
Lecture 13:

• Supervised vs Unsupervised Learning 
• Decision Trees 
• Random Forests 
• Boosted Decision Trees (AdaBoost)

Machine Learning & Decision Trees



In machine learning, an algorithm to 
achieve a particular goal is pieced together 
through a series of iterative guesses on an 
example of data where the solution is 
known, guided by a “loss function” that 
quantifies how well the algorithm is doing.

Work out how to find the 
number of red balls in a bag:

Generally, there are two basic types of training, known as “supervised” and 
“unsupervised,” which refers to whether or not an individually ‘labeled’ data set is 
used. The exact definition is a little fuzzy and the distinction can sometimes blur… 
but here’s a simple example of the two approaches:

Loss 
Function

Iterative 
Guesses

(teach the methodology) (allow the methodology to be 
inferred from the training sets)
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Where is the best place to cut?
Purity of signal:

ps = ns

nb + ns
Purity of background:

pb = nb

nb + ns
= 1 ≡ ps

Gini index (Corrado Gini): IG = pspb = ps(1 ≡ ps)
Note: equals zero for ps or pb = 1 (perfect separation) Best separation 

at minimum Gini
More generally, for n classes, where 
pi is the purity of the ith target class:

IG =
n

∑
i=1

pi(1 ≡ pi) = ∑ (pi ≡ p2
i )

= ∑ pi ≡ ∑ p2
i = 1 ≡ ∑ p2

i

“Goodness of Split”

weighted Gini between 
cut and anti-cut regions



Weighted Gini index for test:
IG(Tot) = fPIG(P) + fFIG(F )

Test
Pass Fail

S, B S, B
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What if the starting population 
is already unevenly split?

IE = ≡ ∑ pi log piEntropy:

Misclassification 
Index: IM = ∑ [1 ≡ max(pi , 1 ≡ pi)]

Other Examples of Measures:

IS = ∑
s2
i

bi
Significance:

(maximise)

“Goodness of Split”

Use difference in Gini index
(want to maximise):

−IG = IG(0) ≡ [ fPIG(P) + fFIG(F )]

initial pre-split 
value for node



Growing a Better Tree N=10000
S: 6000 B: 4000

Fiducial 
Volume:

N=10000
S: 6000 B: 4000

R<R1

N=7000
S: 5000 B: 2000

N=3000
S: 1000 B: 2000

Pass Fail

N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Initial Simulated Data Set

IG = ( 6000
10000 ) ( 4000

10000 ) = 0.24

−IG(R2) = 0.041−IG(R1) = 0.03

N=10000
S: 6000 B: 4000

R<R3

N=1850
S: 1500 B: 350

N=8150
S: 4500 B: 3650

Pass Fail

−IG(R3) = 0.01

etc.

PSD:
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N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

σ < σ1
etc.

−IG(σ1) −IG(σ2) −IG(σ3)
σ < σ2 σ < σ3

Energy:
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3 < E < Emax

3
etc.

−IG(Emin
1 , Emax

1 ) −IG(Emin
2 , Emax

2 ) −IG(Emin
3 , Emax

3 )

−IG(R1) = 0.24 ≡ [0.7 ( 5
7 ) ( 2

7 ) + 0.3 ( 1
3 ) ( 2

3 )]
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Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 σ < σ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

σ < σ1σ < σ2 R<R1
Fail

N=1860
S: 1500 B: 360
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N=500
S: 400 B: 100
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N=2015
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Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
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1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

Stats getting low

Not much 
change

“Pruning”



Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 σ < σ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

σ < σ1σ < σ2 R<R1
Fail

N=1860
S: 1500 B: 360

Pass

N=500
S: 400 B: 100

Pass

N=2015
S: 2000 B: 15

Pass

Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
S: 1000 B: 36

Pass

Emin
1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

PassPass

Pass

Signal efficiency :
3200
6000 = 53 %

Background efficiency :
101
4000 = 2.5 %



Bagging and Random Forests

These are methods to improve the robustness of decision trees and can 
also help quantify uncertainties.

Bootstrap aggregation, or “bagging,” consists of producing many 
pseudo-independent training sets by randomly sampling events from the 
main set, allowing events to be sampled more than once. While the 
produced sets are not truly independent, they yield random variations 
around the main set without bias and can be used to assess the impact of 
data variations on decision tree training. Thus, each pseudo-set is used to 
produce a separate decision tree, and the results from data run through 
each of these trees is averaged.

“Random Forest” takes this a step further to break additional correlations 
by also randomly sampling a subset of the n features available for 
discrimination in each generated tree. Typically, each “bagged” tree uses 
√n randomly selected features, though this should generally be tuned to 
the particular problem. As before, data is run though all generated trees 
and the results are averaged.



Test

{ϵ(x) = 1
= ≡ 1

for example
if Pass

if Fail

Assume we have a data set with 
relevant parameter values for a 
given test: x1, x2, x3 . . . xN
each of which corresponds to a 
given class:  q1, q2, q3 . . . qN
where, for example,             if it’s 
signal &                 if background.

qi = 1
qi = ≡ 1

Assume we have some arbitrary 
number of test results from a 
series of “weak learners”:

ϵ1(xi), ϵ2(xi), ϵ3(xi) . . . ϵL
and that we wish to find a strong 
c lass ifier that is a l inear 
combination of these:

CL(xi) =
L

∑
j=1

ηjϵj(xi)

where the sign of CL indicates 
the preferred class and the 
magnitude is related to the 
strength of the classification.

E =
N

∑
i=1

e≡qiC(xi)

Further assume an exponential 
“loss function” to penalise 
incorrect classifications within an 
“error function”:

Boosted Trees (AdaBoost*)

(Other boost algorithms, loss functions and classifier 
combinations are available at specially selected stores!)

* Freund and Robert E. Schapire, Journal of 
Computer and System Sciences 55, 119139 (1997)



E =
N

∑
i=1

e≡qiC(xi) CL(xi) =
L

∑
j=1

ηjϵj(xi)

Assume we have a classifier composed of m-1 weak learners 
and we wish to add another: Cm(xi) = Cm≡1(xi) + ηmϵm(xi)
What choice of αm will minimise E ?

E =
N

∑
i=1

e≡qiCm≡1(xi) e≡qiηmϵm(xi) =
N

∑
i=1

wm
i e≡qiηmϵm(xi)

= ∑
qi=ϵm(xi)

wm
i e≡ηm + ∑

qi≃ϵm(xi)
wm

i eηm

dE
dηm

= ≡ ηme≡ηm ∑
qi=ϵm(xi)

wm
i + ηmeηm ∑

qi≃ϵm(xi)
wm

i = 0

(w1
i → 1)

relative weights

θm →
∑qi≃ϵm(xi)

wm
i

∑N
i wm

i
weighted fractional error rate



Assume we have K classes, and will more generally ascribe a negative 
sign to the loss function exponent (i.e. lowering the loss) if the correct 
class is identified, and a positive sign (increasing the loss) if it is not.

The fraction of correct identifications from random guessing would be 1/K 
and the fraction of incorrect random identifications would then be 1-1/K. 
So we modify the error function so that the contributions from each term 
are weighted relative to the random error rates:

E = ( 1
1/K ) ∑

correct
wm

i e≡ηm + ( 1
1 ≡ 1/K ) ∑

incorrect
wm

i eηm

ηm = 1
2 [ln ( 1 ≡ θm

θm ) + ln(K ≡ 1)]
Carrying through, the value of  that minimises the error then becomes:ηm

Generalisation to Multiple Classes: SAMME*
(Stage-wise Additive Modelling using a Multi-class Exponential loss function)

*J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class adaboost.” Statistics and its Interface 2.3 (2009): 349-360.



Assign initial normalised weights to 
each data point in a large training set to 
give equal overall weight to signal and 
background (               if equal numbers) w1

i = 1/N

Is the error rate only minimally changed 
or has significant overtraining likely to 
have occurred?

Find the test stump (  ) that gives the 
lowest weighted error rate and compute    
the value of    η

ϵ

Multiple each weight by    if the 
categorisation is correct and by          if 
it is not, then renormalise so 

e≡η

eη

YES

NO

C =
mstop

∑
m=1

ηmϵm(xi)

Verify with independent training set

Apply to data

AdaBoost Implementation

∑ wm
i = 1





• Signal and internal backgrounds are uniform in detector volume [~R3]
• External background falls exponentially from detector edge [~ exp((1-R)/0.1)]
• Energy resolution is twice as bad at the detector edge compared to the centre
• Pulse Shape Discrimination values scale linearly with sqrt of apparent energy

3 categories of events, each with 3 features

Model Data SetSignal 
External background 
Internal background

Position (radius) 
Energy

Pulse Shape Discrimination



signal

external bkd

internal bkd

Data frame “Training_Set”

.

.

examples of entries 
(one entry per event)



(multiple test sets used to measure average and variance of results)



Train on a mix of 10000 each of signal, external and internal backgrounds 
(2 orders of magnitude larger than individual test sets)

Truth: Sig=Ext=Int=100

Truth: Sig=50, Ext=100, Int=200

Class A Class B

Class C

separation parameter A

fre
qu

en
cy

Efficiencies to select classes in isolation. In general, 
these are not necessarily the same for each class.

Selection of individual classes can be further biased 
by the presence of other classes

Probabilities have “baked in” systematic biases that 
depend on both training sample statistics and 
algorithm details (e.g. number of weak learners etc.)

Some indication of over-training

Subtle change belies big impact!

Essentially unchanged because these are assessed 
in isolation

Disastrous!

Performance and accuracy depends on 
the class composition being exactly the 
same in data as it is in the training set. 
Otherwise the trained BDT classifier is 
no longer optimal and results are 
untrustworthy!

Uncertainties not reflected by sample-to-sample variances!



How, then, do you implement things so as to 
correctly characterise the statistical behaviour, 
make the performance robust and insure an  
accurate interpretation of results?

Put a pin in that… 
we’ll come back to all this 
again after the next lecture!

(Spoiler: previous discussions of likelihood will not have been wasted!)



• If the problem can be completely specified by PDFs that capture the 
relevant information, then you cannot do better than likelihood!

• The boost algorithm, loss function and classifier combination is not unique. 
There is no theorem that says which set of these is the best or produces the 
most efficient algorithm for a given problem.

• Decision trees can be overly sensitive to noise
• BDTs will overtrain! It is therefore important to pay attention to convergence 

criteria and verify the final efficiency with independent training sets.
• The use of too many extraneous or redundant parameters can make 

things slow and will make it more likely for BDTs to get distracted by 
fluctuations in multiple dimensions, resulting in a failure to converge on the 
relevant region and leading to a loss in efficiency. It’s worth putting thought 
into the parameter choices and building elements one by one.

• You don’t directly get the likelihood and all the benefits that brings. 
But you can always make PDFs of decision tree outputs for different event 
classes and derive likelihoods and confidence/credibility intervals in the 
usual way!  

• BDTs and other ML approaches are particularly useful if computational 
speed is an issue or it is difficult to couch the problem in terms of PDFs (i.e. 
simple hypotheses).

Some Other Observations:


