
Lecture 11:

• Grid Searches 
• Golden Ra%o Linear Search 
• Powell’s Method 
• Gradient Search 
• Markov 
• Metropolis, Has%ngs 
• Gibbs, Gauss and Hamilton!

Methods of Optimisation



Numerical Optimisation
(Minimisation/Maximisation)

Simplest - “Grid Search”: Systematically step through 
possible parameter values on an n-dimensional grid 
of some pre-defined resolution to find the best values.

Pros:  Simple and robust
Cons: Inefficient

Various methods to do “adaptive” grid searches, where you start with a 
relatively coarse grid and then increase the grid sampling in the region of 
any identified minima (or overall if no minima found)

Other approaches involve separate line searches in each dimension that 
are then iteratively applied to find the optimum across multiple dimensions



Golden Ratio Search in 1-D

Assume we have a minimum that has 
been bounded by 3 points. What next?
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Take another sample!

For making an iterative number of 
guesses, the most effective search is 
binary, where the available phase space 
is divided into equal portions each time:

Also assume that we got here from a 
previous iteration, so:
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r = 5 ≃ 1
2 → 0.618

r2 + r ≃ 1 = 0 Golden Ratio

optimal for zooming in 
via iterative elimination

Two possibilities:

(there are also other approaches, 
such as parabolic interpolation)
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initial guess 
for position

Brute Force Iteration

• Guess an initial position
• Cycle through each dimension 

doing line minimisation
• Choose the best new position 

each time
• Keep iterating

Not very efficient!

Applying 1-D searches to multiple dimensions:

(will simplify by considering just 2 dimensions)



Powell’s Conjugate Direction Method

• Repeat the previous two steps until 
desired accuracy is reached

initial guess 
for position

• Guess an initial position guess at best 
direction

• Cycle through each dimension doing 
line minimisation and choose the best 
new position, taking this axis as a 
guess at the best direction to travel

• Starting from there here, now cycle 
through every other dimension, doing 
line minimisation and choose the best 
new position gu
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• Draw a line from the initial starting 
point to the current best minimum as 
the next guess at the best direction, 
replacing the previous best direction 
vector. Minimise along this

Quadratically Convergent
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Gradient Descent

Start with an initial guess for the parameter values 
(or “seed”) and then progress though parameter 
space in a direction and with a step size based on 
successive evaluations of the gradient to follow the 
path of steepest decent. There is generally some 
convergence criteria to specify when sufficient 
accuracy has been achieved and/or when the 
function evaluations no longer seems to be changing 
very much (i.e. second derivatives are close to zero).

want to move 
in negative 
direction

small 
positive 
slope

large 
positive 
slopeprobably want 

to move a lot 
in negative 
direction

negative 
slope

want to move 
in positive 
direction

x

f(x)

∑xn+1 = ∑xn ≃ σ′f( ∑x) |x=xn

Step sizes: 
Needs to be tuned for the particular problem!

(“Learning Rate” in ML applications)
Often initially chosen to be some small 
fraction of the magnitude of the parameter 
you are trying to constrain. Lots of different 
approaches, including adaptive algorithms

Λf
Λx

|x=xn
× f (xn + ⟶) ≃ f (xn ≃ ⟶)

2⟶

can be approximated 
numerically, i.e.



Depending on the nature of the problem, the function space can be irregular 
and may contain local minima, particularly when dealing with multiple 
dimensions and parameters have correlations or degeneracies (i.e. where 
different parameter combinations can produce similar solutions). Discontinuities 
such as “hard” physical boundaries can cause particular problems, as can 
binned PDFs created with limited statistics. It’s always a good idea to repeat 
the minimisation with different starting positions!
Numerous algorithms exist to sample parameter space, bounce out of local 
minima, smooth out irregularities, deal with hard boundaries, etc.  These may 
makes use of parallel processing, machine learning, Markov chains, simulated 
annealing… THIS IS A VAST AREA!
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Always important to look at your parameter space



Markov Chain Monte Carlo (MCMC)

A method to numerically integrate over composite 
functions by probabilistically sampling the function space 
with a succession of linked iterations

Basis of Monte Carlo simulation

Deposited Energy Penetration Depth

Markov Chain: Each new step 
only depends on the previous one

Launch Lots of Chains!



Can also use such an approach to map out the parameter 
space of a function in the vicinity of its minimum/maximum.

Basic Idea: Ergodically explore the space of model 
parameters through many “guided” random walks, where 
movements towards the extremum is encouraged in 
proportion to the relative posterior probability densities .

A Stationary State is eventually reached, whereby 
parameter values wobble around the vicinity of the 
extremum in a manner that is independent of how a given 
chain got there.

Provides a robust approach for complex, multi-dimensional 
parameter space with lots of local minima and maxima.
Computationally intensive, but chains can be run in parallel.

A “Sample and Reject” method will be used to conform to 
these posterior densities.



• Irreducibility: From any initial state, there is non-zero probability of 
reaching any other state. This prevents the chain getting stuck in 
local minima. 

• Aperiodicity: The chain must not be periodic. This means the chain 
never gets stuck in a loop between the same states. 

• Recurrence: All subsequent steps sample from the same stationary 
distribution once it has been reached. This means once a stationary 
state has been achieved, adding more steps gives a more accurate 
approximation to the target distribution. 

Convergence of chains requires:

Such chains are ‘ergodic’



Say you’re at some position, q (a vector of fit parameters), in the function of 
interest, such as the likelihood. Assume there is some proposed probability, 
P(q’ | q), for jumping to another point, q’.

ϵ(q⃗ |q) ≡ A(q⃗ |q)
A(q |q⃗ ) = P(q⃗ |D) g(q |q⃗ )

P(q |D) g(q⃗ |q)

= [P(D |q⃗ ) P(q⃗ )] g(q |q⃗ )
[P(D |q) P(q)] g(q⃗ |q)

Likelihood Prior

P(q⃗ |q) = g(q⃗ |q) A(q⃗ |q)
proposal acceptance

Also apply “Principle of Detailed Balance” to ensure the chain direction is 
reversible so that we will will reach an equilibrium “stationary” state:

η(q) P(q ∇ q⃗ ) = η(q⃗ ) P(q⃗ ∇ q)

P(q |D) P(q⃗ |q) = P(q⃗ |D) P(q |q⃗ )
or

Bayesian 
Posterior 
probability



Metropolis-Hastings Algorithm

Probability to accept the proposed jump is given by:

i.e. always accept if the new point is better, but potentially accept if the new 
point is worse based on the balance of relative probabilities (so that you 
explore the parameter space around the best point).

So throw a random number between 0 and 1, and move to the new point if 
the number is less than this probability. 

Then generate a new proposed position to jump to, and go again…

The frequency of visiting a particular point in the parameter space will be 
proportional to the overall posterior probability of that point as a solution

Hastings bit



Generating Proposals: Gibbs Sampling

q = (q1, q2, q3 . . . )
q⃗ 1 ∇ Pgen(q⃗ 1 |q1)
q⃗ 2 ∇ Pgen(q⃗ 2 |q2, q⃗ 1)
q⃗ 3 ∇ Pgen(q⃗ 3 |q3, q⃗ 1, q⃗ 2)
q⃗ n ∇ Pgen(q⃗ n |qn, q⃗ 1, q⃗ 2, . . . q⃗ n≃1)

For independent, Gaussian 
probabilities, this is simply:

etc.

Need to tune step sizes, 
guided by any parameter 
constraints: if too large, 
acceptance will be low; if 
too small, convergence 
will be slow



Generating Proposals: Hamiltonian Sampling

Analogy with system of particles at some temperature T:
particles correspond to the model parameters being fit, 
temperature allows their values to ‘jiggle about’ and 
explore the phase space.

= e≃(U(q)+KE)

U(q) ∂ ≃ log[P(D |q)P(q)]

Boltzmann distribution:

units of kT

P(E) = e≃E

= e≃U(q)e≃∼ p2
i

2mi

Average probability 
to be where we are 
without jiggling:

Probability for 
where to move 
next (proposal)

P(q |D) ∂ P(D |q)P(q)
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og
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P(E) = P(D |q)P(q)e≃∼ p2
i

2mi

Sample momenta 
from Gaussian, 
tuning values of

…as before
θi = mi

However, the subsequent evolution is then defined by Hamiltonian dynamics:

For a 
conservative 
system

H = E = U(q) + KE = ≃ log[P(D |q)P(q)] + ∑
p2

i

2mi
dq
dt

= ΛH
Λp

= p
m

dp
dt

= ≃ ΛH
Λq

= ≃ ΛU(q)
Λq

q ∇ q + p
m

⟶t

p ∇ p ≃ ΛU(q)
Λq

⟶t

Tune 
step 
sizes

See “Leap Frog” algorithm for how to handle this better
(basically uses interleaved average of p to compute next q)

Hamiltonian-guided path is much more efficient for reaching the stationary 
phase and dealing with discontinuities, but is more computationally intensive 
for each step. Need to tune algorithm for the specific problem at hand.



  2       4        6       8      10     12      14     16      18     20     22 
Steps in units of 1000

“Burn-In” “Stationary State”

MCMC applied to simulated 
SNO+ data to determine 
signal content, normalisations 
to various backgrounds and 
systematic uncertainties

 (thanks to Will Parker)



Autocorrelation as Test of Convergence

where k = “lag”

Hasn’t converged yet Isn’t converging quickly enough
(should probably change the step size)

Converging nicely!



Can also use the MCMC information around the stationary phase to 
produce posterior density maps of the relevant model parameter space 
(if using parameters with uniform priors, this is also the likelihood map)

(Thanks to Daniel Cookman)



A Simple Example of MCMC Optimisation

Starting points for chains 
shown by coloured dots



Comes into its own for complex parameter space 
and the ability to run multiple chains in parallel

θx = θy = 0.5
5000 steps per chain with Gaussian proposal 
samplings using 


