
Lecture 14:

• Fisher Discriminants & Perceptrons  
• Universal Approxima%on 
• Feed Forward, Propagate Backwards! 
• 3 Useful Tools 
• Play%me with PyTorch 
• Stability & Quan%fying Uncertainty

Artificial Neural Networks



u

u = wxx + wyy

u = ∑w T ≡p
vector of 

parameters
transpose 
vector of 
weights

∑w = (−1 + −2)≃1( ∑σ1 ≃ ∑σ2)
vectors of 

class means
class covariance 

matrices

More Generally:

wx = x1 ≃ x2
s2x1 + s2x2

wy = y1 ≃ y2
s2y1 + s2y2

choose

Recall the use of a 
Fisher discriminant to 
separate classes…



u = wxx + wyy

Another approach to finding wx and wy is to first take 
initial guesses for these, and then iterate their values 
(for example, using gradient decent) to find the best 
solution that allows a threshold cut value of u > u* that 
optimises the entropy or Gini index for separation etc.

such that the cut u > 0 optimises the separation

Alternatively, defining b = -u*, we want to perform a 
regression to optimise the parameters in the expression

u = wxx + wyy + bwx wy bAs with the Fisher Discriminant, the 
separation parameters are optimised 
(“trained”) using a known data set (such 
as from simulation) and then applied 
elsewhere.

x

y

wx

wy

u = wxx + wyy + b

H(u)
0

0 for blue class
1 for red class 

This can all be diagrammatically represented as follows:

with parameters                 and      to be optimised.wx , wy b

u=
u*



x

y

wx

wy

u = wxx + wyy + b

H(u)
0

0 for blue class
1 for red class 

Perceptron

inputs

connections

weights
summation bias

activation function

node

output

Can be used for simple linear discrimination
(independent of the form of the activation function)

More complex functionality can then be achieved by 
joining units together into networks…

Similar constructions with different activation 
functions can also be used to provide a continuous 
output instead of a simple binary classification.



x

y

Can now select or exclude 
combinations of these 4 
regions depending on how 
the values w1, w2 and final 
threshold function are chosen

w1

w 2

For example:



x

y

w1

w 2

A more continuous activation function 
shades these more subtly, but keeps 
the same basic structure

For example:

Can now select or exclude 
combinations of these 4 
regions depending on how 
the values w1, w2 and final 
threshold function are chosen



Universal 
Approximator



(x1, x2 . . . xn) → (y1, y2 . . . yn)

A central feature at the heart of ANNs is a construction that has the 
ability to approximate any arbitrary function, permitting a mapping:

arbitrary

x

f (x , w1, b1)

f (x , wn, bn)

w1

wn

w∑ 1

w∑ n

y(x) =
n

i⃗=1
w∑ i f(x, wi, bi)

The function is approximated in a piece-wise manner through the 
nodes by adjusting a finite set of weights and biases:

So the output is simply a linear combination of activation function 
evaluations. This is where the main flexibility of the construction 
comes from, and the main purpose of the activation function is to 
insure independent equations for different values of x so as to permit 
weights to be tuned to yield arbitrarily different y values.



Practically speaking, this means that the activation function must not 
be capable of being couched as a linear expression in terms of some 
function of x alone. In other words:

f(x, w, b) ′ F(x)G(w, b) + g(w, b) + c

The behaviour as a function of x would then no longer be determined 
by individual weights and biases, but simply by the collective sums in 
the above relationship. Degeneracies in these sums would then lead to 
equations for x and y that are not independent.

This not only means f must be non-linear but, for example, it also 
cannot be a power law, unless b is non-zero; nor can it be an 
exponential with non-zero b, unless weights are allowed to change.

y(x) = F(x)⃗ w∑ i G(wi, bi) + ⃗ w∑ i [g(wi, bi) + c]
Otherwise, we could re-write the output as:

So long as the activation function obeys the above inequality, it can 
have just about any form. However, some forms may be better at 
providing a smooth interpolation between nodal constraints.



x
1

1

w∑ 1

w∑ 3

1 w∑ 2

b = ≃ 0.5

0

H(u)

b = ≃ 1.5

0

H(u)

b = ≃ 2.5

0

H(u)

A Simplified Toy Example

These equations are all independent and we 
can trivially make these three y values anything 
we like by choosing appropriate weights

For example, we can try to approximate a cubic 
function by choosing w∑ 1 = 1, w∑ 2 = 7, w∑ 3 = 19

Or we can try to approximate the function 1/x by 
choosing w∑ 1 = 1, w∑ 2 = ≃ 0.5, w∑ 3 = ≃ 1/6

y(1) = w∑ 1
y(2) = w∑ 1 + w∑ 2
y(3) = w∑ 1 + w∑ 2 + w∑ 3

“train” on 3 
data points

piece-wise ‘step’ approximation



A Simplified Toy Example

x
1

1

w∑ 1

w∑ 3

1 w∑ 2

b = 0

These equations are all independent and we 
can trivially make these three y values anything 
we like by choosing appropriate weights

y(1) = w∑ 1
y(2) = 2w∑ 1 + w∑ 2
y(3) = 3w∑ 1 + 2w∑ 2 + w∑ 3

0

uH(u)

b = ≃ 1

b = ≃ 2

0

uH(u)

0

uH(u)

For example, we can try to approximate a cubic 
function by choosing w∑ 1 = 1, w∑ 2 = 6, w∑ 3 = 12

Or we can try to approximate the function 1/x by 
choosing w∑ 1 = 1, w∑ 2 = ≃ 1.5, w∑ 3 = 1/3

Rectified Linear Unit
returns u value if positive,
returns zero if negative

piece-wise linear approximation



A reminder that this is not 
deducing an underlying model!! 
You are really just connecting the 
dots, so extrapolation beyond the 
training range should not be 
trusted in general.

In practice, a sufficient number of nodes are chosen for a given task 
and a training set is chosen to produce the best overall results for the 
relevant range of the data.

As the number of nodes gets larger, the accuracy in function 
approximations improves and the distinction between results using 
different activation functions vanishes.

Ultimately, the function you are trying to approximate is specified by 
the training target output for a given data input



Networks & 
Training



A Simple “Feed-Forward” Network

Crossing connections 
don’t directly interact, 
but allow correlations 
between the inputs 
via the nodes

consolidation 
down to one or 
more outputs

# nodes in a given layer: Defines the complexity of connections. 
It is the # geometric regions from the previous layer that can be 
linearly combined to form new regions. The overall # nodes is 
therefore related to how many connections are needed to 
sufficiently approximate the function that maps inputs to outputs.

x1

x2

y

# layers:  Defines the complexity of the base topologies. Each 
new layer uses the topologies defined by the previous layer as a 
basis to form more complex selection regions

Intersections (at nodes) 
between lines, planes, 

hyperplanes etc. in space 
of input parameters



A Simple “Feed-Forward” Network

Networks need not be that complex for most tasks - recall that just a 
single perceptron can do linear discrimination with multiple variables!

A reasonable strategy is to start simple, and then add complexity if it 
improves performance

Typically used for regression (i.e. fitting best parameter values) or 
classification (discriminating categories)

# nodes in a given layer: Defines the complexity of connections. 
It is the # geometric regions from the previous layer that can be 
linearly combined to form new regions. The overall # nodes is 
therefore related to how many connections are needed to 
sufficiently approximate the function that maps inputs to outputs.

# layers:  Defines the complexity of the base topologies. Each 
new layer uses the topologies defined by the previous layer as a 
basis to form more complex selection regions



Input Layer Hidden Layer 1
(of n)

Output Layer

x1

x2

y

w(1)
11

w (1)12

w
(1)

21

w(1)
22

f (1)
1 (u)

b(1)
1

f (1)
2 (u)

b(1)
2

w (y)
1

w(y)
2

weight from 2nd input 
of the previous layer 
to the 1st node of the 
next (1st hidden) layer

activation function for the 
2nd node of the 1st hidden 
layer (in principle, could be 
different for each)

bias term for the 
1st node of the 
1st hidden layer

I will use the following nomenclature:

⃗ xiw(1)
i2 + b(1)

2
sum of the relevant 
weighted inputs plus 
the relevant bias

There may be multiple outputs yn which, in general, are functions of 
the weighted inputs resulting from the last hidden layer that are chosen 
based on the particular application. This could just be the sum, or a 
threshold function for classification, or something else.

A given training run will typically start by ascribing random values 
(between -1 and 1) to the weights and biases, and then iterate…



Input Layer Hidden Layer 1
(of n)

Output Layer

x1

x2

w(1)
11

w (1)12

w
(1)

21

w(1)
22

f (1)
1 (u)

b(1)
1

f (1)
2 (u)

b(1)
2

y
w (y)

1

w(y)
2

y

w(1)
11

w (1)12

w
(1)

21

w(1)
22

f (1)
1 (u)

b(1)
1

f (1)
2 (u)

b(1)
2

w (y)
1

w(y)
2

I will use the following nomenclature:

⃗ xiw(1)
i2 + b(1)

2
sum of the relevant 
weighted inputs plus 
the relevant bias

weight from 2nd input 
of the previous layer 
to the 1st node of the 
next (1st hidden) layer

activation function for the 
2nd node of the 1st hidden 
layer (in principle, could be 
different for each)

bias term for the 
1st node of the 
1st hidden layer

There may be multiple outputs yn which, in general, are functions of 
the weighted inputs resulting from the last hidden layer that are chosen 
based on the particular application. This could just be the sum, or a 
threshold function for classification, or something else.

A given training run will typically start by ascribing random values 
(between -1 and 1) to the weights and biases, and then iterate…



Training via Gradient Descent & Back-Propagation

≡xn+1 = ≡xn ≃ ϵΛf ( ≡x ) |x=xn
Recall that, for gradient descent, we iterate according to:

So we need gradients of the loss function for every parameter we want to tune!
But chain-rule comes to our rescue…

x1

x2

w(1)
11

w (1)12

w
(1)

21

w(1)
22

f (1)
1 (u)

b(1)
1

f (1)
2 (u)

b(1)
2

y
w (y)

1

w(y)
2

L(y)
Define a “loss function” that 
you would like to minimise. 
For example, this could be

(y ≃ y0)2 or ≃ln × etc.1
2

⟶L(y)
⟶w(1)

21
= ( ⟶L(y)

⟶y ) ( ⟶y
⟶f (1)

1 ) ( ⟶f (1)
1

⟶u ) ( ⟶u
⟶w(1)

21 )for example

typically chosen to be simple functions

relevant 
unweighted 
input from 

previous layer

Start at the end and work backwards, passing on common factors to the next 
set of gradient calculations

Training is done after a fixed number of events (“batches”) that are processed 
simultaneously, after which weights and biases are adjusted based on the 
averaged gradients for that batch



3 More
 Useful Tools



Especially in a long chain of nodal interactions, it is useful to have an 
activation function that permits output as a continuous variable but 
contained within a standardised range.

A very flexible function!

S(u) ⃗ 1
1 + e≃u

u = ⃗ wixi + b
where

and the sum is over 
all the connections 
coming into the node

One popular choice is 
the sigmoid function:

Sigmoid Activation Function



Softmax (Boltzmann-like) Probabilities

In general, weights and biases are allowed to take on any real 
number values, leading to outputs that span the range from -∞ to ∞, 
with more negative values typically indicating lower probabilities (e.g. 
less likely to have engaged an activation function).  
Thus, if we wish to characterise such outputs as approximate 
probabilities, it seems reasonable to first exponentiate these to map 
-∞ to 0, and then normalise the sum of outputs to 1:

p̃i ∇ ezi

∂j ezj

This is, in fact, analogous to the Boltzmann probability distribution. 
In ML it is known as “softmax,” as it is a more nuanced number than 
a “hard” binary score.

approximate probabi l i ty 
associated with the ith output

sum over all weighted inputs

relevant weighted input 
from previous layer

⃗ S(zi)

Useful derivatives for 
back-propagation:

⟶S(zi)
⟶zj

= {S(zi)(1 ≃ S(zi)) for i = j

≃S(zi)S(zj) for i ′ j
bonus e

xercis
e!

(a common output function for classification/regression)



Cross Entropy

Say that we train a given ANN on a collection of N different events 
containing k known classifications that we wish the ANN to predict. 
The true number of events in each class is ni, and the predictions for 
each class by the ANN for a given set of weights and biases are mi. 

The corresponding probabilities predicted for each class is then given 
by qi(w,b)= mi/N, and we can write the likelihood for the correct event 
classification given the model:

×(correct classes |w, b) =
k

⟨
i=1

(qi(w, b))ni

=
k

i⃗=1
pi ln qi(w, b)1

N
ln × =

k

i⃗=1
( ni

N ) ln qi(w, b)Note that:

≃ 1
N

ln × =Want to maximise the 
likelihood, or minimise ≃

k

i⃗=1
pi ln qi(w, b) ⃗ ∼ (p, q(w, b))

“Cross Entropy”

(a common loss function for classification/regression)

“true” class 
probability, 
as N    large

ln × =
k

i⃗=1
ni ln qi(w, b)

Useful derivative for 
back-propagation: if qi = S(zi)

⟶∼
⟶zi

= S(zi) ≃ pi
bonus exercise!





• Signal and internal backgrounds are uniform in detector volume [~R3]
• External background falls exponentially from detector edge [~ exp((1-R)/0.1)]
• Energy resolution is twice as bad at the detector edge compared to the centre
• Pulse Shape Discrimination values scale linearly with sqrt of apparent energy

3 categories of events, each with 3 features

Model Data SetSignal 
External background 
Internal background

Position (radius) 
Energy

Pulse Shape Discrimination



y2

x1

x3

x2

y1

y3

R

E

PSD

signal

external bkd

internal bkd

Defining the Network (PyTorch)

weight

weight

weight

Selection regions are largely defined by the intersection 
of 2 planes in the space of the input parameters



y2

x1

x3

x2

y1

y3

R

E

PSD

signal

external bkd

internal bkd

Defining the Network (PyTorch)

P(            )

P(                     )

P(                    )

softmax

softmax

softmax

Note: This very simple network still has 14 free parameters!

Selection regions are largely defined by the intersection 
of 2 planes in the space of the input parameters

“logits” for 
the softmax



Training the Network

Saving and loading previously 
trained network weights:



y2

x1

x3

x2

y1

y3

learning rate = 0.1 learning rate = 0.001

learning rate = 0.01

No need for a more 
complex network:  a 
slightly noisier ride to 
the same average loss!

learning rate = 0.01

Can tune ‘hyperparameters’ such as learning rate and 
network construction to try to achieve the very best 
results for a given training set, then use a separate 
‘validation’ training set with these parameters fixed to 
perform an unbiased training (since ‘overtraining’ on 
fluctuations is likely to have occurred when tuning)

Training with 1000 events each of signal, external and internal backgrounds:



Evaluation



Stability of Results & 
Quantifying Uncertainty



Apply trained network to 100 tests data sets each containing 100 events of each class:

Try 10 times larger training set, 10 times lower learning rate, 10 times more epochs:

In the right ballpark, but systematic uncertainties that are not reflected by the variances 
resulting from the trained network.
data but starting with a different random seed, leads to different learning curves and 
slightly different results outside of variances when applied to the same test data!

Plus, re-training the network, even on the same training

The issue persists! This is a well-known stability problem of neural nets, resulting 
from an approach that is under-constrained, resulting in many local minima!



• k-Fold Cross-Validation: Divide training set up into k smaller pieces, 
alternately treating one of these as a “test set” and the rest as the “training 
set” to characterise the performance of a particular network.

• Deep Ensembles: Train a small ensemble of multiple networks, apply these 
to the same test data set, and evaluate the results based on the mean and 
variance of the ensemble. These can also be combined with adversarial 
examples**. Tends to be comparable or better than Bayesian networks.

 **Lakshminarayanan, Pritzel, & Blundell, arXiv:1612.01474 [stat.ML]

• “Bayesian” Networks: Rather than fixed weights, sample each network 
weight from an assumed prior distribution (typically a Gaussian) so that 
multiple evaluations provide a distribution of results that can be used to 
assess uncertainty.

The stability problem is one of the central limitations of ANNs and is a 
significant area of study. Proposed approaches to mitigate this include:

All of these suffer from some degree of computational 
costs, logistical limitations and arbitrariness

• Adversarial Examples: These involve methods to produce training or test 
data sets that specifically target net vulnerabilities. For example, the Fast 
Gradient Sign Method (FGSM) produced adversarial examples by perturbing 
the inputs in the direction of the gradient*:                                                       ,  
where ε is chosen to be some (arbitrary) small fraction of the input range. 
These can then be used to assess robustness

advx = x + η Δ sign [Λx L(y)]

    *Goodfellow, Shlens & Szegedey, arXiv:1412.6572 [stat.ML]



ANN trained on equal mix of classes (10000 each), but then applied to data 
sets containing: 50 signal, 200 external background, 150 internal background:

Disaster! For cases where there are event-by-event 
ambiguities, the estimated relative probabilities 
depend on the assumed prior distributions for the 
classes in the training set. 

Another issue…

Can get here by iteration: re-train with 
extracted class proportions as new input 
class weights, and keep going around 
until the output class proportions match

“Damn you Bayes!”

TRAP!! If you train an ANN as a 
discriminant and verify it with 
a test set that has a different 
composition from the data, 
you could get things wrong!

better… Poor signal accuracy!
Although,

Network has learned to 
guess at the signal less often



An Alternative Approach

Treat output from ANNs as a statistic: calibrate it, look at its distribution, derive PDFs for 
different classes in terms of it, and then apply standard statistical techniques, such as likelihood

In the present case, only 
2 of the 3 ANN outputs 
are independent, so 
form PDFs in terms of 
the softmax outputs for 
s ignal and external 
background trained with 
signal=ext.=int.=1000

≃2 log × = ≃ 2
nbins

i⃗=1
NDatai log (

Nsig

Ntot ) PDFS(nn(Si, Ei)) + ( Next

Ntot ) PDFE(n(Si, Ei)) + (
Ntot ≃ Nsig ≃ Next

Ntot ) PDFIn(Si, Ei))

(at least for classification tasks)

profile likelihood:

signal=50, external bkd = 200, internal bkd = 150:signal=100, external bkd = 100, internal bkd = 100:

profile likelihood:



Similarly for BDTs: 

Can characterise distributions of functional 
BDT evaluations for each class, then use 
these as PDFs in a likelihood evaluation of the 
class normalisations for any given set of data!

profile likelihood:

signal=50, external bkd = 200, internal bkd = 150:signal=100, external bkd = 100, internal bkd = 100:

profile likelihood:

More accurate class predictions, robust to class 
composition, variances correctly reflect accuracy, 
likelihood gives reliable event-by-event uncertainties!



• In many cases, can notably reduce the dimensionality of 
more standard likelihood formulations (e.g. could add a great 
many more features as ANN inputs without changing the 
dimensionality of the PDFs, which are based on a small 
number of outputs).

• Takes full advantage of ANN ability to characterise relevant 
parameter dependencies that may be otherwise difficult to 
formulate.

• Provides a correct statistical description of any trained ANN

• Allows for the proper construction of confidence and 
credibility intervals

• Permits the full relevant information content to be conveyed 
to others via the likelihood

Advantages:



The lesson is that you shouldn’t trust probability distributions 
that emerge from ANNs, but instead directly derive these 
yourself from simulations and calibration data.

But this IS how we generally do things anyway 
for fitters, classifiers, analysis cuts etc.! 

Final Note: Because intuition can sometimes be 
obscured with ANNs, it's always useful to directly 
compare performance levels with more conventional 
methods where possible. If they are vastly different, 
then it’s worth digging further to understand the 
reasons more specifically and check whether some 
crucial piece of information was missed by the 
conventional analysis or if the ANN might be 
anomalously tuning on some unintended feature.


