Lecture 1:

Probability and Distributions

Context

Probability traps

Binomial & Poisson Distributions
Expectation and Variance
Estimators

Gaussian Distribution
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“There are two or three recent experiments that find weak evidence for signals near the nominal masses,
but there is simply no point in tabulating them in view of the overwhelming evidence that the claimed

pentaquarks do not exist...

the history of science.”

The whole story—the discoveries themselves, the tidal wave of papers by
theorists and phenomenologists that followed, and the eventual "undiscovery'"
(2008 Review of Particle Physics)

—is a curious episode in
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New particle hopes fade as LHC data
'‘bump’ disappears
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¢} Hopes for the imminent discovery of a particle that might fundamentally
change our understanding of the Universe have been put on hold.




Surprise LHC blip hints at Higgs — again

22:49 22 July 2011

“...The compinea staustcal signiticance, taking all tnree Types OT exXCess reportea by AlLAS INTO account, IS 2.8 SIgma, SIgNTly below
the 3 sigma threshold (equivalent to a 1-in-370 chance of being due to a fluke) that a measurement must pass to count as
"evidence" for something new: only 5 sigma data, equivalent to a 1-in-1.7 million chance of being due to a fluke, gains "discovery"
status.

The other main detector at the LHC, called CMS, has found an excess in a similar range, betweef{ 130 and 150 GeV)reports Nature.
The size of that excess is roughly 2 sigma, writes physicist Adam Falkowski on the Resonances blog:
If all this sounds a tad familiar, rewind back to April, when four physicists claimed to have found hints of the Higgs in ATLAS data in a

study abstract leaked online. A subsequent official analysis by the collaboration of 700 physicists who run ATLAS concluded that
result was an error. Unlike that claim, the new excesses have been vetted by the ATLAS and CMS collaborations respectively.”
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Higgs boson 'hints’ also seen by US lab
2% culy 111857

By Paul Rincon
Science cditor, BBC News Website, Grenotle

A US particle machine has seen possible hints of the Higgs boson, it has emerged, after
reports this week of similar glimpses at Europe's Large Hadron Collider (LHC) laboratory.

“...The hints seen at the Tevatron are weaker than those reported at the LHC, but occur in the same ‘search region’.”
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years based on a Just 100 cod left in North Sea

guoted maximum
cod age of 25 years.
But that data was
from Barents Sea -
estimate for North
Sea cod maximum
age is more like 11
years. Inference of
middle age from
max age is dubious
in any case.

Overfishing has left fewer than 100 adult cod in the North Sea, it was reported.

actual best estimate:

436 ,900 ,OOO No: a singla cod d over “ 3was: caughtin I hNortr Sea3 s vear .







"Doctrine of probabilities”
Pierre de Fermat
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“The Card Game”




- “The Card Game” -

side shown other side
I’'ll bet you £10 1 (R,RE) B
that the other . 2 ©RE R,B

side is blue. Chance for the other
side to be blue is 2/3 !




“Prisoner’s Paradox”

One of you lucky boys
will only get life in prison. But
I have instructed the guard not to
inform you whether or not you will

Not good!

Survival - 1/3 1
hang until I announce to the press probability
Tomorrow morning as a

ast minute surprisel




“Prisoner’s Paradox”

I know you can't tell

me whether or not T'll be spared,
but we both know that at least one
of the others will hang. So you can
give me their name, right?

Sure... poor ola
Jake is going to
buy the farm!



“Prisoner’s Paradox”

So now it's either
me or Lenny...
Great! My odds have\

improved to 1/2 !

e 2

< X

Jake  Lenny Dave

e e

< <

Jake  Lenny Dave

e 2

< X
Jake  Lenny Dave




Mantra:

Ask the Right




S S F S F S “Bernoulli Trials”

e e e ©6 o e Loaded
[ & @ R
.. I J‘ @ ‘. Jl e e o Dice?
If not loaded (test to reject HO),
1/6 x 1/6 x 1/6 x 1/6 x 1/6 x 1/6 = .
46656

What’s the chance probability of getting exactly this sequence?

25
46656

1/6 x 1/6 x 5/6 x 1/6 x 5/6 x 1/6 =

or more generally: Pk (1-p)n-k

where p is the probability of successes (getting a 3),
k is the number of successes and n is the total number
in the sequence.

What’s the chance probability of getting four 3’s in this order?
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(1/6 x 1/6 x 5/6 x 1/6 x 5/6 x 1/6)(any 4 of 6)

distinct ways to
order 6 things
375

6!
(any 4 of 6) = (i) = a0 =15 246656

/ N\

re-ordered of re-ordering
successes is of failures is
not distinct not distinct

or more generally: (n) pk (]__p)n-k Binomial Distribution
: (“two terms”)

What'’s the chance probability of getting four 3’s in any order?



ed o8 ol =

so we really want 6 X (Z) (1/6)4 (1_1/6)2

2250
46656

What’s the chance probability of getting four of anything in any order?
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so, in this case n _ ,
we want Z 6X(j) o (]__p)n-J k=4, n=6
j=k
2250 , 180 . _6 — 2436 _— 5.2%

46656 46656 46656 46656

What’s the chance probability of getting
four or more of any number in any order?



So, what do you think is the probability that the die
is fair? Would you continue to play?

What if the die belongs to a guy named ‘Eddie,” who seems to be
making a lot of money on the street corner?

What if the die belongs to your mum, and looks like exactly the
same one you have played with ever since you were very young?

But then what if your mum used to be a well known card shark,
today is April 1st, and your brother tells you she has been pulling
some funny tricks lately and he doesn’t trust her?

It seems like context ought to somehow enter into your
final assessment of the probability that the die is fair.

This is ‘Bayesian’ probability, as opposed to ‘statistical’
or ‘frequentist’ probability. Much more on this later!




Statistical probability is basically the frequency with
which a given “equivalent” outcome occurs if we were
to repeat the same experiment over and over again.

What is the source of this
statistical behaviour??

1) Hidden variations in initial conditions

2) Fundamental uncertainty (quantum mechanics)



Assume terrible aim, but only count
throws that hit dart board. . .

What'’s the chance of hitting the
bullseye given 100 throws?

ps = (0.5in/17.75in)* = 7.93 x 10~*
100

P, = Z Pyin (k successes)

k=1
=1 — Py;» (0 successes)

100' k 100—k
1 —
(k!(lOO—k)!)pS( Ps)



Assume terrible aim, but only count
throws that hit dart board. . .

What'’s the chance of hitting the
20 given 100 throws?

ps ~ 1/20 = 0.05

P.ot =1 —(1—0.05)'"

—99.4%  # 100 x 0.05 !



Binomial Distribution:

!
P(k successes in n attempts) = ( i ) pf(l _ ps)n—k

kKl(n —k)! v

prob of each
success



So, the expected (average) number of successes after
summing over n identical Bernoulli trials is:

H=np

Now consider the case where the expected number of
successes depends on the size of a continuous variable
(e.g. length or time interval), which can be arbitrarily small.

- —_— AT

The number of successes expected over a continuous
interval of finite size can be viewed as resulting from the
sum of an infinite number of Bernoulli trials carried out for
arbitrarily small intervals such that:

u = lim np

n—oo



So, set p= w/n and evaluate

P(k) = lim n! (ﬁ)k (1 - ﬁ)n_k

() el G Jo- 50




So, set p= w/n and evaluate

Plk) = o, k!(nni Al (%)k (1- %)”"“

R = e

v
e (1 - H) = lim exp |log (1 - ﬁ) }
n— 00 n am_ - .
— . i ILL
= lim exp [nlog (1 _ _)}
n— 00 ] -




So, set p= w/n and evaluate

Pk) = lim — " (ﬁ)k (1 _ ﬁ)n_k

n—oo kl(n — k)l \n n
BEY L —p py
= (F) . € Kl ) ]
|




So, set p= w/n and evaluate

P(k) = lim /.c!(nni o (%)k (1- %)H

k
AN —
_<k!>n15%o €

,uk 6_'u Poisson

Distribution

k!

Counting statistics, decay processes... * continuous variable is time

Interaction lengths * continuous variable is distance



Radioactive Decay: e

What’s the probability of detecting a decay
from a radioactive source after some time t ?

T = average time for a decay to occur (mean lifetime)
uw= average # decays in time t, which must be t/t

Probability for no decays (n=0) within time t

n,—H
e —tlt
n.
. —t/1 (integrated over
i Pa’ecay =1-e¢ the time interval)
Note that this is
i : A / _ -l now a probability
Differential Probability: P'(f) = —e for & contindous

T quantity!



Poisson distribution: the probability of success depends on
continuous variable (u), but the observation is a discreet

number of successes (n).

But observations are not always of a discreet variable. For
continuous random variables (i.e. time, length, efc.), the
probability of obtaining a particular exact value is generally
vanishingly small (no phase space!). But the relative
probability of getting a value in this vicinity versus that vicinity
iIs meaningful. That’s when you talk about “probability
densities”.

But the terms “probability distribution” and “probability density
function” are sometimes informally used interchangeably.



expectation
(mean)



Variance: “Average Squared Deviation from Mean”

note: [ (2= 1)) |= (@2) + i® = 2u() [ = (2%) — 4|

for Poisson:
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Units of o are
variance = ¢° = (z°) — p°  same as units
of x (or M)

2

But, for Poisson, 0“ = 1 How do units work?

lere, U refers to the expected number of
successes, which is unit-less (special case)



o= ({(z—p)?) = (a?) - p?

= “RMS (Root Mean Squared) deviation”
universal

“Standard deviation”

when interpreted in the context of
a Normal (Gaussian) distribution



Some Useful Consequences:

The RMS deviation on a measured number of counts
due to statistical fluctuations is the square root of the
expected mean number of counts (sqrt of the measured
number is often not a bad approximation)

For a large numbers of events, the expected sensitivity
for detecting a signal in a counting experiment in terms
of the number of standard deviations above background
fluctuations is ~ S/V/B

In a counting experiment, the number of signal and
background events detected are proportional to the
counting time. Thus, the signal sensitivity goes like VT in
the large n limit



Estimators

Often we don’t know the true mean and variance of
a distribution and want to estimate it from the data:

g 1 We want this to be “unbiased,”
— Z such that the expectation value
L e Is equal to the true value
n
) 1 < 1 1
(A nE; n.1<z> ~(np) = p
1= 1=

fair enough!



n

1 . i
~92 —\2 Quick Araument:
~ o — ?? =
But what about 0° ~ - E (x; — )% 2% For every n data
i=1

points, there are
1 1 1 2 n-1 independent
~9 —\2
(@ >=<5Z($z‘—$) > =gZ<(%—gZxa~) > measures of the
| ) . variance
= <°””’ R naZZw)

J
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n2
)
_ 0_2 (n — 1) Biased!! So instead take:
n
Z (= %7
T n-—1

Thus cancelling the
offending term!




Variance in the Estimated Mean

Note that: var(ax) = {(ax)*) — (ax)* = a’ <<x2> — (x)2>

= a?var(x)

\ n
So, consider: 0 = vVar ( 2 X) — —Var ( Z xi>
i=1

—_ <+— For independent variables
= 2Z:var(xi) independent vari

(as will be shown in lecture 3)



Gaussian Distributions

"Everybody believes in the exponential law of errors:
the experimenters, because they think it can be proved
by mathematics; and the mathematicians, because they
believe it has been established by observation”

Gabriel Lippman (1845-1921), as quoted by Poincare



Gaussian (Normal) Distribution as
a Limiting Case of Poisson Statistics

Assume L and n large, withn ~u  Defineninterms of a
perturbation about

/\ n = pu(l+0)

< > [t 0 << 1

mn
Stirling’s Approximation: n! ~ v27mn (E) as n — o0
e

ne_:u Iuru’(]-—i_é)e_,u

~yY

n! V2 6) (A0

0,  p(nfp) =

(&

)M(1+5)



MM(1+5)6—M ’u,u(1+5)e—,u

\/27T,LL(1 n 5) (M(1+5))u(1+5) B \/m [Mﬂ(1+5)] [(1 + 5)u(l+5)+%] [e—ﬂ(1+5)]

ero et 1

V2rp(l + §)rA+0)+s T /TWME

Define: f=Ing=[u(1+0)+1/2]In(1+4)

Taylor Expand: [/ =pln(1+6) + [w(1+9)+1/2]/(1 +9)

O<L,up>1 y M . Y _M(1—|—5)+1/2
1+0 149 (1+ 6)2
! 1 7 1
f(0)=0 f(O):u+§2u f(O)ZM—§2u

p16°
2

Fe 1)+ 75+ 25 = -
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1 : 5)2/ recall.
— e~ (1)~ /2p n = u(l+9)
% 217TM = U+ puo
V2T K
1

o~ (x—p)*/20°

pn|p)= N



Central Limit Theorem

The distribution of sample averages,
where samples are randomly drawn from
an arbitrary distribution, will converge to
that of a Normal distribution as the
number of samples becomes large



Given any arbitrary probability distribution, P(x), the
Moment Generating Function is defined as:

M. (0) = nP(x) dx =1

M.(1) = <etx> = Je’xP(x) dx M) = |xP) dx = (x)

M(0) = nsz(x) dx = <x2>

etc.

Note that, for a Normal
distribution with zero
mean and unit variance:




Take n samples from any arbitrary distribution, and define:

X, — U 1 (x; —,u) 1 Both Y and Z
Y, =— L=— Z Y; — have zero mean
o n 0'/\/_ \/_ & unit variance

i ({3 (1)) ()]

for independent,
identically distributed
data (1ID)

! t 12 12
My (—) = My(0) + MyO)—= + M{(O0) =+ My/(O)—> + ...
. !
2 t2

=1+ ) = () () 5

+

t2 ; t2
=1+ 0 + EJF (Y>3!n3/2

+ ...



M\ —= )] =1+ 0 + — + (Y +..
’ \/ﬁ 2n >3!n3/2
P V3 12 '
M (f) = 1+2—+( )3’n3/2+..
) 3 o
N +<Y>3vn1/2
n
_ Y
lim M) = lim |1+ =
n— 00 n— o0 n

So moments that would be generated from Z in this limit are identical
to moments that would be generated from a Normal distribution!!



Sir Francis Galton
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