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Monte Carlo Methods



The “Monte Carlo Method” is an approach to numerical 
integration for complicated functions (or convolutions of functions) 
using random numbers to explore the allowed phase space.

The modern Markov Chain version (for a linked sequence of 
random steps) was originally developed by Stanislaw Ulam and 
John von Neumann for the Manhattan Project in 1946 to study 
neutron diffusion in the core of a nuclear weapon.

Monte Carlo Method

Just prior to successful implementation on ENIAC, Fermi came up 
with a novel analog method…
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You want to start with a good pseudo-random number generator. 
A common one is the “Mersenne Twister” and variants thereof. 
The random number should be between 0 and 1 exclusively 
(worth checking as some generators sometimes land on 0 or 1 
exactly, in which case you should throw again!)

The value of the random number will be used to choose where in 
a given distribution you should sample your random variable: 
closer to 0 will select from one end of the distribution, closer to 1 
will select from the other. The random number thus acts as an 
integral probability and, therefore, you use this to choose a 
random variable (“deviate”) from the integral or “cumulative” 
probability distribution (CDF) for the parameter of interest.

There are a number of methods for sampling distributions…

Note: Use a generator in which you explicitly set the initial 
pseudo-random number “seed” yourself! This allows you to repeat 
exactly the same sequence again to investigate any anomalies, 
as well as providing explicit control in generating an independent 
sequence.



1. Algebraic Transformation of CDF

Example 1: Take p to be a sampled random number. Say we 
want to sample the time t of a radioactive decay of some lifetime 
τ. The differential decay probability is (1/τ)exp(-t/τ) and the 
integral probability is then 1 - exp(-t/τ). We can therefore equate:

this part can be 
used to sample an 
isotropic direction

Example 2: Say we want to sample a position uniformly from 
within a spherical volume. The differential volume element for 
integration up to some set of spherical coordinate values can be 
written as: dV = r2 dr d(cos σ) dϵ

r from a cubic distribution: r = Rmax p1/3
1

The parameters are orthogonal, so throw 3 random numbers and 
sample based on the separately integrated elements:

cosθ uniformly between -1 and 1:

φ uniformly between 0 and 2π:

cos σ = 1 ≡ 2p2
ϵ = 2ηp3

p = exp(≡t/θ) or t = ≡ θ ln p easy!
(obviously, it doesn’t matter 
if we equate this to p or 1-p)



Example 3: Say we want to sample from a 1-D Gaussian centred 
on zero with unit variance:

G = 1
2η

exp(≡x2 /2)

The integral is an error function, which does not have a nice closed 
form that is easy to invert.

Now convert to orthogonal Cartesian coordinates for two 
independent Gaussian deviates:

x = r cos σ y = r sin σ

p1 = exp(≡r2/2) r = ≡2lnp1

p2 = σ
2η

σ = 2ηp2

So, throw 2 random numbers and sample according to:

(Box-Muller Transform)

Use one now, save the other for next time! To sample from a 
distribution with a different variance and position, multiply the 
deviates by σ and add an offset

1
2η ∫

σ

0 ∫
r

0
exp(≡r− 2/2) r− dr− dσ− = σ

2η
[1 ≡ exp(≡r2/2)]

 However, consider the integral of a 2-D Gaussian in polar coordinates:



2. Sample and Reject

keep
 this part

throw away 
this part

When the function does not have a 
form for the CDF that can be easily 
inverted, you can randomly choose 
a value for the sample variable of 
interest, and then throw another 
random number to decide whether 
to accept or reject this based on the 
differential probability. If rejected, 
sample again:

Wastefully inefficient!

keep 
this part

throw away 
this part

Better
(only relative 

sampling 
matters)

Sc
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keep 
this part

throw away 
this part

Better still!

First sample from an 
easy, approximate 
distribution (in this 
case a Gaussian) 
using method 1

Sc
al
ed

(Poisson samplers generally work this way)



3. Precomputed Percentiles

In many cases, you can pre-compute sampling parameter CDF values 
(either analytically or numerically) in, say, 0.1% percentile steps and 
store these in an ordered array of 1000 values. Then simply throw a 
random number between 1 and 1000, pick the nearest bin and retrieve 
the parameter value. For finer granularity, you can also linearly 
interpolate between bins, as well as using finer percentile steps. This is a 
good trick for making things very fast, even when you can also use 
methods 1 or 2 !

Sc
al
ed

P( < x1) = 0.05 P( < x10) = 0.5 P( < x20) = 1

Choose xi by randomly 
sampling i from 1-20.

Simplified case of 
5-percentile steps:



Markov Chain Monte Carlos used a linked sequence of random 
deviates to sample trajectories in the overall phase space so as to 
preserve correlations. Each individual sampling in a given “chain” is only 
dependent on the previous step to produce a correlated sequence.

Then Launch Lots of Chains!



Sampling for Competing Processes

1. Sample for the combination of processes, then throw another random 
number to decide which process occurred 

2. Throw random numbers for each competing process, and then take 
the one that “happens first”

Example: assume we want to sample the next interaction point, in which 
a particle can either be absorbed or scattered, and then take the 
appropriate action:

P(a + s) = e≡ x
ϕa e≡ x

ϕs = e≡x( 1
ϕa + 1

ϕs ) ≃ e≡ x
→ x = ≡ → ln p1

P(a |x) = exp [≡x ( 1
ϕa

≡ 1
→ )]

Throw another random number p2 and 
choose absorption if it’s greater than 
this value, otherwise choose scattering

xa = ≡ ϕa ln p1

xs = ≡ ϕs ln p2

Then choose whichever x value is shortest, 
along with the associated interaction type

OR



A Simple Example of MC Integration

Say we want to find 
the area of some 
arbitrary shape like 
this, which could be 
c o m p l i c a t e d a n d 
multi-dimensional

You could generate 
random points in 
the area/volume 
and simply count 
the fraction that 
l and w i t h i n t he 
boundaries of the 
function

Accuracy of the integration goes 
as ~1/√n, so you may need to 
throw a lot of random numbers!

In this simple 
example , the 
accuracy of the 
in tegrat ion is 
~ 1 8 % f o r 5 0 
random samples

A smarter way to 
sample! It’s worth 
putting thought 
into how you do 
this!!

Accuracy 
~5.5% for 
the same 
number of 
samples!

(non-Markov)



Another Example: MC integration to find mean # 
of photons observed for a particular interaction

Photodetector with 20% efficiency
Generate photons as a Poisson 
fluctuation from an average of μ 
and repeat for many interactions

SPLAT!

Photodetector with 100% efficiency

IS EXACTLY EQUIVALENT TO
Generate photons as a Poisson 
fluctuation from an average of μ/5 
and repeat for many interactions

SPLAT!

What about the event-by-event fluctuations in the observation?
Exactly the same! Poisson counting statistics only cares about 
the mean observed number of photons, which is identical!

5 times 
fewer 
photons 
to track!!

P(n) = πne≡π

n!

P(n) = πne≡π

n!



For functions with n dimensions, the required number of random samples 
to achieve a given accuracy goes as the power of n, which can create 
headaches!

Factorise whenever possible, using symmetries and dependencies to 
choose parameters that are independent enough that the problem can 
be reduced to fewer dimensions.



Say you’re using MC integration to derive a PDF for some class of interactions as 
a function of energy, scattering angle and reconstructed position in the detector:

P(E, σscatt, x, y, z)

Ok, perhaps the detector is approximately spherical, so we can reduce this to:
P(E, σscatt, r)

Assume that the position reconstruction is very weakly dependent on energy for 
the events of interest and has no correlation with the scattering angle. Then this  
might be factorised as: P(E, σscatt) ∑ P(r)

Example:

Let’s say kinematics tells us that the mean scattering angle is inversely 
proportional the energy, in which case we may be able to further factorise this as:

P(E) ∑ P ( σscatt

E ) ∑ P(r)

Note: even if not factorable, this is probably a better choice, since reducing parameter 
dependencies allows you to focus more on the relevant new information content and 
pick an appropriate PDF binning to optimise this



There are cases where the scale of a problem is such that following 
every detail in a set of Markov chains is computationally challenging. 
However, it is not always necessary to do so in order to derive 
representative distributions, so long as a sufficiently representative (i.e. 
unbiased) sampling has taken place.

One could do this by simply using fewer random samplings and 
launching fewer Markov chains from the start, but then rare or “defining” 
processes of interest are unlikely to be sufficiently sampled. One would 
ideally like to reduce sampling for processes that are well represented, 
and have higher sampling for more rare process of interest, while still 
maintaining the correct probabilistic context for these. This is the idea 
behind weighted sampling.

Weighted sampling trades off between the variances: increasing these 
for processes that are already well sampled (so that their mean 
distributions are still well defined), while reducing variances for more 
sparsely sampled processes to better define their mean behaviours. 
“Event-by-event” variances are therefore not preserved, but unbiased 
representative distributions can still be produced.

Weighted Sampling



Example: “Hillas Thinning”

Michael Hillas (Leeds) instead introduced the following scheme:
1. Select a “demarcation energy,” D, perhaps D=10-4Eprimary. Follow all particle with energy E>D.

2. Particles with E<D are subject to a selection test when they are produced, such that they are 
only retained with a probability p=E/D.

3. Each particle retained is given a weight w = 1/p, thus allowing them to also represent those 
particle not followed. So, if only 5% of the particles are followed, each one is given a weight of 
20 when subsequent distributions are tabulated etc.

4. When a particle with weight w>1 itself interacts, its secondaries are retained with a probability 
p’=E/Ecollision, and each one retained is give the weight w’ = w/p’

In this way, the processes that most define the individual shower 
characteristics are sampled in detail, while weighted averages are used 
for the very numerous particles in the lower energy component 

Ultra high-energy cosmic rays (as studied by Auger and Telescope Array) 
can reach energies in excess of 1019eV. These interact in the 
atmosphere to produce enormous air-showers. The EM component of 
these either ranges out or reaching the ground with energies of ~10MeV. 
So, roughly, that would suggest there are ~1012 particles to follow for 
each UHE cosmic ray interaction!



“Splitting”

The flip side of thinning is to increase sampling further for regions of 
parameter space where you would really like to resolve more detail with 
higher accuracy. In this case, for Markov chains that approach this region 
of parameter space (e.g. maybe pass through some particular geometric 
region of your detector), you can increase the sampling by duplicating 
particle tracks that are each given a weight <1 and followed as new, 
individual sub-chains. 

So, for example, you could reduce your computed variance in this region 
by increasing the effective sampling by a factor of 10, with each ‘split’ 
particle given a weight of 1/10 to preserve the correct probabilistic 
context in subsequently tabulated distributions.

This obviously increases the computational burden, but this can be 
compensated for by thinning elsewhere. This is sometimes referred to as 
“Splitting vs Russian Roulette.” By adjusting the balance, the focus of 
MC integration can be appropriately tuned.



Simple MC calculations for well-defined mathematical processes are 
incredibly useful, particularly for understanding the probability 
calculations and the performance of data analysis schemes.

Large-scale Markov chain “simulations” can be extremely complicated. If 
done right, they are good tools for interpolation and limited extrapolation. 
They often appear to mimic data, but it’s important to remember that they 
are not data!! They always make approximations and (almost certainly) 
contain bugs of one sort or another. A good mantra is:

MC simulations are ALWAYS wrong, it’s just a question of how much!

Consequently, don’t “think” with Monte Carlos! Use them to refine 
details of what you’ve already worked out from simpler arguments. If the 
results throw up something unexpected or something for which you do 
not have an intuitive understanding, use it as a tool to gain that 
understanding… or to find a bug in the code! 
This leads me to my final parting mantra:

TRUST NOBODY (including yourself)!!

Three Mantras…


