
Lecture 13:

• Supervised vs Unsupervised Learning
• Decision Trees
• Random Forests
• Boosted Decision Trees (AdaBoost)

Machine Learning & Decision Trees

In machine learning, an algorithm to
achieve a particular goal is pieced together
through a series of iterative guesses on an
example of data where the solution is
known, guided by a “loss function” that
quantifies how well the algorithm is doing.

Work out how to find the
number of red balls in a bag:

Generally, there are two basic types of training, known as “supervised” and
“unsupervised,” which refers to whether or not an individually ‘labeled’ data set is
used. The exact definition is a little fuzzy and the distinction can sometimes blur…
but here’s a simple example of the two approaches:

Loss
Function

Iterative
Guesses

(teach the methodology) (allow the methodology to be
inferred from the training sets)

Is event
inside the

fiducial
volume?

Background

yesno

Is
Emin < E < Emax?

Background

no yes

Background

no

Signal

yes

Does the
event pass

PSD?

A Simple Binary
Decision Tree

nodes

branches

leaves

isolated node + branches = “stump”

parameter 1

pa
ra

m
et

er
 2

Where is the best place to cut?
Purity of signal:

ps = ns

nb + ns
Purity of background:

pb = nb

nb + ns
= 1 ≡ ps

Gini index (Corrado Gini): IG = pspb = ps(1 ≡ ps)
Note: equals zero for ps or pb = 1 (perfect separation) Best separation

at minimum Gini
More generally, for n classes, where
pi is the purity of the ith target class:

IG =
n

∑
i=1

pi(1 ≡ pi) = ∑ (pi ≡ p2
i)

= ∑ pi ≡ ∑ p2
i = 1 ≡ ∑ p2

i

“Goodness of Split”

weighted Gini between
cut and anti-cut regions

Weighted Gini index for test:
IG(Tot) = fPIG(P) + fFIG(F)

Test
Pass Fail

S, B S, B

parameter 1

pa
ra

m
et

er
 2

What if the starting population
is already unevenly split?

IE = ≡ ∑ pi log piEntropy:

Misclassification
Index: IM = ∑ [1 ≡ max(pi , 1 ≡ pi)]

Other Examples of Measures:

IS = ∑
s2
i

bi
Significance:

(maximise)

“Goodness of Split”

Use difference in Gini index
(want to maximise):

−IG = IG(0) ≡ [fPIG(P) + fFIG(F)]

initial pre-split
value for node

Growing a Better Tree N=10000
S: 6000 B: 4000

Fiducial
Volume:

N=10000
S: 6000 B: 4000

R<R1

N=7000
S: 5000 B: 2000

N=3000
S: 1000 B: 2000

Pass Fail

N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Initial Simulated Data Set

IG = (6000
10000) (4000

10000) = 0.24

−IG(R2) = 0.041−IG(R1) = 0.03

N=10000
S: 6000 B: 4000

R<R3

N=1850
S: 1500 B: 350

N=8150
S: 4500 B: 3650

Pass Fail

−IG(R3) = 0.01

etc.

PSD:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

σ < σ1
etc.

−IG(σ1) −IG(σ2) −IG(σ3)
σ < σ2 σ < σ3

Energy:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

Emin
1 < E < Emax

1 Emin
2 < E < Emax

2 Emin
3 < E < Emax

3
etc.

−IG(Emin
1 , Emax

1) −IG(Emin
2 , Emax

2) −IG(Emin
3 , Emax

3)

−IG(R1) = 0.24 ≡ [0.7 (5
7) (2

7) + 0.3 (1
3) (2

3)]

Growing a Better Tree N=10000
S: 6000 B: 4000

Fiducial
Volume:

N=10000
S: 6000 B: 4000

R<R1

N=7000
S: 5000 B: 2000

N=3000
S: 1000 B: 2000

Pass Fail

N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Initial Simulated Data Set

IG = (6000
10000) (4000

10000) = 0.24

−IG(R2) = 0.041−IG(R1) = 0.03

N=10000
S: 6000 B: 4000

R<R3

N=1850
S: 1500 B: 350

N=8150
S: 4500 B: 3650

Pass Fail

−IG(R3) = 0.01

etc.

PSD:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

σ < σ1
etc.

−IG(σ1) −IG(σ2) −IG(σ3)
σ < σ2 σ < σ3

Energy:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

Emin
1 < E < Emax

1 Emin
2 < E < Emax

2 Emin
3 < E < Emax

3
etc.

−IG(Emin
1 , Emax

1) −IG(Emin
2 , Emax

2) −IG(Emin
3 , Emax

3)

−IG(R1) = 0.24 ≡ [0.7 (5
7) (2

7) + 0.3 (1
3) (2

3)]

Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

−IG(R1)
−IG(R2)

−IG(Emin
1 , Emax

1)
−IG(Emin

2 , Emax
2)

−IG(Emin
3 , Emax

3)

−IG(σ1)
−IG(σ2)
−IG(σ3)

−IG(R3)
.
.
.

.

.

.

.

.

.

−IG(R1)
−IG(R2)

−IG(Emin
1 , Emax

1)
−IG(Emin

2 , Emax
2)

−IG(Emin
3 , Emax

3)

−IG(σ1)
−IG(σ2)
−IG(σ3)

−IG(R3)
.
.
.

.

.

.

.

.

.

Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 σ < σ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

σ < σ1σ < σ2 R<R1
Fail

N=1860
S: 1500 B: 360

Pass

N=500
S: 400 B: 100

Pass

N=2015
S: 2000 B: 15

Pass

Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
S: 1000 B: 36

Pass

Emin
1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

Stats getting low

Not much
change

“Pruning”

Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 σ < σ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

σ < σ1σ < σ2 R<R1
Fail

N=1860
S: 1500 B: 360

Pass

N=500
S: 400 B: 100

Pass

N=2015
S: 2000 B: 15

Pass

Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
S: 1000 B: 36

Pass

Emin
1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

PassPass

Pass

Signal efficiency :
3200
6000 = 53 %

Background efficiency :
101
4000 = 2.5 %

Bagging and Random Forests

These are methods to improve the robustness of decision trees and can
also help quantify uncertainties.

Bootstrap aggregation, or “bagging,” consists of producing many
pseudo-independent training sets by randomly sampling events from the
main set, allowing events to be sampled more than once. While the
produced sets are not truly independent, they yield random variations
around the main set without bias and can be used to assess the impact of
data variations on decision tree training. Thus, each pseudo-set is used to
produce a separate decision tree, and the results from data run through
each of these trees is averaged.

“Random Forest” takes this a step further to break additional correlations
by also randomly sampling a subset of the n features available for
discrimination in each generated tree. Typically, each “bagged” tree uses
√n randomly selected features, though this should generally be tuned to
the particular problem. As before, data is run though all generated trees
and the results are averaged.

Test

{ϵ(x) = 1
= ≡ 1

for example
if Pass

if Fail

Assume we have a data set with
relevant parameter values for a
given test: x1, x2, x3 . . . xN
each of which corresponds to a
given class: q1, q2, q3 . . . qN
where, for example, if it’s
signal & if background.

qi = 1
qi = ≡ 1

Assume we have some arbitrary
number of test results from a
series of “weak learners”:

ϵ1(xi), ϵ2(xi), ϵ3(xi) . . . ϵL
and that we wish to find a strong
c lass ifier that is a l inear
combination of these:

CL(xi) =
L

∑
j=1

ηjϵj(xi)

where the sign of CL indicates
the preferred class and the
magnitude is related to the
strength of the classification.

E =
N

∑
i=1

e≡qiC(xi)

Further assume an exponential
“loss function” to penalise
incorrect classifications within an
“error function”:

Boosted Trees (AdaBoost*)

(Other boost algorithms, loss functions and classifier
combinations are available at specially selected stores!)

* Freund and Robert E. Schapire, Journal of
Computer and System Sciences 55, 119139 (1997)

E =
N

∑
i=1

e≡qiC(xi) CL(xi) =
L

∑
j=1

ηjϵj(xi)

Assume we have a classifier composed of m-1 weak learners
and we wish to add another: Cm(xi) = Cm≡1(xi) + ηmϵm(xi)
What choice of αm will minimise E ?

E =
N

∑
i=1

e≡qiCm≡1(xi) e≡qiηmϵm(xi) =
N

∑
i=1

wm
i e≡qiηmϵm(xi)

= ∑
qi=ϵm(xi)

wm
i e≡ηm + ∑

qi≃ϵm(xi)
wm

i eηm

dE
dηm

= ≡ ηme≡ηm ∑
qi=ϵm(xi)

wm
i + ηmeηm ∑

qi≃ϵm(xi)
wm

i = 0

(w1
i → 1)

relative weights

θm →
∑qi≃ϵm(xi)

wm
i

∑N
i wm

i
weighted fractional error rate

Assume we have K classes, and will more generally ascribe a negative
sign to the loss function exponent (i.e. lowering the loss) if the correct
class is identified, and a positive sign (increasing the loss) if it is not.

The fraction of correct identifications from random guessing would be 1/K
and the fraction of incorrect random identifications would then be 1-1/K.
So we modify the error function so that the contributions from each term
are weighted relative to the random error rates:

E = (1
1/K) ∑

correct
wm

i e≡ηm + (1
1 ≡ 1/K) ∑

incorrect
wm

i eηm

ηm = 1
2 [ln (1 ≡ θm

θm) + ln(K ≡ 1)]
Carrying through, the value of that minimises the error then becomes:ηm

Generalisation to Multiple Classes: SAMME*
(Stage-wise Additive Modelling using a Multi-class Exponential loss function)

*J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class adaboost.” Statistics and its Interface 2.3 (2009): 349-360.

Assign initial normalised weights to
each data point in a large training set to
give equal overall weight to signal and
background (if equal numbers) w1

i = 1/N

Is the error rate only minimally changed
or has significant overtraining likely to
have occurred?

Find the test stump () that gives the
lowest weighted error rate and compute
the value of η

ϵ

Multiple each weight by if the
categorisation is correct and by if
it is not, then renormalise so

e≡η

eη

YES

NO

C =
mstop

∑
m=1

ηmϵm(xi)

Verify with independent training set

Apply to data

AdaBoost Implementation

∑ wm
i = 1

• Signal and internal backgrounds are uniform in detector volume [~R3]
• External background falls exponentially from detector edge [~ exp((1-R)/0.1)]
• Energy resolution is twice as bad at the detector edge compared to the centre
• Pulse Shape Discrimination values scale linearly with sqrt of apparent energy

3 categories of events, each with 3 features

Model Data SetSignal
External background
Internal background

Position (radius)
Energy

Pulse Shape Discrimination

signal

external bkd

internal bkd

Data frame “Training_Set”

.

.

examples of entries
(one entry per event)

(multiple test sets used to measure average and variance of results)

Train on a mix of 10000 each of signal, external and internal backgrounds
(2 orders of magnitude larger than individual test sets)

Truth: Sig=Ext=Int=100

Truth: Sig=50, Ext=100, Int=200

Class A Class B

Class C

separation parameter A

fre
qu

en
cy

Efficiencies to select classes in isolation. In general,
these are not necessarily the same for each class.

Selection of individual classes can be further biased
by the presence of other classes

Probabilities have “baked in” systematic biases that
depend on both training sample statistics and
algorithm details (e.g. number of weak learners etc.)

Some indication of over-training

Subtle change belies big impact!

Essentially unchanged because these are assessed
in isolation

Disastrous!

Performance and accuracy depends on
the class composition being exactly the
same in data as it is in the training set.
Otherwise the trained BDT classifier is
no longer optimal and results are
untrustworthy!

Uncertainties not reflected by sample-to-sample variances!

How, then, do you implement things so as to
correctly characterise the statistical behaviour,
make the performance robust and insure an
accurate interpretation of results?

Put a pin in that…
we’ll come back to all this
again after the next lecture!

(Spoiler: previous discussions of likelihood will not have been wasted!)

• If the problem can be completely specified by PDFs that capture the
relevant information, then you cannot do better than likelihood!

• The boost algorithm, loss function and classifier combination is not unique.
There is no theorem that says which set of these is the best or produces the
most efficient algorithm for a given problem.

• Decision trees can be overly sensitive to noise
• BDTs will overtrain! It is therefore important to pay attention to convergence

criteria and verify the final efficiency with independent training sets.
• The use of too many extraneous or redundant parameters can make

things slow and will make it more likely for BDTs to get distracted by
fluctuations in multiple dimensions, resulting in a failure to converge on the
relevant region and leading to a loss in efficiency. It’s worth putting thought
into the parameter choices and building elements one by one.

• You don’t directly get the likelihood and all the benefits that brings.
But you can always make PDFs of decision tree outputs for different event
classes and derive likelihoods and confidence/credibility intervals in the
usual way!

• BDTs and other ML approaches are particularly useful if computational
speed is an issue or it is difficult to couch the problem in terms of PDFs (i.e.
simple hypotheses).

Some Other Observations:

