalent predictive models
and identifying the same underlying metabolites.
The only difference in the metabolites identified
was glucose, which had a lesser influence in driving
the models derived from Set B than Set A. This dif-
ference is likely to have arisen from variations in the
timing of sample collection in the clinic and the
period after the last meal. Critically, models created
from Set B accurately predicted group membership
of samples from the third, independent set (Set C).
These findings strongly support the concept that
NMR/PLS-DA analysis of serum samples can reliably
differentiate between the RR and SP stages of MS dis-
ease progression. Based on the positive outcome of
these relatively small, cross-sectional studies, further
larger cohort, multicenter longitudinal trials are war-
ranted to assess the potential of this approach both as
a means to monitor transitioning from RRMS to
SPMS and as a surrogate marker of time to SP disease
in treatment trials.

Our models were not able to separate the progress-
ive groups of MS from each other. This supports the

Figure 4 Models comparing different neurologic diseases to their respective
controls

Models to probe separation between 2 different neurologic diseases and control volunteers
from their respective disease clinics. (A) Patients with amyotrophic lateral sclerosis (ALS)
(purple hexagons) and control volunteers (gray stars); model is nonpredictive (q2 5 20.21).
(B) Patients with Alzheimer disease (AD) (turquoise diamonds) and control volunteers (gray
stars); model is nonpredictive (q2 5 20.21).
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view that a similar pathologic mechanism underlies
these phases.19 However, the lack of a predictive
model between the PP and RR patients appeared to
be disrupted by just 4 patients (3 RR and 1 PP) lying
in the incorrect model region, suggesting that the
underlying pathologic mechanisms of RRMS and
PPMS are distinct. Although it is easy to distinguish
RRMS from PPMS in the clinical setting, under-
standing the underlying pathogenic basis for PP dis-
ease is important. Thus, these observations warrant
investigation and validation in larger cohorts. Fur-
ther, a study to assess the potential of this approach
in predicting conversion of clinically isolated syn-
dromes to RRMS would be valuable and might help
identify those patients for whom early treatment
would be beneficial.

Previous studies of biomarkers in neurologic dis-
eases, including MS, have investigated either individ-
ual or small numbers of indicators.20–23 However,
despite differences identified at a group level, predic-
tive value for an individual has been low.24 Whereas it
is possible to separate patients with MS from controls
using techniques such as MRI,12,13,25 or using a
metabolomics-based approach on CSF samples,26 to
our knowledge no studies have been reported in
which patients with RRMS and SPMS have been
separated from each other on the basis of serum
NMR. As an anecdotal example of the potential
strength of this approach, one patient with RRMS
was found persistently to lie in the SPMS portion
of the model. As this patient had been categorized
some years previously, her neurologist was consulted
to obtain her current status. The sample was collected
in 2008 and at follow-up 1 year later the patient
reported progressing over that year. By 2010, there
was no doubt that the patient was progressing. These
findings suggest that the metabolomic profile of the
patient’s serum in 2008 was an early indicator of
entering the progressive stage of disease.

It is important to note that, owing to its class-
based learning approach, PLS-DA analysis reduces
the impact of underlying conditions such as therapeu-
tic status or diet-based effects, since these are likely to
be randomly distributed throughout our sample pop-
ulation. If any variance in a population does not
explain the difference between the user-defined clas-
ses, it is considered less important. This was demon-
strated in our data as some patients were on blinded
clinical trials. The models could discriminate between
individuals with RRMS or SPMS in a manner that
was independent of treatment regimen, suggesting
that the metabolite changes caused by the disease pro-
gression were more consistent than those associated
with the metabolism of any drugs present. This
advantage of the PLS-DA approach is essential if it
is to be useful clinically, as it must be able to

discriminate between people with the specific disease
states despite these nonspecific population variations.

The PLS-DA models developed here could be
used to mark the change from RRMS to SPMS in
clinical studies and, thus, enable onset of secondary
progression to be used as an outcome measure in ther-
apeutic trials.27 This is likely to be a more important
outcome than relapse activity and better than short-
term (3–6 months) disability change, which includes
relapse-associated disability as well as progression.
Moreover, this approach may identify key metabolites
involved in the pathogenesis underlying progression
of MS28 and identify targets for the development of
novel therapies.
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