
Lecture 1:

• Context 
• Probability traps 
• Binomial & Poisson Distribu6ons 
• Expecta6on and Variance 
• Es6mators 
• Gaussian Distribu6on

Probability and Distributions





“There are two or three recent experiments that find weak evidence for signals near the nominal masses,  
but there is simply no point in tabulating them in view of the overwhelming evidence that the claimed  
pentaquarks do not exist... The whole story—the discoveries themselves, the tidal wave of papers by  
theorists and phenomenologists that followed, and the eventual "undiscovery"—is a curious episode in  
the history of science.”     (2008 Review of Particle Physics)





“...The combined sta6s6cal significance, taking all three types of excess reported by ATLAS into account, is 2.8 sigma, slightly below 
the 3 sigma threshold (equivalent to a 1-in-370 chance of being due to a fluke) that a measurement must pass to count as 
"evidence" for something new: only 5 sigma data, equivalent to a 1-in-1.7 million chance of being due to a fluke, gains "discovery" 
status. 

The other main detector at the LHC, called CMS, has found an excess in a similar range, between 130 and 150 GeV, reports Nature. 
The size of that excess is roughly 2 sigma, writes physicist Adam Falkowski on the Resonances blog. 

If all this sounds a tad familiar, rewind back to April, when four physicists claimed to have found hints of the Higgs in ATLAS data in a 
study abstract leaked online. A subsequent official analysis by the collabora6on of 700 physicists who run ATLAS concluded that 
result was an error. Unlike that claim, the new excesses have been veaed by the ATLAS and CMS collabora6ons respec6vely.”

“...The hints seen at the Tevatron are weaker than those reported at the LHC, but occur in the same ‘search region’.”







Competition!!



Assumed “middle-
aged” cod lived 13 
years based on a 
quoted maximum 
cod age of 25 years. 
But that data was 
from Barents Sea - 
es6mate for North 
Sea cod maximum 
age is more like 11 
years. Inference of 
middle age from 
max age is dubious 
in any case.

actual best es6mate: 

436,900,000

Compe==on winner 
from 2013: 
Mark Smith



Competition!!



Competition!!
“Doctrine of probabilities” 
Pierre de Fermat  
& Blaise Pascal 
(1654)

   “Table of  
possible futures”



“The Card Game”



side 1      side 2 side 1      side 2side 1      side 2

I’ll bet you £10 
that the other 
side is blue.

side shown        other side

 1 (R,R,B)                 B

 2 (B,R,B)                R,B

Chance for the other 
side to be blue is 2/3 ! 

“The Card Game”



“Prisoner’s Paradox”
         One of you lucky boys   
    will only get life in prison. But  
I have instructed the guard not to 
inform you whether or not you will  
hang until I announce to the press 
       tomorrow morning as a  
          last minute surprise!

Jake Lenny Dave

Not good! 

Survival  
probability

= 1/3 !!



Dave

I know you can’t tell  
me whether or not I’ll be spared, 

but we both know that at least one  
of the others will hang. So you can 

give me their name, right? 

Sure... poor old 
Jake is going to 
buy the farm! 

“Prisoner’s Paradox”



Dave

So now it’s either 
me or Lenny... 

Great! My odds have  
improved to 1/2 !!

Jake     Lenny    Dave

Jake     Lenny    Dave

Jake     Lenny    Dave

“Prisoner’s Paradox”



Ask the Right 
Question!

Mantra:



1/6  x  1/6  x  1/6  x  1/6  x  1/6  x  1/6  =
    1        
46656

What’s the chance probability of getting exactly this sequence?

1/6  x  1/6  x  5/6  x  1/6  x  5/6  x  1/6  =
   25        
46656

What’s the chance probability of getting four 3’s in this order?

or more generally:     pk (1-p)n-k 

where p is the probability of successes (gekng a 3), 
k is the number of successes and n is the total number  
in the sequence.

S                  S                   F                  S                   F                   S “Bernoulli Trials”

If not loaded (test to reject H0),

Loaded 
Dice?



(1/6  x  1/6  x  5/6  x  1/6  x  5/6  x  1/6)(any 4 of 6)

What’s the chance probability of getting four 3’s in any order?

= 15( ) =6 

4
 6!      
4!2!(any 4 of 6) =

re-ordering  
of failures is  
not dis6nct

re-ordered of  
successes is 
not dis6nct

dis6nct ways to  
order 6 things

or more generally:  Binomial Distribu6on 

(“two terms”)
 ( )  pk (1-p)n-kn 

k

  375        
46656

S                  S                   F                  S                   F                   S 



 ( )  (1/6)4 (1-1/6)26 

4
so we really want 6 x

  2250     
46656=

S                  S                   F                  S                   F                   S 

What’s the chance probability of getting four of anything in any order?

what 
about 
this?



S                   S                 S                     F                 S                   S 

S                   S                 S                    S                   S                  S 

6x( )  pj (1-p)n-j            k=4, n=6
n 

jΣ
j=k

n
so, in this case  
we want

  2250      
46656

    180       
46656

    6     
46656

  2436      
46656

+              +            = =  5.2%

What’s the chance probability of getting 
four or more of any number in any order?

Also counts 
as achieving 
four 3’s… 
and would 
draw even 
more 
suspicion!!



So, what do you think is the probability that the die 
is fair? Would you continue to play?
What if the die belongs to a guy named ‘Eddie,’ who seems to be 
making a lot of money on the street corner?

What if the die belongs to your mum, and looks like exactly the 
same one you have played with ever since you were very young?

But then what if your mum used to be a well known card shark, 
today is April 1st, and your brother tells you she has been pulling 
some funny tricks lately and he doesn’t trust her?

It seems like context ought to somehow enter into your 
final assessment of the probability that the die is fair.
This is ‘Bayesian’ probability, as opposed to ‘statistical’ 
or ‘frequentist’ probability. Much more on this later!



Statistical probability is basically the frequency with 
which a given “equivalent” outcome occurs if we were 
to repeat the same experiment over and over again.

What is the source of this 
statistical behaviour??

1) Hidden variations in initial conditions

2)   Fundamental uncertainty (quantum mechanics)



Assume terrible aim, but only count 
throws that hit dart board. . .

What’s the chance of hitting the 
bullseye given 100 throws?

ps = (0.5in/17.75in)2 = 7.93⇥ 10�4

= 1� Pbin(0 successes)

= 1� (1� ps)
100

= 7.63% ⇠ 100⇥ ps

Ptot =
100X

k=1

Pbin(k successes)

✓
100!

k!(100� k)!

◆
pks(1� ps)

100�k



What’s the chance of hitting the 
20 given 100 throws?

ps ⇠ 1/20 = 0.05

Ptot = 1� (1� 0.05)100

= 99.4% 6= 100⇥ 0.05 !!!

Assume terrible aim, but only count 
throws that hit dart board. . .



Binomial Distribu6on:

P (k successes in n attempts) =

✓
n!

k!(n� k)!

◆
pks(1� ps)

n�k

prob of each 
success



Now consider the case where the expected number of 
successes depends on the size of a continuous variable 
(e.g. length or time interval), which can be arbitrarily small.

So, the expected (average) number of successes after 
summing over n identical Bernoulli trials is:                                    

μ = np

The number of successes expected over a continuous 
interval of finite size can be viewed as resulting from the 
sum of an infinite number of Bernoulli trials carried out for 
arbitrarily small intervals such that:

μ = lim
n→∞

np



P (k) = lim
n→∞

n!

k!(n− k)!

�µ
n

�k �
1− µ

n

�n−k

lim
n→∞

n!

(n− k)!

�
1

n

�k

= lim
n→∞

n(n− 1)(n− 2)...(n− k)(n− k − 1)...(1)

(n− k)(n− k − 1)...(1)

�
1

n

�k

= lim
n→∞

n(n− 1)(n− 2)...(n− k + 1)

nk

=

�
µk

k!

�
lim
n→∞

n!

(n− k)!

�
1

n

�k �
1− µ

n

�n �
1− µ

n

�−k

= lim
n→∞

�n
n

��
n− 1

n

��
n− 2

n

�
...

�
n− k + 1

n

�

= 1

So, set p= μ/n and evaluate



So, set p= μ/n and evaluate

P (k) = lim
n→∞

n!

k!(n− k)!

�µ
n

�k �
1− µ

n

�n−k

lim
n→∞

�
1− µ

n

�n
= lim

n→∞
exp

�
log

�
1− µ

n

�n�

= lim
n→∞

exp
�
n log

�
1− µ

n

��

= exp
�
n
�
−µ

n

��

=

�
µk

k!

�
lim
n→∞

n!

(n− k)!

�
1

n

�k �
1− µ

n

�n �
1− µ

n

�−k



lim
n→∞

�
1− µ

n

�−k
= 1

So, set p= μ/n and evaluate

P (k) = lim
n→∞

n!

k!(n− k)!

�µ
n

�k �
1− µ

n

�n−k

=

�
µk

k!

�
lim
n→∞

n!

(n− k)!

�
1

n

�k �
1− µ

n

�n �
1− µ

n

�−k



So, set p= μ/n and evaluate

Poisson 
Distribution

P (k) = lim
n→∞

n!

k!(n− k)!

�µ
n

�k �
1− µ

n

�n−k

=

�
µk

k!

�
lim
n→∞

n!

(n− k)!

�
1

n

�k �
1− µ

n

�n �
1− µ

n

�−k

=
µke−µ

k!
Counting statistics, decay processes…              continuous variable is time

                             Interaction lengths                    continuous variable is distance



Radioactive Decay:

τ = average time for a decay to occur (mean lifetime)
µ =   average # decays in time t, which must be  t/τ

Probability for no decays (n=0) within time t

P0 = ( μne−μ

n! ) ⟶ e−t/τ

Pdecay = 1 − e−t/τ (integrated over 
the time interval)

P′ (t) = 1
τ

e−t/τDifferential Probability:
Note that this is 
now a probability 
for a continuous 
quantity!

What’s the probability of detecting a decay 
from a radioactive source after some time t ?

1 or more!



Poisson distribution: the probability of success depends on 
continuous variable ( ), but the observation is a discreet 
number of successes (n).

μ

But observations are not always of a discreet variable. For 
continuous random variables (i.e. time, length, etc.), the 
probability of obtaining a particular exact value is generally 
vanishingly small (no phase space!). But the relative 
probability of getting a value in this vicinity versus that vicinity 
is meaningful. That’s when you talk about “probability 
densities”.

But the terms “probability distribution” and “probability density 
function” are sometimes informally used interchangeably.



expectation
(mean)

width



Variance: “Average Squared Deviation from Mean”

note:

for Poisson:

�n2� =
∞�

n=0

n2µ
n

n!
e−µ = e−µ

∞�

n=1

n
µn

(n− 1)!

= e−µ
∞�

n=1

�
(n− 1)

µn

(n− 1)!
+

µn

(n− 1)!

�
= e−µ

� ∞�

n=2

µn

(n− 2)!
+

∞�

n=1

µn

(n− 1)!

�

= e−µ

�
µ2

∞�

n=2

µn−2

(n− 2)!
+ µ

∞�

n=1

µn−1

(n− 1)!

�
= e−µ

�
µ2(eµ) + µ(eµ)

�



�2 =
⌦
x2

↵
� µ2variance =

Units of σ are 
same as units 

of x (or μ)

But, for Poisson, �2 = µ How do units work?
Here, μ refers to the expected number of 
successes, which is unit-less (special case)



� =
p
h(x� µ)2i =

p
hx2i � µ2

= “RMS (Root Mean Squared) deviation”
universal

“Standard deviation”
when interpreted in the context of 
a Normal (Gaussian) distribution



Some Useful Consequences:

• The RMS deviation on a measured number of counts 
due to statistical fluctuations is the square root of the 
expected mean number of counts (sqrt of the measured 
number is often not a bad approximation)

• For a large numbers of events, the expected sensitivity 
for detecting a signal in a counting experiment in terms 
of the number of standard deviations above background 
fluctuations is  ~  S/√B 

• In a counting experiment, the number of signal and 
background events detected are proportional to the 
counting time. Thus, the signal sensitivity goes like √T in 
the large n limit



Estimators

Often we don’t know the true mean and variance of 
a distribution and want to estimate it from the data:

fair enough!

We want this to be “unbiased,” 
such that the expectation value 
is equal to the true value

µ̃ � 1

n

n�

i=1

xi

�µ̃� =
�
1

n

n�

i=1

xi

�
=

1

n

n�

i=1

�xi� =
1

n
(nµ) = µ



Quick Argument:
For every n data 
points, there are 
n-1 independent 
measures of the 
variance

=
1

n

X

i

*
x2
i �

2

n
xi

X

j

xj +
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X

j

X

k 6=j

xjxk

+

=
1

n

X

i

2

4n� 2

n

⌦
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↵
� 2

n

X
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hxixji+
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⌦
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j

↵
+

1

n2

X
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k 6=j

hxjxki
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5

=
1

n

X
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n� 2

n
(�2 + µ2)� 2

n
(n� 1)µ2 +

1

n2
n(�2 + µ2) +

1

n2
n(n� 1)µ2

�

Biased!!

=
1

n

X
*✓

xi �
1

n

X
xj

◆2
+

�σ̃2� =
�
1

n

�
(xi − x)2

�

= σ2

�
n− 1

n

�

σ̃2 ≃ 1
n − 1

n

∑
i=1

(xi − x̄)2

So instead take:

Thus cancelling the 
offending term!

�̃2 ' 1

n

nX

i=1

(xi � x)2But what about                                               ?!But what about                                        ??



Variance in the Estimated Mean

Note that: var(αx) = ⟨(αx)2⟩ − ⟨αx⟩2 = α2 (⟨x2⟩ − ⟨x⟩2)
= α2var(x)

So, consider: σ2
m = var ( 1

n

n

∑
i=1

xi)

= 1
n2 (nσ2) = σ2

n
σm = σ

n
or

= 1
n2

n

∑
i=1

var (xi) For independent variables
(as will be shown in lecture 3)

= 1
n2 var (

n

∑
i=1

xi)



“Everybody believes in the exponential law of errors: 
the experimenters, because they think it can be proved 
by mathematics; and the mathematicians, because they 
believe it has been established by observation”

Gabriel Lippman (1845-1921), as quoted by Poincare

Gaussian Distributions



μ

Assume μ and n large, with n ~ μ

n = µ(1 + �)
� << 1

Define n in terms of a 
perturba6on about μ

n ! 1n! ⇠
p
2⇡n

⇣n
e

⌘n
asS6rling’s Approxima6on:

Gaussian (Normal) Distribu=on as  
a Limi=ng Case of Poisson Sta=s=cs

=
µµ(1+�)e�µ

p
2⇡µ(1 + �)

⇣
µ(1+�)

e

⌘µ(1+�)
So, ~p(n |μ) = μne−μ

n!



=
µµ(1+�)e�µ

p
2⇡µ(1 + �)

⇣
µ(1+�)

e

⌘µ(1+�)

=
eµ�

p
2⇡µ(1 + �)µ(1+�)+ 1

2
⌘ eµ�p

2⇡µ

1

g

f 00 =
µ

1 + �
+

µ

1 + �
� µ(1 + �) + 1/2

(1 + �)2

f(0) = 0 f 00(0) = µ� 1

2
' µf 0(0) = µ+

1

2
' µ

f ⇠ f(0) + f 0(0)� +
f 00(0)

2
�2 = µ� +

µ�2

2

f = ln g = [µ(1 + �) + 1/2] ln (1 + �)Define:

= μμ(1+δ)e−μ

2πμ [μμ(1+δ)] [(1 + δ)μ(1+δ)+ 1
2 ] [e−μ(1+δ)]

= µ� +
µ�2

2

f 0 = µ ln (1 + �) + [µ(1 + �) + 1/2]/(1 + �)Taylor Expand:
(δ ≪ 1, μ ≫ 1)



⇠ 1p
2⇡µ

eµ��µ��µ�2/2

=
1p
2⇡µ

e�µ�2/2

=
1p
2⇡µ

e�(µ�)2/2µ

=
1p
2⇡µ

e�(n�µ)2/2µ

= μ + μδ

μ ⟶ σ2
(Poisson)

f ⇠ f(0) + f 0(0)� +
f 00(0)

2
�2= µ� +

µ�2

2
g ⇠ eµ�+µ�2/2

p(n, µ) =
eµ�p
2⇡µ

1

g
p(n |μ)

n = µ(1 + �)
recall:

p(x, µ) =
1p
2⇡�

e�(x�µ)2/2�2

p(n |μ)



Central Limit Theorem

The distribution of sample averages, 
where samples are randomly drawn from 
an arbitrary distribution, will converge to 
that of a Normal distribution as the 
number of samples becomes large



Given any arbitrary probability distribution, , the 
Moment Generating Function is defined as:

P(x)

Mx(t) ≡ ⟨etx⟩ = ∫ etxP(x) dx

Note that, for a Normal 
distribution with zero 
mean and unit variance:

MN(t) = ∫ 1
2π

e− x2
2 etx dx

= 1
2π ∫ e− 1

2 (x−t)2+ t2
2 dx = et2

2

M′ x(0) = ∫ xP(x) dx = ⟨x⟩

M′ ′ x (0) = ∫ x2P(x) dx = ⟨x2⟩

Mx(0) = ∫ P(x) dx = 1

etc.



Take  samples from any arbitrary distribution, and define:n

Z ≡ 1
n ∑

(xi − μ)
σ/ n

= 1
n ∑ YiYi ≡ xi − μ

σ

MY ( t
n ) = MY(0) + M′ Y(0) t

n
+ M′ ′ Y(0) t2

2n
+ M′ ′ ′ Y (0) t2

3! n3/2 + . . .

= 1 + ⟨Y⟩ t
n

+ ⟨Y2⟩ t2

2n
+ ⟨Y3⟩ t2

3! n3/2 + . . .

= 1 + 0 + t2

2n
+ ⟨Y3⟩ t2

3! n3/2 + . . .

Both  and  
have zero mean 
& unit variance

Y Z

MZ(t) = ⟨etZ⟩ = ⟨e
t
n

∑ Yi⟩ = ⟨
n

∏
i=1

e
t
n

Yi⟩ = ⟨e
t
n

Y⟩
n

= [MY ( t
n )]

n

for independent, 
identically distributed 

data (IID)



MY ( t
n )
MZ(t) = [1 + t2

2n
+ ⟨Y3⟩ t2

3! n3/2 + . . . ]
n

= 1 +
t2

2 + ⟨Y3⟩ t2

3! n1/2 + . . .
n

n

lim
n→∞

MZ(t) = lim
n→∞

1 +
t2

2
n

n

= et2
2

So moments that would be generated from Z in this limit are identical 
to moments that would be generated from a Normal distribution!!

= 1 + 0 + t2

2n
+ ⟨Y3⟩ t2

3! n3/2 + . . .

= MN(t)



Sir Francis Galton

“N” peg interactions 
(samples) get added to 
form the total deflection

ball has 50:50 chance
of going right or left 
at each peg 
(underlying distribution)

Galton Machine


