Lecture 14:

Artificial Neural Networks

Fisher Discriminants & Perceptrons
Universal Approximation

Feed Forward, Propagate Backwards!
3 Useful Tools

Playtime with PyTorch

Stability & Quantifying Uncertainty

Recall the use of a
Fisher discriminant to

separate classes...

20

15 A

10 A

-
/ ‘/choose\‘ L
X — X, - Y10

w. =

-1 0 1

2 3 4 5 6
U= WX + Wy

x = y 2 2
s+ 52 S5t 5

More Generally: 1y = WT]_5

transpose vector of
vector of parameters

weights
— —1 > >
W= (2] +2p)" (4 — i)
class covariance vectors of
matrices class means

*®
N

Another approach to finding wy and w, is to first take
initial guesses for these, and then iterate their values
(for example, using gradient decent) to find the best
solution that allows a threshold cut value of u > u* that
optimises the entropy or Gini index for separation etc.

P —_— Alternatively, defining b = -u*, we want to perform a
U= WX + W,y regression to optimise the parameters in the expression

As with the Fisher Discriminant, the —_—
u=wx+wy+Db

0

separation parameters are optimised
(“trained”) using a known data set (such
as from simulation) and then applied

such that the cut u > 0 optimises the separation
elsewhere.

This can all be diagrammatically represented as follows:

0 for blue class
1 for red class

Y

with parameters w, , Wy, and b to be optimised.

Perceptron

node

weights

output

O for blue class
1 for red class

H(u)

activation function

.

0

Can be used for simple linear discrimination
(independent of the form of the activation function)

Similar constructions with different activation
functions can also be used to provide a continuous
output instead of a simple binary classification.

More complex functionality can then be achieved by
joining units together into networks...

For example:

X
<
y WY

Can now select or exclude
combinations of these 4
regions depending on how
the values w;, w2 and final
threshold function are chosen

For example:
X

O~
y W72

Can now select or exclude
combinations of these 4
regions depending on how
the values w;, w2 and final
threshold function are chosen

A more continuous activation function
shades these more subtly, but keeps
the same basic structure

Universal
Approximator

A central feature at the heart of ANNs is a construction that has the
ability to approximate any arbitrary function, permitting a mapping:

arbitrary

(Xl,X2 .. .Xn) —_— (yl,yz . yn)

The function is approximated in a piece-wise manner through the
nodes by adjusting a finite set of weights and biases:

y(x) =) wif(x, w, b)
i=1

So the output is simply a linear combination of activation function
evaluations. This is where the main flexibility of the construction
comes from, and the main purpose of the activation function is to
insure independent equations for different values of x so as to permit

weights to be tuned to yield arbitrarily different y values.

Practically speaking, this means that the activation function must not
be capable of being couched as a linear expression in terms of some
function of x alone. In other words:

fx,w,b) # F(x)G(w,b) + g(w,b) + ¢

Otherwise, we could re-write the output as:
y(x) = F(x) Z w; G(w,, b;) + Z w; [g(w;, b;) + c]

The behaviour as a function of x would then no longer be determined
by individual weights and biases, but simply by the collective sums in
the above relationship. Degeneracies in these sums would then lead to
equations for x and y that are not independent.

This not only means f must be non-linear but, for example, it also
cannot be a power law, unless b is non-zero; nor can it be an
exponential with non-zero b, unless weights are allowed to change.

So long as the activation function obeys the above inequality, it can
have just about any form. However, some forms may be better at
providing a smooth interpolation between nodal constraints.

A Simplified Toy Example

/
1 W1

L (7

/
W

/

For example, we can try to approximate a cubic

function by choosing w; =1, wy =7, w3 =19

60

50

40

30
>

20

10

0

piece-wise ‘step’ approximation

“train” on 3
data points

v
y(1) = wj
y(2) = wi +wy
y(3) = wi +w,y + wy

These equations are all independent and we
can trivially make these three y values anything
we like by choosing appropriate weights

Or we can try to approximate the function 1/x by

choosing wj =1, wj=—0.5, w}=— 1/6

3 :

2.5 \
2

1.5

>

1

0.5 \‘w

0

0 1 2 3 A

Rectified Linear Unit

returns u value if positive,
returns zero if negative

For example, we can try to approximate a cubic
function by choosing w; =1, w; =6, w3 =12

60

50

40

30
>

20

10

0

piece-wise linear approximation /

A Simplified Toy Example

y(D)
y(2) = 2w +w;
y(3) = 3w + 2w, + w;s

These equations are all independent and we
can trivially make these three y values anything
we like by choosing appropriate weights

/
Wi

Or we can try to approximate the function 1/x by
choosing wi=1,wy=—-15 wy=1/3
3

2.5

2

A reminder that this is not 25 ‘\

deducing an underlying model!! 2 \

You are really just connecting the 15 \\

dots, so extrapolation beyond the ” .

training range should not be os | v I

trusted in general.

In practice, a sufficient number of nodes are chosen for a given task
and a training set is chosen to produce the best overall results for the
relevant range of the data.

As the number of nodes gets larger, the accuracy in function
approximations improves and the distinction between results using
different activation functions vanishes.

Ultimately, the function you are trying to approximate is specified by
the training target output for a given data input

Networks &
Training

Intersections (at nodes)
between lines, planes,
hyperplanes etc. in space
of input parameters

Crossing connections
don’t directly interact,
but allow correlations «
between the inputs
via the nodes

A Simple “Feed-Forward” Network

consolidation
down to one or

_~ more outputs

nodes in a given layer: Defines the complexity of connections.
It is the # geometric regions from the previous layer that can be
linearly combined to form new regions. The overall # nodes is
therefore related to how many connections are needed to
sufficiently approximate the function that maps inputs to outputs.

layers:

Defines the complexity of the base topologies. Each
new layer uses the topologies defined by the previous layer as a

basis to form more complex selection regions

A Simple “Feed-Forward” Network

nodes in a given layer: Defines the complexity of connections.
It is the # geometric regions from the previous layer that can be
linearly combined to form new regions. The overall # nodes is
therefore related to how many connections are needed to
sufficiently approximate the function that maps inputs to outputs.

layers: Defines the complexity of the base topologies. Each
new layer uses the topologies defined by the previous layer as a
basis to form more complex selection regions

Typically used for regression (i.e. fitting best parameter values) or
classification (discriminating categories)

Networks need not be that complex for most tasks - recall that just a
single perceptron can do linear discrimination with multiple variables!

A reasonable strategy is to start simple, and then add complexity if it
improves performance

| will use the following nomenclature:

Input Layer Hidden Layer 1 Output Layer
(of n)

bias term for the
» 1st node of the
1st hidden layer

weight from 2nd input «
of the previous layer
to the 1st node of the
next (1st hidden) layer

K 4

activation function for the Zx-w.(l)+b(1)
2nd node of the 1st hidden 12 2
layer (in principle, could be sum of the relevant
different for each) weighted inputs plus

the relevant bias

A

There may be multiple outputs y, which, in general, are functions of
the weighted inputs resulting from the last hidden layer that are chosen
based on the particular application. This could just be the sum, or a
threshold function for classification, or something else.

A given training run will typically start by ascribing random values
(between -1 and 1) to the weights and biases, and then iterate...

| will use the following nomenclature:

Input Layer Hidden Layer 1 Output Layer
(of n)

bias term for the
» 1st node of the
1st hidden layer

weight from 2nd input «
of the previous layer
to the 1st node of the
next (1st hidden) layer

K 4

activation function for the Zx-w.(l)+b(1)
2nd node of the 1st hidden 12 2
layer (in principle, could be sum of the relevant
different for each) weighted inputs plus

the relevant bias

A

There may be multiple outputs y, which, in general, are functions of
the weighted inputs resulting from the last hidden layer that are chosen
based on the particular application. This could just be the sum, or a
threshold function for classification, or something else.

A given training run will typically start by ascribing random values
(between -1 and 1) to the weights and biases, and then iterate...

Training via Gradient Descent & Back-Propagation

xl
Define a “loss function” that
you would like to minimise.
For example, this could be
sy — yo)? or —In Z etc.
x2

Recall that, for gradient descent, we iterate according to: x,,; =X, — AVf(x)| __

So we need gradients of the loss function for every parameter we want to tune!
But chain-rule comes to our rescue...

previous layer

oreampe 10E0Y:_ (OLO)Y 9y \ (AN (e) - OO
awg) dy afl(l) ou ow é }) input from

typically chosen to be simple functions

Start at the end and work backwards, passing on common factors to the next
set of gradient calculations

Training is done after a fixed number of events (“batches”) that are processed
simultaneously, after which weights and biases are adjusted based on the
averaged gradients for that batch

3 More
Useful Tools

Sigmoid Activation Function

Especially in a long chain of nodal interactions, it is useful to have an

activation function that permits output as a continuous variable but
contained within a standardised range.

where
One popular choice is S(u) = = wa +b
the sigmoid function: B + el o
€ and the sum is over
all the connections
) _ coming into the node
A very flexible function! J
w=10 w=4
b=0 " s P=2
glll\ g"' :E“'(’
g N 2.
A A © |
)IJ{ 0s 1)“(x
w=1 ' W =100 ' =100
08 b=0 s b=0 o8 b=-50

S(wx+b)
S(wx-+b)
S(wx+b)

Softmax (Boltzmann-like) Probabilities

(a common output function for classification/regression)

In general, weights and biases are allowed to take on any real
number values, leading to outputs that span the range from -oo to oo,
with more negative values typically indicating lower probabilities (e.g.
less likely to have engaged an activation function).

Thus, if we wish to characterise such outputs as approximate
probabilities, it seems reasonable to first exponentiate these to map

-0o0 to 0, and then normalise the sum of outputs to 1:

. relevant weighted input
‘ from prev|ous |ayer
approximate probability eZz

associated with the ith output ~ —_—

J
— sum over all weighted inputs

This is, in fact, analogous to the Boltzmann probability distribution.
In ML it is known as “softmax,” as it is a more nuanced number than
a “hard” binary score.

Useful derivatives for
back-propagation: azj

0S(z) {S(zlo(l—S(z,-)) fori=j
L -S@SE) fori#)

Cross Entropy

(a common loss function for classification/regression)

Say that we train a given ANN on a collection of N different events
containing k known classifications that we wish the ANN to predict.
The true number of events in each class is ni, and the predictions for
each class by the ANN for a given set of weights and biases are m;.

The corresponding probabilities predicted for each class is then given
by qi(w,b)= mi/N, and we can write the likelihood for the correct event
classification given the model:

k
Z(correct classes |w.b) = [] (a.(w.b))" =P IhZ= Z n;In g(w, b)

i=1

.......... “true” class
1 £ " oroan
Note that: —1In 2= <)111 q(w,b) =) plng(w,b) asN+large
i=1
Want to maximise the 1 _ & _
likelihood, or minimise = N In2 = Zpi Ing(w,b) =& (p, q(w, b)>
=l “Cross Entropy”
Useful derivative for I o
back-propagation: if g, =S(z) — = S@ —p . e
; \\

1400

1200

800

200000 1

Signal
External background
Internal background

Model Data Set

o)

3 categories of events, each with 3 features

Position (radius)
Energy
Pulse Shape Discrimination

+ Signal and internal backgrounds are uniform in detector volume [~R3]

» External background falls exponentially from detector edge [~ exp((1-R)/0.1)]

» Energy resolution is twice as bad at the detector edge compared to the centre
» Pulse Shape Discrimination values scale linearly with sqrt of apparent energy

W signal
M external background
m internal background

100000 1

. signal
M external background
mm internal background

70000 -

60000 1

B signal
mmm external background
mm internal background

4 50000 4
150000 80000
40000 1
60000 1
100000 30000 4
40000 1
20000 -
50000
20000
10000
0 - 0 B
Radius
40000
- signal - signal - signal - sgnal
. external background == external background . external background | — exteral background
W= internal background 80000 1 35000 60000

2 30

Energy (R<0.2)

=== internal background

20 30
Energy (R>0.8)

40

. internal background

30000

25000

15000

04
000 025 050

075 100 125

PSD (10<E<20)

== internal background

025

050 075 100 125 150 175

PSD (20<E<30)

200

Defining the Network (PyTorch)

import torch
import torch.nn as nn

Create a model class that inherits nn.Module
class NeuralNet(nn.Module):
Input layer (3 features) —> hidden layer 1 (2 nodes) —> output (3 categories)
def __init_ (self, input=3,h1=2, out=3):
super(NeuralNet,self).__init__ () # Call constructor of parent class

self.sigmoid = nn.Sigmoid() # Use sigmoid activation function
self.hl = nn.Linear(input,hl) # Fully connected linear links from inputs to hidden layer
self.out = nn.Linear(hl,out) # Linear output from hidden layer (also fully connected)

Define the sequence of forward flow through the network
def forward(self, x):

out = self.hl(x) # Move inputs via fully connected links to hidden layer
out = self.sigmoid(out) # Next, apply sigmoid activation function

out = self.out(out) # And then advance to output

return out

signal weight

external bkd weight

PSD internal bkd weight

Selection regions are largely defined by the intersection
of 2 planes in the space of the input parameters

Defining the Network (PyTorch)

import torch
import torch.nn as nn

Create a model class that inherits nn.Module
class NeuralNet(nn.Module):
Input layer (3 features) —> hidden layer 1 (2 nodes) —> output (3 categories)
def __init_ (self, input=3,h1=2, out=3):
super(NeuralNet,self).__init__ () # Call constructor of parent class

self.sigmoid = nn.Sigmoid() # Use sigmoid activation function
self.hl = nn.Linear(input,hl) # Fully connected linear links from inputs to hidden layer
self.out = nn.Linear(hl,out) # Linear output from hidden layer (also fully connected)

Define the sequence of forward flow through the network
def forward(self, x):

out = self.hl(x) # Move inputs via fully connected links to hidden layer
out = self.sigmoid(out) # Next, apply sigmoid activation function
out = self.out(out) # And then advance to output
return out
“logits” for

the softmax

softmax .
R » P(signal)
softmax
E » P(external bkd)
softmax
PSD » P(internal bkd)

Selection regions are largely defined by the intersection
of 2 planes in the space of the input parameters

Note: This very simple network still has 14 free parameters!

Training the Network

from torch.utils.data import Dataloader, TensorDataset
model=NeuralNet () # Instantiate neural net

Separate training set data frame into inputs and outputs, then turn these into tensors

X = Training_Set.drop('class',axis=1)
y = Training_Set['class']

X = torch.FloatTensor(X.values)

y = torch.LongTensor(y.values)

Define loss function. Note: CrossEntropylLoss automatically assumes softmax for back propagation
criterion = nn.CrossEntropyLoss()

Define optimizer to be used in back propagation and set the learning rate
optimizer = torch.optim.Adam(model.parameters(),1r=0.01)

N_EPOCHS = 100 # Number of times to run through training set ('epochs')

BATCH_SIZE = 16 # Number of events to evaluate simultaneously before updating weights
accumulation_steps=5 # Trick to increase effective batch size when memory limited by averaging gradients
losses = [] # Will keep record of loss function evaluations

Create a DatalLoader to create randomised batches
dataset = TensorDataset(X, y)
dataloader = DatalLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)

for epoch in range(N_EPOCHS): # Loop over epochs
sumloss=0
for id_batch, (x_batch, y_batch) in enumerate(dataloader):
y_batch_pred = model(x_batch)
loss = criterion(y_batch_pred, y_batch) Evaluate loss function
sumloss=sumloss+loss Sum the loss evaluations for the epoch

Loop over batches
#
#
#
loss.backward() # Back-propagate
#
#
#
#

Predicted outputs from current network

if not id_batch%accumulation_steps: Implement gradient accumulation
optimizer.step() Update the weights
optimizer.zero_grad() Zero the gradient to start again
losses.append(sumloss.detach().numpy()/len(X)) Keep track of loss evaluations per event

Show progress in 10% steps and give average loss per event for the end of the current epoch
if (epoch+1)%(N_EPOCHS/10) == @: print(f'Epoch: {epoch+l} and loss: {sumloss/len(X)}"')

plt.plot(losses)
plt.show()

torch.save(x, 'tensor.pt') # Save to file

Saving and loading previously
trained network Weights: torch.load('tensors.pt', weights_only=True) # Load from file

Training with 1000 events each of signal, external and internal backgrounds:

Avg Loss Evaluation per Batch

import tarch
import torch.nn as nn

A
(e]e)e

Q
2
Q

learning rate = 0.1

Avg Loss Evaluation per Batch

learning rate = 0.01

75100 125 150 175 200
Epoch

N
/

X
()
g

N
‘\ <)
/2

X

<,
20

>

S

Avg TLoss Evaluation per Batch

Create a model class that inherits nn.Module

class NeuralNeti{nn.Module):
Input layer (3 features) =>

hidden layer 1 {4 nodes) -> hidden layer 2 (4 nodes) ->

def __init__(self,input=3,h1=4,h2=4,0ut=3):
super(NeuralNet,self).__init__ () # Call constructor of parent class

self.sigmoid = nn.Sigmoid(}
self.hl = nn.Linear{input,hl)
self.h2 = nn.Linear(hl,h2)
self.out = nn.Linear(h2,out)

Use sigmoid activation function

Fully connected linear links from inputs to hidden layer
Fully connected linear links from 1st to 2nd hidden layer
Linear output from 2nd hidden layer (alsoc fully connected)

Define the sequence of forward flow through the network

def forward(self, x):
out = self.hl(x)
out = self.sigmoid{out)
out = self.h2(x)
out = self.sigmoid{out)
out = self.out{out)
return out

Move inputs via fully connected links to 1st hidden layer
Next, apply sigmoid activation function

Move via fully connected links to 2nd hidden layer

Apply sigmoid activation function again

And then advance to output

2% 0 75 100 125 150 175 200
Epoch

learning rate = 0.01

—p-

output (3 categories)

0 25 50 75 100 125 150 175 200
Epoch

learning rate = 0.001

Avg LLoss Evaluation per Batch

1000 1250 1500 1750 2000
Epoch

0 250 500 70

No need for a more
complex network: a
slightly noisier ride to
the same average loss!

Can tune ‘hyperparameters’ such as learning rate and
network construction to try to achieve the very best
results for a given training set, then use a separate
‘validation’ training set with these parameters fixed to
perform an unbiased training (since ‘overtraining’ on

fluctuations is likely to have occurred when tuning)

Evaluation

def softmax(x): # Define softmax function to convert weights to probabilities
x_norm = np.sum(np.exp(x), axis=0)
for i in range(len(x)):
x[il=np.exp(x[i])/x_norm
return x

sumavg=[0]*3

sum2avg=[0]x*3

miss=0

for i in range(10): # Loop over 10 test data sets stored as data frame list
Test[il.drop('class',axis=1)

Test[il ['class']

torch.FloatTensor(X.values)

torch.LongTensor(y.values)

< X< X
i n

dataset = TensorDataset(X, y)
dataloader = Dataloader(dataset, batch_size=BATCH_SIZE, shuffle=False)

sumloss=0

sum_out=[0]%3

for id_batch, (x_batch, y_batch) in enumerate(dataloader):
ym=model(x_batch)
sumloss = sumloss+ criterion(ym, y_batch)
y_batch=y_batch.detach().numpy()
ym=ym.detach().numpy()
for j in range(len(x_batch)):

if ym[j,y_batch[j]l] !'= np.max(ym[j]): miss=miss+1 # If max probability isn't for true class, call miss
softmax(ym(j])
sum_out=sum_out+ym/j] # Sum probabilities for each class
sumavg=sumavg+sum_out/10 # Compute the average sum over the 10 data sets
sum2avg=sum2avg+(sum_out**2) /10 # Compute the variance

print(f"Avg loss per event: {sumloss.detach().numpy()/len(X):.3}")

print(f"Fraction of misses: {miss/(10xlen(X)):.3}")

print(f"Signal: {sumavg[@]:.4} + {np.sqrt(sum2avg[@]-sumavg[@]**2)/np.sqrt(10):.2}")
print(f"External: {sumavg[1l]:.4} %= {np.sqrt(sum2avg[l]-sumavg[1l]#*2)/np.sqrt(10):.2}")
print(f"Internal: {sumavgl2]:.4} %= {np.sqgrt(sum2avg(2]-sumavg(2]**2)/np.sqrt(10):.2}")

Stability of Results &
Quantifying Uncertainty

Apply trained network to 100 tests data sets each containing 100 events of each class:

Avg loss/batch=0.554 Tot Accuracy=0.77 Avg loss/batch=0.576 Tot Accuracy=0.762
114 | Accuracy: Sig=0.753 Ext=0.785 Int=0.773
Predicted Signal: 99.12 + 0.47
Predicted External: 98.06 = 0.43
Predicted Internal: 102.8 + 0.46

Avg loss/batch=0.555 Tot Accuracy=0.769
.14 Accuracy: Sig=0.785 Ext=0.762 Int=0.759
Predicted Signal: 104.4 + ©.48

1.0- Predicted External: 94.55 = 9.41
Predicted Internal: 101.0 * 0.46

114 . Accuracy: Sig=e.702 Ext=0.751 Int=0.833
: Predicted Signal: 89.93 = 0.46
Predicted External: 90.87 = 0.42

Predicted Internal: 119.2 = 0.48

Avg Loss Evaluation per Batch
Avg Loss Evaluation per Batch
Avg Loss Evaluation per Batch

0 25 s 75 100 125 150 175 200 TU0 0 %5 % 75 100 125 150 175 200 0 25 s 75 100 125 150 175 200
Epoch Epoch Epoch

In the right ballpark, but systematic uncertainties that are not reflected by the variances
resulting from the trained network. Plus, re-training the network, even on the same training
data but starting with a different random seed, leads to different learning curves and
slightly different results outside of variances when applied to the same test data!

Try 10 times larger training set, 10 times lower learning rate, 10 times more epochs:

1.2 12 12
Avg loss/batch=0.553 Tot Accuracy=6.77 Avg loss/batch=8.55 Tot Accuracy=0.772 Avg 1 _ _

N oss/batch=0.544 Tot Accuracy=0.771
Accufacy: S}g=0.779 Ext=0.798 Int=0.735 L Accuracy: Sig=0.751 Ext=0.814 Int=0.751 14 Acguracy: Sig=0.763 Ext=0.811 In¥=e.741
Predicted Signal: 104.4 = 0.49 Predicted Signal: 98.17 = 0.47 Predicted Signal: 182.2 + 0.48

1.0 - Predicted External: 101.3 = 0.43
Predicted Internal: 96.46 = 0.46

Predicted External: 101.0 = 0.45
Predicted Internal: 94.59 = 0.46

Predicted External: 103.6 = 0.44
Predicted Internal: 98.19 = 0.46

o
X

S 3 S

I = I

m m m

St S $—t

9 L

2. 2, 2,

o o =

= % 09 £ 0

| E El

< o

g 08 g o8 g 0.8

m i) <5}

2 2 07 2 o7

2 07 2 0. % 07

- [—

06 - 206 20 06 |

< < <

05— , . . 05 1— : : , . . . 05— , . . . : , . .
0 250 500 730 1000 1250 1500 1750 2000 0 250 00 750 1000 1250 1500 1750 2000 0 250 00 750 1000 1250 1500 1750 2000
Epoch Epoch Epoch

The issue persists! This is a well-known stability problem of neural nets, resulting
from an approach that is under-constrained, resulting in many local minima!

The stability problem is one of the central limitations of ANNs and is a
significant area of study. Proposed approaches to mitigate this include:

* k-Fold Cross-Validation: Divide training set up into k smaller pieces,
alternately treating one of these as a “test set” and the rest as the “training
set” to characterise the performance of a particular network.

- “Bayesian” Networks: Rather than fixed weights, sample each network
weight from an assumed prior distribution (typically a Gaussian) so that
multiple evaluations provide a distribution of results that can be used to
assess uncertainty.

* Adversarial Examples: These involve methods to produce training or test
data sets that specifically target net vulnerabilities. For example, the Fast
Gradient Sign Method (FGSM) produced adversarial examples by perturbing
the inputs in the direction of the gradient”: adv,. = x + € X sign erL(y)] ,
where ¢ is chosen to be some (arbitrary) small fraction of the input range.
These can then be used to assess robustness

* Deep Ensembles: Train a small ensemble of multiple networks, apply these
to the same test data set, and evaluate the results based on the mean and
variance of the ensemble. These can also be combined with adversarial
examples™™. Tends to be comparable or better than Bayesian networks.

' All of these suffer from some degree of computational
costs, logistical limitations and arbitrariness

*Goodfellow, Shlens & Szegedey, arXiv:1412.6572 [stat. ML]
**[akshminarayanan, Pritzel, & Blundell, arXiv:1612.01474 [stat.ML]

Another issue...

ANN trained on equal mix of classes (10000 each), but then applied to data
sets containing: 50 signal, 200 external background, 150 internal background:

“Damn you Bayes!"

Avg loss/batch: ©.531 Tot Accuracy: 6.79 Disaster! For cases where there are event-by-event

Accuracy: Sig=0.718 Ext=0.857 Int=0.725 PR ; : THT
Predicted Signal: 89.8 = 0.48 ambiguities, the estimated relative probabilities

Predicted External: 179.0 = 0.44 depend on the assumed prior distributions for the
Predicted Internal: 131.2 = 0.47 classes in the training set.

define the weights for each class

criterion = nn.CrossEntropyLoss() N class_weights = torch.tensor([0.5, 2.0, 1.5])

criterion = nn.CrossEntropyLoss(weight=class_weights)

Avg loss/batch: 0.478 Tot Accuracy: 0.815 Although,
Accuracy: Sig=0.473 Ext=0.932 Int=0.774 —p Poor signal accuracy!
better... Predicted Signal: 47.47 + 0.34

Predicted External: 212.3 + 0.45 Network has I?amed to
> Predicted Internal: 140.2 = .45 guess at the signal less often
Can get here by iteration: re-train with r
extracted class proportions as new input P{ TRAP!! If you train an ANN as a

; ; discriminant and verify it with
class weights, and keep going around 2 test set that has a different

until the output class proportions match l composition from the data,

you could get things wrong!

An Alternative Approach

(at least for classification tasks)

Treat output from ANNs as a statistic: calibrate it, look at its distribution, derive PDFs for
different classes in terms of it, and then apply standard statistical techniques, such as likelihood

Internal Background

Signal External Background

In the present case, only
2 of the 3 ANN outputs

are independent, so o 008 04
. 0.3
form PDFs in terms of oos - o
the softmax outputs for o0r 002 0
signal and external o0 oo o
background trained with o8 ~ 0s
. l=ext.=int.=1000 o 0‘40‘:&\ o 0s 4@ o 0.40'2\0
signal=ext.=int.= oo i oo L o8 Lo
" P(s) 0.2 o0 00 N P(s) 0.2 00 00 " P(s) 0.2 00 00

nlins Nvig Nexl Ntat - Nvig - Next
i=1 tot tot tot

signal=100, external bkd = 100, internal bkd = 100: signal=50, external bkd = 200, internal bkd = 150:
Data

Data
profile likelihood: profile likelihood:

30—y

T Ty 777
\|Signal: 51.67 = 0.93 /

Signal: 100.5 + 0.98
*1 External: 99.79 = 0.9 /
\Internal: 99.68 + 0.77

2
\ y
— \ \ /
\ \
1 \ \ /
\ \ /
\ \ / /
h \ \ /
\ / /
\ N V4
\) /
- v
5 20

"7\ External: 199.3 = 0.87
. 'Internal: 149.0 + 0.75

/ 3 \ \
/ (=] \\

0
<

0.
n P(s) 0.2

signal=100, external bkd = 100, internal bkd = 100:

Data

profile likelihood:

10

Slgnal 100 5 % 9 98 ;
°] External: 99.79 = 0.9 /
0 Internal 99.68 = 0. 77

-2Log(L)

\\ B//

5 100 105
Signal

signal=50, external bkd = 200, internal bkd = 150:
Data

More accurate class predictions,
composition, variances correctly reflect accuracy,
likelihood gives reliable event-by-event uncertainties!

2Log(L)

profile |Ike|lh00d

Slgnal 51.67 = 0 93 "/

\ External: 199.3 = 0. 87/

Internal 149.9 + 0.75

\//

X%

robust to class

Similarly for BDTs:

Can characterise distributions of functional
BDT evaluations for each class, then use
these as PDFs in a likelihood evaluation of the
class normalisations for any given set of data!

Advantages:

* In many cases, can notably reduce the dimensionality of
more standard likelihood formulations (e.g. could add a great
many more features as ANN inputs without changing the
dimensionality of the PDFs, which are based on a small
number of outputs).

 Takes full advantage of ANN ability to characterise relevant
parameter dependencies that may be otherwise difficult to
formulate.

* Provides a correct statistical description of any trained ANN

* Allows for the proper construction of confidence and
credibility intervals

* Permits the full relevant information content to be conveyed
to others via the likelihood

The lesson is that you shouldn’t trust probability distributions
that emerge from ANNSs, but instead directly derive these
yourself from simulations and calibration data.

But this IS how we generally do things anyway
for fitters, classifiers, analysis cuts etc.!

Final Note: Because intuition can sometimes be
obscured with ANNSs, it's always useful to directly
compare performance levels with more conventional
methods where possible. If they are vastly different,
then it’'s worth digging further to understand the
reasons more specifically and check whether some
crucial piece of information was missed by the
conventional analysis or if the ANN might be
anomalously tuning on some unintended feature.

