Lecture 16:

Deep Learning & Transformers

Deep Learning Principles
Transformer Overview
Embedding and Encoding
Attention!

Encoders and Decoders

More Playtime with PyTorch...

Deep Learning

The term ‘Deep Learning’ is not precisely defined, but generally
involves the use of an enormous number of learned parameters
to solve problems, often starting from relatively ‘raw’ input data.

| The trick to keep this from descending into total chaos is to §
¢ define a structure, with notional logical units that have functional
{ purposes, around which the learning must take place. "

t The actual functions of different parts of the network are then jA

function that defines the goal through back-propagation.

It is, nonetheless, remarkable that just this is enough to prevent
complete anarchy from millions of free parameters, and that
simple back-propagation turns out to be so robust and scalable!

Transformers

Transformers™ were initially invented for Language Models, but have multiple uses. They allow
for non-sequential input of variable length and, thus, do not have a fixed network architecture
for interactions. Instead, interaction between elements happens via the ‘Attention Mechanism,’

which evaluates associations and propagates their impacts. They are also very good at
handling/processing large input strings.

vector representations interact with
each other to encode information
relevant to the goal

translate

to abstract from modified
vector space vector space

I N p u t e - i > | Hor 5 O y t p Ut

translate

The first step begins with the input, which could be a sentence or a recorded detector event.
This is then broken up into separate items, such as words (or word fragments), or detector
elements or individual pieces of information from an event. Each discreet item is mapped to a
unique mathematical object (e.g. a vector) that acts as a ‘token’ for the item (we will talk about
continuous parameter inputs shortly). This process is called Tokenization

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

—

w

\-EV\I\BV

‘Big Picture’ Snapshot:

Here’s the basic idea behind the attention mechanism:

Produce a space in which to generically characterise individual tokens
Add further pertinent information relating to any particular token
Using this, produce another space for associations between tokens

Also produce a set of proposed modifications to token characterisations
due to these associations

Implement modifications in accordance with the strengths of these
associations

Ok, let’s dive in!

Embedding

Take each token to be represented by a vector in some
large, d-dimensional space of characteristics. The exact
nature of this space is something that will be learned by
the network from examples, so we will just define a
working area for this with a large dimensional vector for
the “embedding” space.

Once learned, these embeddings represent the basic
descriptions for each token, independent of its use.

All relevant characteristics and operations will
need to be couched in the language of this space!

We can form a list of embedding tokens, K, by pasting
together the individual vectors corresponding to the
vocabulary of possible tokens (e.g. words or event
characteristics) of size S

Any given input (e.g. a sentence or event) of length L
can then be translated into an initial table of tokens, T,
(sometimes called the ‘context window’) drawn from this
vocabulary

Token Label

Token

embedding ‘characterisation space’
for individual tokens

d-dimensional ‘Working Space’ for
~ Embedded Characteristics

i3 34 46 65 48 38 24 -39 92 98 -18 70 -69:

14|73 -4 49 -26 -64 -63 54 -14 -33 -89 -51 98:

{556 46 68 -93 4 -69 -66 -66 33 3 14 -83

..

—= > © learned weights; >,

6 |-59 78

9/-36-59 62 2 55 15-19 7 11 87 -88 -36

10/-26 49 10 2 55 35 89 55 -59 -28 -61 -59

11 89-18-29 44 58 -43 -2 4 -81-18 29 95
12| 82 81 -9 -48 67 -61 -58 -54 -49 55 -63 50

F 67 11 -98 -95 -15 63 -70 -87 -4 38 99 -56

14 32 -96 -25 -44 -88 86 -80-97 92 -69 -45 -64

.. |-40 82-18 -8 -22 62 -88 30 -64 -45 -33 51

i 86 50 98 28 -23 -38 -37 -46 -84 50 -16 -64

Embedded Characteristics

alc|alalcs|c[cr]cs[cofcol .. [ca]
4 73 -4 49 -26 -64 -63 54 -14 -33 -89 -51 98
11 89 -18 29 44 58 -43 -2 4 -81-18 29 95
5 /-56 46 68 -93 4 -69 66 -66 33 3 14 -83
5 -56 46 68 -93 4 -69 66 -66 33 3 14 -83
'8 24 -11-12 59 -14 -13 48-36 38 12 16 77
15 4 16 -9 69 -54 83 19 68 -21 37 75 -62
3 34 46 65 48 38 24 -39 92 98 -18 70 -69
8 24-11-12 59 -14 -13 48 -36 38 12 16 77
1 15 50 -43 58 -13 -79 -96 22 73 -44 -51 48

Encoding

We also want to account for additional information about the specific token,
such as the order of a given word in a sentence, or the position of a given
detector element, or a continuous property like time, temperature or energy
that some sensor registered.

One way to do this is to define a modification
vector to represent this information in terms of the
embedding space, and then define a structure of

T, = T’”’f +U
where a given token vector is the sum of the initial

vector and a modification vector, U, containing the
additional information.

The modifications can either be a fixed property of the token, or something
that can vary from case to case. At the end of the day, the network will learn to
interpolate from examples of the combined vector and, for a large enough
embedding space, the chance of ambiguities arising between different initial
vectors becomes vanishingly small.

The form of the modification vectors can be chosen at the start to convey
useful structural properties (e.g. similarity, periodicity etc.), and the network
will then ‘learn around’ these with the remaining freedom of vector definitions.

Example of specified encoding:

Say we want to encode the position of a token from a vocabulary of length L
using a d-dimensional embedding space. One suggested approach” is to first
divide the embedding space into even and odd components and then use a
harmonic sequence of sin and cos functions to define a modification vector for
a position k of a given token as:

(even) (odd)

U,, (k) = sin U,,+1(k) = cos

o 2nld o 2nld

where n is an index running from 0 to L/2 and « is a large constant (typically
chosen to be ~10000 for LLMs)

ith component of modification vector (in embedding space)
0 100 200 300 400 500
0% AT T [0.75

W,
o] 'm,,w ‘ 050

Wy ""'v m"l
K 4 ': ! ::#f ! ':W s
I: ufu’l’h "”
60 ";'h ’u,'ip '# H‘ 'm

000
;,:,"4,‘, I" m

o i h " H W M -050
///’f :’:j':i:hi "h‘"h mhl ‘ml ”“ 4 -0.75

100

-0.25

The positional encoding matrix for n=10,000, d=512, sequence length=100

- vector is normalised between -1 and 1 (good for stability)
* unique encoding for each position
* nearby positions have more similar looking vectors (relative distance)

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

An encoding can also be learned using a simple ANN!

Say we have some
time measurement
from a particular
detector element:

U4

U2

Us

Us

Us

Us

Ug

—

The encoding is
emergent from the
learning process!

Feeding the value through some activation functions followed by a fully
connected layer can be used to produce a modification vector in the
embedding space, which can be added as an encoding to the token vector

Ok, we now have our token vectors,

let’s move on to assessing associations...

How Learned Interactions Take Place

The learned associations between tokens are characterised
by tuned weights in two matrices (called “Query” and “Key”)
that create vectors in an “association space,” where the
strength of associations are represented by the alignment of
these vectors.

The impact of these associations are then defined by
another learned matrix of weights (called “Value”), which
provide modification vectors to be added to the tokens.

“Attention” is the application of these modifications,
weighted by the strength of the associations.

Query

For the ith token vector, we now want to allow the presence of other tokens in
the sequence (e.g. words in the sentence, measurements from other detector
sensors etc.) to provide context so as to modify the interpretation.

The first step is to produce a new vector, in a new space, that represents what
the token under consideration is ‘looking for.” We will assume that this ‘query
vector’ can be produced from some linear transformation of the token vector,
and need not necessarily have the same dimensions as the embedding space.
Again, the production of this will be learned from examples, we just need to
provide the structure:

QiEWQTi

where W, is a matrix of weights to be learned for the transformation and Q;is
the produced ‘query’ vector corresponding to the the ith token.

~ characteristics
alcclcecs|ce|cr|cs|csfcuof .. |cal

queries

Gif 3955 956664 30 6457 57141 78 We can thus produce a list of query vectors:
Q2 -79 24 -55 -10 -85 -71 32 -94 -88 -79 94 21
Q3 67 -49 -2 -44 24 -43 -32 -61 -22 -14 28 3 Quel’y
g: -g; Zg g -JW 32 1: i? ;38 |Q1/Q2/Q3|Qs|Qs|Qs| Q7| Qs ... | Qx
las| 7 -1 -34 < 8/ 57|65 88 4 38 -68-99 10 73 53 60 84 58 67
Q|75 31 87 96 26 -28 -64 11 67 21-85 7029 42 56 9 -62 43
Qs| 3 -{leafned cohversionweights) 54 -27 — W TT e 530 74 -16 -69 -95 -36 46 -24 87 -46
Q9|-45 72 -2 -65-75 81 60-93 26 54 72 -39 pu— Q g 5 -93-98 52-47 3 67 27 35 0 21
Qu0-35 -11 -9 -56 51 -59 47 -5-65 41 -75 -94 O 8 73 50 973649 39 18 9 77 17
Qu 79 -71 -1-91-67 -2 71 84 11 71 26 69 15 58 69 25 -87 87 92 97 18 95 11
Q12/-49 -48 -27 78 64 -14 51 84 -32 -3 -63 -61 3 27-8 26 1-29 8 57 13 -51 -62
. HEEEHEHERE R AR 8 -40 74 -47 72 15 -38 31 59 4 -37
R ;| c | : | s s s s |||z 1 -32 -4 62-44 35 44 -61 42 20 92

Key

Similarly, we’ll also have each of the tokens produce a new
vector, in the same space as the query, that represents what
relevance it can offer. We will similarly assume that this ‘key
vector’ can be produced from some linear transformation of
the other token vectors. Again, this will be learned, we just
need to provide the structure: K = WKTT

Key

[Ki K2 |Ks|[Ka|Ks|Ke|Kz|Ks| .. Kk
4|96 -69 -48 -34 84 -62 86 67 28 54
11 35 66 17 -35 -86 -16 -49 -18 76 -90
5| 18 -68 56 -31 87 -74 -47 -24 -83 -43
5| 69 69 -66 -14 -36 -56 17 78 16 -91
8 -31 -6 77-26 79 -56 70 -18 54 -49
15/-40 6-65 -1 27 85 -1 8 92 60
'3/-33-81 63 43 58-27 -14 19 16 -75
8 | 23 -31 -75 -22 -71 -60 -46 -16 -61 -79
188 12 -35 45 -94 -78 60 -8 60 81

Token

where Wy is a matrix of weights to be learned for the transformation and K is
the resulting list of key vectors, transformed from the list of token characteristics.

embedding ‘characterisation space’ for
individual tokens

produce
association
ectors

Spaces are very different: the words ‘sunrise’
and ‘tequila’ may individually have classifications
that look very different, but the appearance of
both together in a particular sequence has a
strong association with a hangover!

i

‘association space’ opérating between tokens

0,

K;

Key vectors that line up with
Query vectors in this space
are said to ‘attend’ to them

So, the dot product between Key and Query indicates the stréngth of association,
which can be fed to softmax to give a comparative relevance on a scale of 0-1

Value and Attention

We now want the characterisation for each token vector to be modified by the
presence of each of the other tokens according to the computed strength of
their associations. But how should these modifications be done?

This, too, is learned! Tuned weights define a series of
vectors, back in the original embedding space”, that
are added to the original token vectors to modify their
directions. These are the ‘value’ vectors, which thus
provides a list of proposed modifications due to
associations with a each token.

Token

o]

14 -91
-52 17
-63 -10
33 87
-22 61
-49 -47
23 62
36 -41
58 80

-33 -85

-22 -44

Value

80 -10
-60 20
-85 -38
-47 14
-66 89
34 -41
69 -59

9 -96

-85 -20

96 87
35 63
53 30
-20 -96
-36 87
88 -13
-67 -6
-54 -3
89 -11

-33
-84
-56
-34
53
8
35
-37
97

-48
10
-71
55
-70
9
21
15
-17

Attention™ is then defined as the matrix of proposed modifications multiplied

by the computed strength of the association:

OK'

Ve

dimensionality of Q and K matrices, added
to keep the product of ‘raw’ Q and K
values in a reasonable range for softmax

Attention(Q, K, V) = softmax Vv

*In practise, this is done in 2 steps: a learned value matrix is first computed in the same space as the key
and query, and a second learned matrix then upscales this to the dimensionality of the embedding space.

** Bahdanau et al., arXiv:1409.0473

Token

Attention

-89
32
-63
-92
-97
97
87
-81
-2

Vi ’ V2 V3 I Va | Vs Ve | V7 | Vs Vo ’Vlol .. Vd
-26 -53
83 25
56 18
47 -39
-82 -79
-22 55
-49 -16

-76
-80
11
32
42
-73
37
33
95

A1 A2 A3 As As As
8 -
56 23 13
-6 -22

4 19
11 -28
5 49
5 51
8 85
15 0
3 30
8 -34
1 38

23

1 -1-

-8 -26 -77

-24

11

-37
0 -48 -

-2 -29
-3 -35 18
-2 53

0-23 -

34

-63

-9
35
47

-33
-25

11

-4
20
-51

-3 56
-4 47 -
-1-14

24 -24 -26 -

46 -29 -8

1

-20 35

2 -2

77
78

8
40

-13
-15
=27 -5 -1
-1 330 -8 11 -
49 -1 -3 -4 26 -4 35

7
34
9
-1
15

32
7
2

42 -

63
20
13
36
69

A7[A8|A9|A1o| |Ad|
28 -

16
19
20
13
19
27
-9
-3
19

Masking

There are times when we may want to remove the influence of certain tokens.
This can, for example, be for ‘padded’ inputs that don’t exist (sometimes more
computationally efficient than removing them altogether), or as a diagnostic to
separate the impact of certain information, or guiding the training process to
only look at certain bits of the provided information.

Embedded Characteristics

C1 C2 Ci|Ca|Cs|[Cs|Cr|Cs ColCuof ... |Cad]

73 -4 49
89 -18 -29
-56 46 68
-56 46 68
24 -11 -12

oo [>

-26 -64 -63 54 -14

44 58 -43 -2

59 -14 -13 48 -36

-33 -89
4 -81 -18
93 4 -69 -66 -66
93 4 -69 -66 -66

33 3
33 3
38 12

-51 98

29 95
14 -83
14 -83
16 77

Token

15| 4 16 -9
34 46 65
8 24 -11 -12
1 15 50 -43

69 54 83 19 68
48 38 24 -39 92
59 -14 -13 48 -36
58 -13 -79 -96 22

-21 37

98 -18
38 12
73 -44 -

75 -62
70 -69
16 77
51 48

A natural way to do this is to set the
corresponding attentions to zero, so
that they cannot make modifications.

But rather than directly setting the
attentions themselves to zero, the
corresponding arguments of the
softmax in attention are instead set to
— 00, which does the job and also
keeps the calculations of relevance
normalised to the range between 0-1
for the tokens that are present:

. OKT
Attention(Q, K, V) = softmax | mask+ Vv

l Vi

mask elements set to 0 for present
tokens, and to — oo for absent tokens

‘ __characteristics)
alalclclcs|cs|ccs]cofcol .. [c

- -
Qi[39 -55 95 -66 64 -30 64 57 5 -71-41 78 M It _H d d Att t
Q2|79 24 -5 -10 -85 -71 32 -94 -88 -79 94 21 uiti eaae ention
Q3| 67 49 -2-44 24 -43 -32 6122 -14 28 3
Qs|-47 -94 27 13 21 -47-99 12 -64 14 50 80

(lan ol 13 5c 1.0 46,45 75| & 1130 Typically, the key and query space is broken into

7 -91-34-69 -4 38 -54-18 8 -57 -65 88
29 18 -92 35 91 96 26 -28 -64

@ 326 8977743 5% 1 45427 multiple pieces and processed simultaneously as

'Qo|-45 72 -2 -65 75 81 60-93 26 54 72 -39

Glsu U nmnseann ‘multi-headed attention.” This takes advantage of
| TR parallel processing to efficiently provide different
independent assessments of Attention

. Attention
characteristics
alc|alalc][c]c[cs[c]Cw .. [|A1 Az A3 As As As A7|As|A9|A1o| |Ad|
Ki|-80 83 20 54 -90 -18 57 -39 64 -76 -5 2
K2| 25 42 87 24 -13 83 33 85 -74 -45 7 43 4 19 8 -1 -1-34 -4 -3 5677 28-32 16
K3| 72 -35 -90 69 83 -64 -15 -45 66 -44 -97 21 -28 -56 23 13 -63 20 -4 47 -78 7 7 19
Ks|-40 63 52 -60 7 -74 31-36 54 -67 -51 -91 49 23 -6-22 -9-51 -1-14 8 34 2 20
Ks|-34 62 -81 81 -5 81 98 74 82 36 50 69 #
Ks| -9 76 -36 77 64 -48 -78 -64 32 -98 80 -59 51 -8-26 -77 35 -24 -24 -26 -40 9 -42 -13
K7'-32 83 -24 56 -70 -50 -38 -88 49 -3 92 -36 85 -24 -2 -29 47 46 -29 -8 -13 -1 63 19
Ks| 62 9 92 -67 12 3-59-12 78 93 -66 85
Ko| 73 -67 77 -49 61 54 -14-98 97 9 13 -38 0 -3-3518-33 1 -2 -2-15 15 20 27
Kio| 85 -59 -5 43 -29 -74 12 61 -8 -15 -81 -55 30 11 -2 53 -25-20 35-27 -5 -1 13 -9
-34 -37 0-23-11 -1 3 30 -8 11-36 -3
1 38 0-48-49 -1 -3 -4 26 -4 35 69 19

K11/-27 31 66 -45 -66 22 -39 -76 -67 63 29 64
- HEHEHHEHBEHEBE AR / \

Kzl 68 68 20 5 60 -20 -80 -11 -75 -81 40 87
Attention Head 1 Attention Head 2 . etc. o
T /K H 4 " 4 "
Attention(Q, K. V) = softmax Q_K> vy Attention(Q', K'. V") = softmax < 2) v Aftention(Q", K", ¥) = S°ftmax< 7 > Y

queries
Q
4
w
w
=3
[+
~N

keys
Token

= =
|oo w‘m oo|u1‘u1 =

K

dx Vi

modified characteristics

- C*ZIC*3|C*4‘C*S C*6|C*7|C*8|C*9lC*10C*111t*1zl |
15 03 0 -07 -0.1 -2.8 0.5 -0.8 -0.9 03 -2.1 -0.6 ..
01 09 29 11-11 0 0-03 13 23 -09 04 ..
06 -07 0 01 13 -11-15 0 -18 09 -09 1 ..
0401 0 1 10519 0-09 19 0 03 ..
02 05 07 0 -05 29 14 -09 -11 05 03 26 ..
1919 0 0-24-19 -26-16 01 0 1 -29 ..
01 19 06 -0-28 02 02 0-19 0 13 0 ..
25 07 -01 15 -14 22 02 04 0 -1 03 -14 ..
04 013 19 0 1 07 18 11 -28 05 -3 ..

% : (for stability, re-normalise T* to
T - T+Attent|0n have mean 0 and unit variance)

The new set of token vectors are a dynamic,
adaptive modification of the initial set

Token
‘o—x|oo w G|oo|u-Ju1 B‘A

Finally, for each of the vectors in the modified Token matrix, elements from different
attention heads ‘talk’ to each other via a simple feed-forward network, typically via a
single hidden layer with larger dimension (this layer often contains most of the weights!).

&

A

/“:Q?é X7

C*

m+1

< X
QAL

C*

m+2

k
2m+1]

2m+2

KX
RO
ISBBING
th 10}:&‘)

NS

LRI AL
NG

"“,V

Y AN

\\\&

///o

NS/ ZA NN
&L/ “\ 7
N 07 ‘A\‘&\\ RS
NS

A,

“ \ \’ PO
Y %«3‘4’;}’

XN\ N \V‘ Y\—~ A
Ny 13
S Pt -\
4

N A *Y‘v v\‘“r
LI

N

‘,’{,’ V““‘ : 5
e\ N

The same learned network
is used to consolidate
information across the
different attention heads
and permit a (piece-wise)
non-linear mixing to vyield
more nuanced tweaks to
the modified token matrix

Ti* = T + A

(and normalise again)

Together, this whole process
constitutes one ‘Attention
Block.” One can then string
multiple such blocks together
for even deeper learning

The process described so far constitutes an ‘encoder,’ for providing context to input data

Encoder
>

L)
Attention block Add & Norm

Feed
Forward

)

N Add & Norm

for adding back Multi-Head
modifications Attention
(residual network) A I J)

L y,

Positional A
Encoding @'ﬁ)

Input
Embedding

T

Inputs

‘Skip’ connection

To make use of this,qit’s convenient to

have a single vector (h,,.) that captures
relevant information from the final ‘hidden
state’ of the encoder.

There are a number of ways to do this,

including:

1) Sum or linearly combine all the
individual modified token vectors

2) Explicitly add another ‘dummy’ vector
to the token matrix to gather this
information

3) Just take the last vector in the token
matrix to represent this

In any case, all token vectors interact with
each other via Attention. If you treat a
given vector as having the relevant
information, the learning process will
adjust weights to make this the case,
because that’s what will work best to
minimise the loss function!
(Deep learning magic!)

In a language translation task, the encoder output (source language) then
needs to be fed into a decoder to generate a translated sentence in the
target language word-by-word

Encoder

—p Decoder
)

Add & Norm

Feed
Forward

)

Add & Norm

Multi-Head
Attention

—tr

\ J

Positional N
Encoding ®_<‘)

Input
Embedding

T

Inputs

In a language translation task, the encoder output (source language) then
needs to be fed into a decoder to generate a translated sentence in the
target language word-by-word

Encoder
—p Decoder
e ™\
Add & Norm
Feed We will also need a ‘hidden state vector’
Forward . .
for the decoder to represent information

4

about the next word to be generated, in

N Add & Norm the same embedding space of tokens in
Multi-Head the target language. This can be initially
Attention .
enerated, for example, by applying a
T g P y applying

!) ‘decoder initialisation’ matrix (to be
learned) to the hidden state vector from

Positional A " der-
Encoding @‘? the encoder:

Input -
Embedding hdec —D

T

Inputs
The decoder uses the same sorts of elements in a modified configuration.

We'll run through this very briefly, and then move on to a practical
example of transformers applied to a problem in experimental physics...

N
inithenc

Encoder-Decoder Pair Used for Translation”

I
Output ™ . Used t t i dint lated i
Srobabilitie sed to generate next word in translated sentence
e A simple, fully connected layer (matrix transformation)
.......... from h,,. to a vocabulary vector, providing weights that
— can be turned into probabilities for the next word choice
Feed . Cross-attention: Q from decoder (looking for relevance of
Forward " the next word to be generated in the target language), K
- N\ | (Gagzrom from encoder (relevance provided by the input source) and
yaT— V also from the encoder (this is how basic characteristics
Feed Attention | . L . 7
o AR | NS should be adjusted). Attention is then applied to /1,
Add & Norm Duri ..) .
Nix uring training, don’t look at answers for examples provided
f-" Add & Norm | ey e 0 O I T . ;
NraT— - beyond the words already generated (i.e. don’t cheat!)
Attention Attention
[) "l N REECRELLEELED Look at context of words already generated (self-attention)
—] J ———/
Positional D @ Positional
Encoding ; Encoding
Output
Input Embedding
Embedding I
I Outputs <
Inputs (shifted right)

sentence to translated words
be translated generated so far

PLUS the hidden state vector hdec * “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

Example of an encoder-based reconstruction algorithm for position using timing

(Thanks to Cal Hewitt for help with this!)

light detector (PMT)

Simplified Idealised Scenario

« Detection volume is a 10m cube with
a fully contained non-dispersive
medium of refractive index 1.5

O + Light from the interaction is point-
like, instantaneous and isotropic

« PMTs have uniform 4t efficiency and
- an instantaneous response function

interaction
producing E
isotropic light

Each PMT has a trigger efficiency of

0.8 when the event is at the centre of
Q the detector, scaling with the inverse

square of distance to the event

10m

) jd\w
D

« A valid event trigger requires at least
4 PMTs to register hits

class Event_Generator:

__init__(self):

Generate e # ;:;;ne :I‘edT positions by permuting the PMT separations
] Ll

Training Data

self.pmt_x, self.pmt_y, self.pmt_z = zip(*xitertools.product([-PMT_Sep, PMT_Sep], repeat=3))

def generate(self):
Generate event randomly within the cubic volume

X, Yy, z = (PMT_Sep*np.random.uniform(-1, 1) for _ in range(3))

pmt_ids, hit_times = [], []
nhits = 0

for pmt_id in range(8):
distance_to_pmt = np.linalg.norm((x - self.pmt_x[pmt_id], y - self.pmt_y[pmt_id], z - self.pmt_z[pmt_id]))
hit_time = (distance_to_pmt / Phase_Velocity)
Scale PMT trigger efficiency by 1/distance”2 relative to the cube centre
and then see if it triggers when Poisson fluctuated
if np.random.poisson(lam=Eff_Mid#*(3%(PMT_Sep**2)/4) / (distance_to_pmt ** 2)) > 0:
nhits += 1
hit_times.append(hit_time)
pmt_ids.append(pmt_id + 1)
else:
In this example, we will record ALL PMT entries, but will pad the PMTs that are not hit
hit_times.append(0)
pmt_ids.append(0)

if nhits >= 4: # Trigger the overall event on at least 4 hits
hit_times = np.array(hit_times)

Make a 2-D array by stack the array of PMT ID's on top of the array of hit times
(i.e. column-wise stacking for axis=1, as opposed to along the same dimension for axis=0)
and return this along with the truth array (net output will need to be in the same
form as the truth information for MSELoss to recognise)
return np.stack((pmt_ids, hit_times), axis=1), np.array((x, y, z)).astype(np.float32)
else:
return self.generate() # Try again if the event hasn't triggered

class Dataset(Dataset):

Generates data set of n_events examples with truth information on initialisation
def __init__(self, n_events):

self.n_events = n_events

self.generator = Event_Generator()

self.data = [self.generator.generate() for _ in range(n_events)]

def __len__(self):
return self.n_events

def __getitem__(self, idx):
return self.datalidx]

Y\ # Create the model class: 32 embedding dimensions, 4 atten heads, 64 nodes for the feed-forward, 2 atten blocks
class TransformerNN(nn.Module):

i def __init_ (self, dim_embed=32, nhead=4, dim_feedf d=64, num_1 =5):
Deflne the e su;:i().jjnit_:(u; embe nnea im_teeatorwar num_Layers
Network

self.d_model = dim_embed

Fully-learned embeddings for each PMT ID + 1 'dummy' token for hidden state summary vector
self.pmt_id_embedding = nn.Embedding(9, dim_embed)

Single linear with simple activation y=x for hit time encoding onto token space
self.ht_encoding = nn.Linear(1, dim_embed)

Single linear with simple activation y=x for PMT position encoding onto token space
self.pmt_pos_embedding = nn.Linear(3, dim_embed)

Set transformer components. Define the ordering sequence for indexing the batch number
encoder_layer = nn.TransformerEncoderLayer(d_model=dim_embed, nhead=nhead,
dim_feedforward=dim_feedforward, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.prediction = nn.Linear(dim_embed, 3) # Three predicted values: x,y,z of event

Define the sequence of forward flow through the network
def forward(self, x):

Create a torch tensor for the number @ (which will be the location in the token stack for the dummey vector)
to be associated with the device/processor dealing with the input x, and repeat this for every event
keeping a dimension for the token number and a dimension for the token entry

dummy_tokens = self.pmt_id_embedding(torch.tensor(9).to(x.device)).repeat(x.shapel0], 1, 1)

Create a torch tensor for the value 'FALSE' (default mask value) to be associated with the device/processor
dealing with the input x, and repeat this for every event, keeping a dimension for the token number
dummy_tokens_padding_mask = torch.tensor(False).to(x.device).repeat(x.shapel@], 1)

For each event and PMT, set the mask flag true if the PMT ID (@ index in 3rd entry) is set to zero
padding_mask = x[:,:,0] ==
padding_mask = torch.cat((dummy_tokens_padding_mask, padding_mask), axis=1)

For each event and PMT, create the embedding space (pass each PMT ID as long integer for torch to identify embedding)
pmt_emb = self.pmt_id_embedding(x[:, :, 8].long())

For each event and PMT, encode hit time (1 index in 3rd entry). An exta dimension is added (unsqueeze(2)) for torch
to recognise generic format for layer-to-layer linear map, though we are just mapping a single point to a full layer

ht_enc = self.ht_encoding(x[:, :, 1].float().unsqueeze(2))

Re-use memory space of x for tokens: combine dummy tokens & sum of embeddings & encodings in list-wise way (axis=1)
X = torch.cat((dummy_tokens, pmt_emb + ht_enc), axis=1)

x = self.transformer_encoder(x, src_key_padding_mask=padding_mask) # Modify tokens: Go Transformer!!

Re-use x again to produce predictions from hidden state vector (all batches, @th pos. token, all token-space values)
x = self.prediction(x[:, @, :])

return x

Training Loop

N_TRAIN_EXAMPLES = 32000
BATCH_SIZE = 32
N_EPOCHS = 100

print("Generating Training Data...")
train_dataset = Dataset(n_events=N_TRAIN_EXAMPLES)
train_loader = Dataloader(train_dataset, batch_size=BATCH_SIZE)

model = TransformerNN()

criterion = torch.nn.MSELoss()
opt = torch.optim.Adam(model.parameters(), 1r=0.001)

resolutions = []

print("Start Training...")

print("Epoch Resolution (m)")
for i_epoch in range(N_EPOCHS):
{i_epoch} {sumloss/nn:.3f}")

if(i_epoch>0): print(f"

sumloss=0
nn=0

for i_step, (batch, labels) in enumerate(train_loader):
output = model(batch)
loss = criterion(output, labels)

loss.backward()

sumloss=sumloss+np.sqrt(loss.detach())

nn=nn+1
opt.step()
opt.zero_grad()

resolutions.append(sumloss/nn)

Achieved Resolution (m)

Learning curves for different
starting random seeds

10

Epoch

100

Note that the transformer is fitting the event position
using the PMT timing information... even though we
have not given it the positions of the PMTs!

There is not a physical model here - the
transformer is simply looking at individual
associations (e.g. when these tubes are hit with
these times, the position is here) and using a
large number of parameters to do a numerical
interpolation

But would it help to provide the PMT position information?

Let’s try adding an encoding for these by modifying the following lines:

In Event_Generator, provide the PMT positions as part of the output:
return np.stack((pmt_ids, hit_times, self.pmt_x, self.pmt_y, self.pmt_z), axis=1), np.array((x, y, z)).astype(np.float32)

In TransformerNN, define the linear encoding of the PMT positions:
self.pmt_pos_embedding = nn.Linear(3, dim_embed)

In the forward, encode the PMT positions, adding this to the embedding along with the hit time encoding:
pmt_pos_enc = self.pmt_pos_embedding(x[:,:,2:5].float())

x = torch.cat((dummy_tokens, pmt_emb + ht_enc + pmt_pos_enc), axis=1)

without PMT
position _ _
encoding Yes, learning is faster... at
least initially, before settling

down to a very similar curve

Achieved Resolution (m)

with PMT
1 position T
encoding
0
1 10 100

Epoch

We can also try adding more attention blocks:

class TransformerNN(nn.Module):
def __init__(self, dim_embed=32, nhead=4, dim_feedforward=64, num_layers=2):

5

Achieved Resolution (m)

5 attention blocks

1 10 100
Epoch

But, for this particular problem, it is possible to construct an analytical solution that would give
the event position exactly, whereas here we are limited to a gradual power-law improvement!

This is because there is still no physical model, so the resolution is limited by the
extent of arbitrarily tuned parameters!

Physical models are better, but ML approaches like this are useful when the complexity of a
problem is such that analytic modelling is not tractable or too time consuming to implement

