
Lecture 11:

• Grid Searches
• Golden Ra%o Linear Search
• Powell’s Method
• Gradient Search
• Markov
• Metropolis, Has%ngs
• Gibbs, Gauss and Hamilton!

Methods of Optimisation

Numerical Optimisation
(Minimisation/Maximisation)

Simplest - “Grid Search”: Systematically step through
possible parameter values on an n-dimensional grid
of some pre-defined resolution to find the best values.

Pros: Simple and robust
Cons: Inefficient

Various methods to do “adaptive” grid searches, where you start with a
relatively coarse grid and then increase the grid sampling in the region of
any identified minima (or overall if no minima found)

Other approaches involve separate line searches in each dimension that
are then iteratively applied to find the optimum across multiple dimensions

Golden Ratio Search in 1-D

Assume we have a minimum that has
been bounded by 3 points. What next?

x

f(
x)

Take another sample!

For making an iterative number of
guesses, the most effective search is
binary, where the available phase space
is divided into equal portions each time:

Also assume that we got here from a
previous iteration, so:

b
c

≡ r = 1
r + 1

b
c

= a
b + c

a + b = b + c − a = c

a cb

r = 5 ≃ 1
2 → 0.618

r2 + r ≃ 1 = 0 Golden Ratio

optimal for zooming in
via iterative elimination

Two possibilities:

(there are also other approaches,
such as parabolic interpolation)

= c
b + c

initial guess
for position

Brute Force Iteration

• Guess an initial position
• Cycle through each dimension

doing line minimisation
• Choose the best new position

each time
• Keep iterating

Not very efficient!

Applying 1-D searches to multiple dimensions:

(will simplify by considering just 2 dimensions)

Powell’s Conjugate Direction Method

• Repeat the previous two steps until
desired accuracy is reached

initial guess
for position

• Guess an initial position guess at best
direction

• Cycle through each dimension doing
line minimisation and choose the best
new position, taking this axis as a
guess at the best direction to travel

• Starting from there here, now cycle
through every other dimension, doing
line minimisation and choose the best
new position gu

es
s a

t b
es

t

di
re

ct
io

n

(eliminate vector)

• Draw a line from the initial starting
point to the current best minimum as
the next guess at the best direction,
replacing the previous best direction
vector. Minimise along this

Quadratically Convergent

gues
s a

t b
es

t

dire
cti

on

(e
lim

in
at

e v
ec

to
r)

Gradient Descent

Start with an initial guess for the parameter values
(or “seed”) and then progress though parameter
space in a direction and with a step size based on
successive evaluations of the gradient to follow the
path of steepest decent. There is generally some
convergence criteria to specify when sufficient
accuracy has been achieved and/or when the
function evaluations no longer seems to be changing
very much (i.e. second derivatives are close to zero).

want to move
in negative
direction

small
positive
slope

large
positive
slopeprobably want

to move a lot
in negative
direction

negative
slope

want to move
in positive
direction

x

f(x)

∑xn+1 = ∑xn ≃ σ′f(∑x) |x=xn

Step sizes:
Needs to be tuned for the particular problem!

(“Learning Rate” in ML applications)
Often initially chosen to be some small
fraction of the magnitude of the parameter
you are trying to constrain. Lots of different
approaches, including adaptive algorithms

Λf
Λx

|x=xn
× f (xn + ⟶) ≃ f (xn ≃ ⟶)

2⟶

can be approximated
numerically, i.e.

Depending on the nature of the problem, the function space can be irregular
and may contain local minima, particularly when dealing with multiple
dimensions and parameters have correlations or degeneracies (i.e. where
different parameter combinations can produce similar solutions). Discontinuities
such as “hard” physical boundaries can cause particular problems, as can
binned PDFs created with limited statistics. It’s always a good idea to repeat
the minimisation with different starting positions!
Numerous algorithms exist to sample parameter space, bounce out of local
minima, smooth out irregularities, deal with hard boundaries, etc. These may
makes use of parallel processing, machine learning, Markov chains, simulated
annealing… THIS IS A VAST AREA!

local
minimum

global
minimum

model parameter value

χ2
 o

r -
2l

n(
L)

fu
nc

tio
n

su
ch

 a
s

Always important to look at your parameter space

Markov Chain Monte Carlo (MCMC)

A method to numerically integrate over composite
functions by probabilistically sampling the function space
with a succession of linked iterations

Basis of Monte Carlo simulation

Deposited Energy Penetration Depth

Markov Chain: Each new step
only depends on the previous one

Launch Lots of Chains!

Can also use such an approach to map out the parameter
space of a function in the vicinity of its minimum/maximum.

Basic Idea: Ergodically explore the space of model
parameters through many “guided” random walks, where
movements towards the extremum is encouraged in
proportion to the relative posterior probability densities .

A Stationary State is eventually reached, whereby
parameter values wobble around the vicinity of the
extremum in a manner that is independent of how a given
chain got there.

Provides a robust approach for complex, multi-dimensional
parameter space with lots of local minima and maxima.
Computationally intensive, but chains can be run in parallel.

A “Sample and Reject” method will be used to conform to
these posterior densities.

• Irreducibility: From any initial state, there is non-zero probability of
reaching any other state. This prevents the chain getting stuck in
local minima.

• Aperiodicity: The chain must not be periodic. This means the chain
never gets stuck in a loop between the same states.

• Recurrence: All subsequent steps sample from the same stationary
distribution once it has been reached. This means once a stationary
state has been achieved, adding more steps gives a more accurate
approximation to the target distribution.

Convergence of chains requires:

Such chains are ‘ergodic’

Say you’re at some position, q (a vector of fit parameters), in the function of
interest, such as the likelihood. Assume there is some proposed probability,
P(q’ | q), for jumping to another point, q’.

ϵ(q⃗ |q) ≡ A(q⃗ |q)
A(q |q⃗) = P(q⃗ |D) g(q |q⃗)

P(q |D) g(q⃗ |q)

= [P(D |q⃗) P(q⃗)] g(q |q⃗)
[P(D |q) P(q)] g(q⃗ |q)

Likelihood Prior

P(q⃗ |q) = g(q⃗ |q) A(q⃗ |q)
proposal acceptance

Also apply “Principle of Detailed Balance” to ensure the chain direction is
reversible so that we will will reach an equilibrium “stationary” state:

η(q) P(q ∇ q⃗) = η(q⃗) P(q⃗ ∇ q)

P(q |D) P(q⃗ |q) = P(q⃗ |D) P(q |q⃗)
or

Bayesian
Posterior
probability

Metropolis-Hastings Algorithm

Probability to accept the proposed jump is given by:

i.e. always accept if the new point is better, but potentially accept if the new
point is worse based on the balance of relative probabilities (so that you
explore the parameter space around the best point).

So throw a random number between 0 and 1, and move to the new point if
the number is less than this probability.

Then generate a new proposed position to jump to, and go again…

The frequency of visiting a particular point in the parameter space will be
proportional to the overall posterior probability of that point as a solution

Hastings bit

Generating Proposals: Gibbs Sampling

q = (q1, q2, q3 . . .)
q⃗ 1 ∇ Pgen(q⃗ 1 |q1)
q⃗ 2 ∇ Pgen(q⃗ 2 |q2, q⃗ 1)
q⃗ 3 ∇ Pgen(q⃗ 3 |q3, q⃗ 1, q⃗ 2)
q⃗ n ∇ Pgen(q⃗ n |qn, q⃗ 1, q⃗ 2, . . . q⃗ n≃1)

For independent, Gaussian
probabilities, this is simply:

etc.

Need to tune step sizes,
guided by any parameter
constraints: if too large,
acceptance will be low; if
too small, convergence
will be slow

Generating Proposals: Hamiltonian Sampling

Analogy with system of particles at some temperature T:
particles correspond to the model parameters being fit,
temperature allows their values to ‘jiggle about’ and
explore the phase space.

= e≃(U(q)+KE)

U(q) ∂ ≃ log[P(D |q)P(q)]

Boltzmann distribution:

units of kT

P(E) = e≃E

= e≃U(q)e≃∼ p2
i

2mi

Average probability
to be where we are
without jiggling:

Probability for
where to move
next (proposal)

P(q |D) ∂ P(D |q)P(q)

≃l
og

[P
(D

| x
)P

(x
)]

xjqj

P(E) = P(D |q)P(q)e≃∼ p2
i

2mi

Sample momenta
from Gaussian,
tuning values of

…as before
θi = mi

However, the subsequent evolution is then defined by Hamiltonian dynamics:

For a
conservative
system

H = E = U(q) + KE = ≃ log[P(D |q)P(q)] + ∑
p2

i

2mi
dq
dt

= ΛH
Λp

= p
m

dp
dt

= ≃ ΛH
Λq

= ≃ ΛU(q)
Λq

q ∇ q + p
m

⟶t

p ∇ p ≃ ΛU(q)
Λq

⟶t

Tune
step
sizes

See “Leap Frog” algorithm for how to handle this better
(basically uses interleaved average of p to compute next q)

Hamiltonian-guided path is much more efficient for reaching the stationary
phase and dealing with discontinuities, but is more computationally intensive
for each step. Need to tune algorithm for the specific problem at hand.

 2 4 6 8 10 12 14 16 18 20 22
Steps in units of 1000

“Burn-In” “Stationary State”

MCMC applied to simulated
SNO+ data to determine
signal content, normalisations
to various backgrounds and
systematic uncertainties

 (thanks to Will Parker)

Autocorrelation as Test of Convergence

where k = “lag”

Hasn’t converged yet Isn’t converging quickly enough
(should probably change the step size)

Converging nicely!

Can also use the MCMC information around the stationary phase to
produce posterior density maps of the relevant model parameter space
(if using parameters with uniform priors, this is also the likelihood map)

(Thanks to Daniel Cookman)

A Simple Example of MCMC Optimisation

Starting points for chains
shown by coloured dots

Comes into its own for complex parameter space
and the ability to run multiple chains in parallel

θx = θy = 0.5
5000 steps per chain with Gaussian proposal
samplings using

