
Lecture 12:

• Fisher Discriminant 
• Kernel Density Es%ma%on 
• Gaussian Processes 
• Bayesian Op%misa%on

Data-Driven Approaches



Let’s pick a new variable to act as a discriminant 
between the two classes that is some linear 
combination of x and y:

u ≡ wxx + wyy
Want to choose values for wx and wy to maximise 
the mean distance (or variance) between the 
classes, while minimising the variances within 
each class so as to give the cleanest separation. 

J = (σ1 − σ2)2

ϵ2
1 + ϵ2

2

Fisher thus proposed maximising:

J =
[(wxx1 + wyy1) − (wxx2 + wyy2)]2

[(wxsx1)2 + (wysy1)2] + [(wxsx2)2 + (wysy2)2]

J =
[(wx(x1 − x2) + wy(y1 − y2)]2

[w2x (s2x1 + s2x2) + w2y (s2y1 + s2y2)]

Fisher Linear Discriminant for Class Separation

≃ (u1 − u2)2

s2
1 + s2

2

Simple example with two 
independent parameters:

u

(arbitrarily defining 
u=0 when x=y=0 )



J =
[(wx(x1 − x2) + wy(y1 − y2)]2

[w2x (s2x1 + s2x2) + w2y (s2y1 + s2y2)]

dJ
dwx

= 2[ . . . ](x1 − x2)
[ − − ] − [ . . . ]2

[ − − ]2 2wx(s2
x1

+ s2
x2

) = 0

dJ
dwy

= 2[ . . . ](y1 − y2)
[ − − ] − [ . . . ]2

[ − − ]2 2wy(s2
y1

+ s2
y2

) = 0

u = wxx + wyy

wx

wy
=

(x1 − x2)(s2
y1

+ s2
y2

)
(y1 − y2)(s2x1 + s2x2)

take ratios:

wx = x1 − x2
s2x1 + s2x2

wy = y1 − y2
s2y1 + s2y2

so 
choose

“train” on data sets or simulation

u = ∑w T →p
vector of 

parameters
transpose 
vector of 
weights

∑w = (∑1 + ∑2)−1( ∑σ1 − ∑σ2)
vectors of 

class means
class covariance 

matrices

More Generally:

There is also a form that can be used for more than 
2 classes, but the optimisation of this can be trickier

Data-driven and can also work for 
hypotheses that are not simple, or 
where it is not easy to capture all 
relevant correlations in a likelihood



Kernel Density Estimation (KDE) for Smoothing

A method for non-parametric smoothing of density distributions by 
associating an assumed density function or “kernel” with the values of 
measured data points:

“kernel”

normalised density 
estimator based on 
sum of kernels

“kernel”

data points



The application of this is relatively simple 
(will show an example), but we’ll dig into 
some of the messy details to understand 
why certain choices are typically made…



sum over 
measured 
data points

assumed kernel density about 
data points with scale length 

(bandwidth) h

point of 
interest

data 
point

estimated 
function value at 
point of interest

′f(x) = 1
nh

n

i⃗=1
K ( x − Xi

h ) ≡ 1
n

n

i⃗=1
Kh (x − Xi))

Assume some true but unknown density function          ,
and try to approximate it using a generic kernel density K  : 

f(x)

How do you find the optimal bandwidth for smoothing?

You would expect that the bandwidth or scale might be comparable to 
the sampled rms of the distribution that you’re trying to approximate.

You would also expect that the required scale would become smaller 
as more data points are added. If we think in terms of estimating 
moments, we know that the accuracy of the sampled mean and 
distribution rms value improves as , so maybe a good guess 
is that the bandwidth scales as 

Λ n−1/2

ϵn−1/2

In fact, a better estimate is a slightly less obvious  ϵn−1/5

To get here takes a little work…



⟨ ′f(x)⟩ = ⟨Kh(x)⟩ = ∫ Kh (x − y) f(y)dy

⟨ ′f 2(x)⟩ = (K2
h * f )(x)

var[ ′f(x)] = 1
n

[(K2
h * f )(x) − (Kh * f )2(x)]variance:

⟨ ′f(x)⟩ − f(x) = (Kh * f )(x) − f(x)bias:

Following Wand and Jones’ *, let’s start by examining the bias and variance:

*Wand and Jones, “Kernel Smoothing,” Chapman and Hall/CRC, 1994



MSE = ⟨( ′η − η)2⟩
= ′η2 + ⟨η2⟩ − 2 ′η ×η⟶

⟨ ′η − η⟩
2

= ′η2 + ×η⟶2 − 2 ′η ×η⟶

−2 ′η ×η⟶ = ⟨ ′η − η⟩
2

− ′η2 − ×η⟶2

= ⟨η2⟩ − ×η⟶2 + ⟨ ′η − η⟩
2

variance squared bias

MSE( f ) = 1
n

[(K2
h * f )(x) − (Kh * f )2(x)] + [(Kh * f )(x) − f(x)]2

Mean Squared Error

MISE( f ) = 1
n ∫ [(K2

h * f )(x) − (Kh * f )2(x)] dx

+∫ [(Kh * f )(x) − f(x)]2 dxMean Integrated Squared Error
(want to minimise!)



⟨ ′f(x)⟩ = ∫ 1
h

K ( x − y
h ) f(y) dy

z ≡ x − y
h

y = x − hz
dy = − h dz= ∫ K(z) f(x − hz) dz

⟨ ′f(x)⟩ ≃ f(x)∫ K(z) dz − hf⃗ (x)∫ zK(z) dz + 1
2 h2f⃗ ⃗  (x)∫ z2K(z) dz

⟨ ′f(x)⟩ − f(x) ≃ 1
2 h2f⃗ ⃗  (x)∫ z2K(z) dzapproximate bias:

= f(x) − 0 + 1
2 h2f⃗ ⃗  (x)∫ z2K(z) dz

(for K even)

f(x − hz) ≃ f(x) − hz f⃗ (x) + 1
2 h2z2 f⃗ ⃗  (x)

Approximate f with a Taylor expansion around hz=x:

Let’s try an approximation to make things more tractable:



⟨ ′f(x)⟩ − f(x) ≃ 1
2 h2f⃗ ⃗  (x)∫ z2K(z) dzapproximate bias:

≡ σ2(K )

var [ ′f(x)] = 1
nh ∫ K2(z) f(x − hz) dz − 1

n ⟨ ′f(x)⟩
2

≡ R(K )

var [ ′f(x)] ≃ 1
nh

f(x)∫ K2(z) dzapproximate variance:

h → 0  as  n →♾ , while keeping nh > 0, so 1st term dominates for large n
& take 0th order approximation for f(x-hz) ~ f(x)

AMSE = f(x)
nh

R(K ) − h4

4 [f⃗ ⃗  (x)]2 σ2
2(K )

Approximate Mean 
Squared Error:

following 
nomenclature 
of Wand and 
Jones*

*Wand and Jones, “Kernel Smoothing,” Chapman and Hall/CRC, 1994



AMSE = f(x)
nh

R(K ) − h4

4 [f⃗ ⃗  (x)]2 σ2
2(K )

= 1
nh

R(K ) − h4

4 σ2
2(K )R( f⃗ ⃗  )

∇(AMISE)
∇h

= − 1
nh2 R(K ) − h3σ2

2(K )R( f⃗ ⃗  ) = 0

AMISE = 1
nh

R(K )∫ f(x) dx − h4

4 σ2
2(K )∫ [f⃗ ⃗  (x)]2 dx

Approximate Mean 
Integrated Squared Error:

Find value of h that minimises AMISE:

hmin = [ R(K )
σ2

2(K )R( f⃗ ⃗  )n ]
1/5



R(K ) ∂ 1
2 θ

σ2(K ) ∂ 1

R( f⃗ ⃗  ) ≡ ∫ ( f⃗ ⃗  )2(z)dz

But we don’t know the true 
underlying function that 
we’re trying to approximate, 
so how do we evaluate:

??

R( f⃗ ⃗  ) ∂ Λ 3
8 θ

1
ϵ5

Can try choosing some arbitrary 
Gaussian function to be indicative:

f(z) Λ 1
2θϵ

e−(z−z0)2/2ϵ2

Where σ is an estimated equivalent 
standard deviation, either from the 
sampled rms or a robust percentile 
estimator, such as F( > 75%) − F( > 25%)

1.34

R(K ) ≡ ∫ K2(z)dz σ2(K ) ≡ ∫ z2K(z)dzrecall:

K(z) = 1
2θ

e−z2/2if we take a Gaussian 
Kernel density, then:



R(K ) ∂ 1
2 θ

σ2(K ) ∂ 1 R( f⃗ ⃗  ) ∂ Λ 3
8 θ

1
ϵ5

hmin Λ ( 4
3 )

1
5

n−1/5 ϵ Λ n−1/5 ϵ

h(d)
min Λ n−1/(4+d) ϵ

For a d-dimensional kernel, this becomes:
(not so surprising, 
since the 1st term of 
the AMISE will now 
have a factor of 1/hd )

“Silverman’s Rule of Thumb”



“Brute Force” Direct MC calculation of MISE vs  
(assuming ) for Gaussian kernels 

approximating a 1D Gaussian

ϕ
h = ϵn−ϕ

n=5

n=10

n=20

n=100

n=1000



Cross-Validation
(Another approximation approach for bandwidth selection)

ISE = ∫ ( ′f(x |h) − f(x))
2

dx
Assume the measured data 
representatively samples the 
distribution, so MISE ~ ISE 

= ∫ ′f 2(x |h) dx − 2∫ ′f(x |h)f(x) dx + ∫ f 2(x) dx

doesn’t depend on hwant to minimise this quantity with respect to h

′f−i(Xi |h) ≡ 1
n − 1

n

j⃗∼i
Kh(x − Xj)where

Then choose the value of h that numerically minimises the LSCV

LSCV ≡ ∫ ′f 2(x |h) dx − 2
n

n

i⃗=1

′f−i(Xi |h)
Again, assuming 
the measured data 
representat ively 
samples f(x)

Least Square 
Cross-Validation:

ith contribution is removed to 
keep the average unbiased



Adaptive KDE
Rather than just use a fixed bandwidth everywhere, we could aim 
to improve our estimate by increasing the bandwidth in regions of 
lower density and decrease it in regions of higher density (i.e. 
make the bandwidth inversely proportional to the density).

This can be done as an additional iteration on our best estimate 
for the density from our fixed-bandwidth KDE.



1)  Find a pilot estimate for the density, f̃(x) (for example, using a 
fixed-bandwidth method)

2)  Define local bandwidth factors: πi ≡ ( g
f̃(xi) )

ϕ

g ≡ (
n

∏
i

f̃(xi))
1/n

relative to the geometric 
mean density

“sensitivity” 
parameter

3)  Define the adaptive kernel estimate:

′f(x) = 1
n

n

i⃗=1

1
(hπi)d K ( x − Xi

hπi )

Silverman’s prescription*:

* Silverman, “Density Estimation for Statistics and Data Analysis,” 1986

Abramson** showed 
that a choice of α=1/2 
causes the second 
derivative term of the 
AMISE to vanish, thus 
i nsu r i ng a be t t e r 
est imate than the 
fixed-bandwidth case

** Abramson, The Annals of Statistics, vol 10, no 4, 1217-1223, 1982



Some other common kernels:
(thanks Wikipedia!)



Adaptive Bandwidth

# Sum KDE contributions from each data point

# Loop over grid points

# Compute geometric means

# Compute local bandwidth factors

Fixed Bandwidth
# Silverman 2D bandwidth

# Loop over grid points

# Sum KDE contributions from each data point

1
ndata

1
2θhxhy

ndata

k⃗
exp − 1

2 (
xg(i ) − x (k)

hx )
2

− 1
2 (

yg( j ) − y(k)
hy )

2

1
ndata

1
2θhxhy

ndata

k⃗

1
π(k)2 exp − 1

2 (
xg(i ) − x (k)

π(k) * hx )
2

− 1
2 (

yg( j ) − y(k)
π(k) * hy )

2

A Simple 2D 
Example



n=1000

true function 
& sampling

fixed KDE

adaptive KDE

n=200

true function 
& sampling

fixed KDE

adaptive KDE

n=5000

true function 
& sampling

fixed KDE

adaptive KDE



n=1000

true function 
& sampling

fixed KDE

adaptive KDE

fixed KDE

adaptive KDE

fixed KDE

adaptive KDE

using half the 
nominal choice 

of scale

using twice the 
nominal choice 

of scale



ANY smoothing process is necessarily a fabrication!

One way or another, you are guessing at the form in order 
to make inferences about data you do not actually have.
While this method is non-parametric, you are still making 
assumptions concerning the nature of continuity between 
data points. Although this generally works well for 
functions that are continuous and well-behaved, you can 
run into problems near boundaries or for functions that are 
discontinuous, discreet or rapidly changing.

It’s always important to specifically test the sensitivity of 
your conclusions to the particular smoothing technique!

You don’t get error bars on the model, so takes some work 
to insure result is robust to smoothing method



x1 x⃗ x⃗ ⃗ x⃗ ⃗ ⃗ xiv xv x2

y

Gaussian Processes for Non-Parametric Regression

Given measurements of some function y(x) at positions of x1 and x2, we would like to infer 
the likely function values at other positions, and the uncertainties of such projections:

Assume y(x) is continuous, which means that nearby values of x are likely to have nearby 
values of y(x). Imagine imposing continuity by “attaching elastic bands” between the 
points, with the amount of elasticity specifying the assumed degree of correlation



The elasticity then constrains the range of possible solutions, with the largest 
freedom of movement seen at positions that are furthest from measured values



x⃗ x1 x⃗ ⃗ x⃗ ⃗ ⃗ xiv xv x2

y

The elasticity then constrains the range of possible solutions, with the largest 
freedom of movement seen at positions that are furthest from measured values

Let’s characterise the elasticity by a Gaussian sampling of y(x) about the mean of 
the values at nearby x positions:

For simplicity, this is just illustrating nearest neighbour constraints. But, in 
general, we want the y values at each position to influence the likely values at 
any other position. This sounds hideously complicated, but is trivially handled by 
a covariance matrix (which is what it’s there for!)

A nice property of 
Gaussian processes 
is that the cumulative 
e ffec t o f mul t ip le 
samplings is also a 
Gauss ian , w i th a 
variance that can be 
analytically computed. 
So, you can calculate 
error bands for the 
inferred y values!



yi

yi+1

yi

yi+100

Another view: plotting Gaussian covariances between two different y values:

nearby in x  
(strong correlation)

not so nearby in x  
(weak correlation)

P(yi+1 |yi) P(yi+100 |yi)

2) Projected y values largely depend on the 
covariances, as opposed to the distribution means

1) Conditional probabilities are also Gaussian!

(in the limit of perfect covariance, the correlation is a line, 
and the “average position of a line” is now meaningless!)



So, we want to specify a covariance matrix that allows us to tune the elasticity, 
with a correlation that decreases as the separation between x values increases.

We can do this in a continuous way by defining a “kernel” (weighting function), 
such as the following:

This also happens to have a Gaussian form, but doesn’t need to be… it is just a 
parameterisation defining the scale of the (Gaussian) variance. Other kernels are 
available at your local retailer to suit your individual needs!

xi

xj

ky(xi, xj) = ϵ2
y exp (− 1

2l2 (xi − xj)2) + ϵ2
nτij

maximum inherent 
variance scale

correlation 
length scale

uncorrelated 
measurement 

noise

We then just need to find the best values for the “hyperparameters”        and ϵy l
…which we can do using maximum likelihood!



Define ym as a k-length vector of measured y values, and yp as the vector of y 
values to be predicted.

But the ratio of Gaussians 
is also a Gaussian!

P(yp, ym) = Δ [σp
σm] , [

Σp Σpm

ΣT
pm Σm ]

P(ym) = Δ (σm , Σm) ≡ 1

(2θ)k det(Σm)
exp [− 1

2 (ym − σm)Σ−1
m (ym − σm)]

(multi-variate Gaussian)

all specified 
by kernel

Λ Δ (ΣpmΣ−1
mmym , Σp − ΣpmΣ−1

mmΣT
pm)

predictive mean predictive variance

P(yp |ym) = Δ (σp + ΣpmΣ−1
mm(ym − σm) , Σp − ΣpmΣ−1

mmΣT
pm)

P(yp |ym) =
P(yp, ym)

P(ym)

Then,

linear relationship with measurement uncertainty reduced by measurement

(“training set”)



Simple Implementation with sklearn



Bayesian Search Using Gaussian Processes

Say you’re interested in finding the minimum of a function using information from 
your GP model. In particular, you want to know what value of x to test next:

this region 
look pretty 
promising

but there are big uncertainties here, 
which might be worth exploring

“Exploration vs Exploitation”

We want to balance these by defining an “acquisition function” to tell us where to 
search next. One useful acquisition function is based on the expected 
improvement to our current best value y(x*)  



We can define the improvement from y(x*) to a new value, y(x) as follows:

I(x) ≡ max[y(x*) − y(x) , 0]

But recall that we now have a Gaussian probability distribution associated 
with each possible value of x, so what we really want is the expectation 
value of the improvement at each value of x

×I(x)⟶ = ∫
∝

−∝
I(x) Δ (σ(x), ϵ2(x)) dy(x)

= ∫
y(x*)

−∝
(y(x*) − y(x)) 1

2θϵ(x)
exp (− 1

2 ( y(x) − σ(x)
ϵ(x) )

2

) dy(x)

from evaluating the predictive mean 
and variance at the specific location x

z ≡ y(x) − σ(x)
ϵ (x)

dz = d y(x)
ϵ (x)

= ∫
z0

−∝
(y(x*) − σ(x) − zϵ(x)) 1

2θ
exp (− 1

2 z2) dz z0 ≡ y(x*) − σ(x)
ϵ(x)

Cumulative (or integral) of Normal 
distribution with μ=0 and σ=1 
integrated for values less than z0

Normal distribution  
with μ=0 and σ=1 
evaluated at z0

= (y(x*) − σ(x)) ΔC ( < z0 |0,1) + ϵ(x) Δ (z0 |0,1) Choose values of x 
where this is maximum





more samples larger error bars


