
Lecture 16:

• Deep Learning Principles 
• Transformer Overview 
• Embedding and Encoding 
• Aken%on! 
• Encoders and Decoders 
• More Play%me with PyTorch…

Deep Learning & Transformers



The term ‘Deep Learning’ is not precisely defined, but generally 
involves the use of an enormous number of learned parameters 
to solve problems, often starting from relatively ‘raw’ input data.

The trick to keep this from descending into total chaos is to 
define a structure, with notional logical units that have functional 
purposes, around which the learning must take place.

The actual functions of different parts of the network are then 
emergent from the learning process, driven entirely by the loss 
function that defines the goal through back-propagation.

It is, nonetheless, remarkable that just this is enough to prevent 
complete anarchy from millions of free parameters, and that 
simple back-propagation turns out to be so robust and scalable!

Deep Learning



Transformers* were initially invented for Language Models, but have multiple uses. They allow 
for non-sequential input of variable length and, thus, do not have a fixed network architecture 
for interactions. Instead, interaction between elements happens via the ‘Attention Mechanism,’ 
which evaluates associations and propagates their impacts. They are also very good at 
handling/processing large input strings.

Transformers

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762
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The first step begins with the input, which could be a sentence or a recorded detector event. 
This is then broken up into separate items, such as words (or word fragments), or detector 
elements or individual pieces of information from an event. Each discreet item is mapped to a 
unique mathematical object (e.g. a vector) that acts as a ‘token’ for the item (we will talk about 
continuous parameter inputs shortly). This process is called Tokenization



‘Big Picture’ Snapshot:

Here’s the basic idea behind the attention mechanism:

1) Produce a space in which to generically characterise individual tokens

2) Add further pertinent information relating to any particular token 

3) Using this, produce another space for associations between tokens

4) Also produce a set of proposed modifications to token characterisations 
due to these associations

5) Implement modifications in accordance with the strengths of these 
associations

Ok, let’s dive in!



Take each token to be represented by a vector in some 
large, d-dimensional space of characteristics. The exact 
nature of this space is something that will be learned by 
the network from examples, so we will just define a 
working area for this with a large dimensional vector for  
the “embedding” space.

Once learned, these embeddings represent the basic 
descriptions for each token, independent of its use. 

All relevant characteristics and operations will 
need to be couched in the language of this space!

Embedding
embedding ‘characterisation space’ 

for individual tokens
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d-dimensional ‘Working Space’ for 
Embedded Characteristics

We can form a list of embedding tokens, , by pasting 
together the individual vectors corresponding to the 
vocabulary of possible tokens (e.g. words or event 
characteristics) of size S

E
learned weights

Any given input (e.g. a sentence or event) of length L 
can then be translated into an initial table of tokens, , 
(sometimes called the ‘context window’) drawn from this 
vocabulary
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Embedded Characteristics



We also want to account for additional information about the specific token, 
such as the order of a given word in a sentence, or the position of a given 
detector element, or a continuous property like time, temperature or energy 
that some sensor registered.

The modifications can either be a fixed property of the token, or something 
that can vary from case to case. At the end of the day, the network will learn to 
interpolate from examples of the combined vector and, for a large enough 
embedding space, the chance of ambiguities arising between different initial 
vectors becomes vanishingly small.
The form of the modification vectors can be chosen at the start to convey 
useful structural properties (e.g. similarity, periodicity etc.), and the network 
will then ‘learn around’ these with the remaining freedom of vector definitions.

One way to do this is to define a modification 
vector to represent this information in terms of the 
embedding space, and then define a structure of  
                      
where a given token vector is the sum of the initial 
vector and a modification vector, , containing the 
additional information.

∑T i = ∑T init
i + ∑U

∑U

∑T init
i

∑U

∑T i

Encoding



Say we want to encode the position of a token from a vocabulary of length L 
using a d-dimensional embedding space. One suggested approach* is to first 
divide the embedding space into even and odd components and then use a 
harmonic sequence of sin and cos functions to define a modification vector for 
a position k of a given token as:

k

ith component of modification vector (in embedding space)

• vector is normalised between -1 and 1 (good for stability)
• unique encoding for each position
• nearby positions have more similar looking vectors (relative distance)

Example of specified encoding:

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

U2n(k) = sin ( k
σ2n/d ) U2n+1(k) = cos ( k

σ2n/d )
where  is an index running from 0 to L/2 and  is a large constant (typically 
chosen to be ~10000 for LLMs)

n σ

(even) (odd)
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An encoding can also be learned using a simple ANN!

Say we have some 
time measurement 
from a particular 
detector element:

Feeding the value through some activation functions followed by a fully 
connected layer can be used to produce a modification vector in the 
embedding space, which can be added as an encoding to the token vector

∑T i = ∑T init
i + ∑U

The encoding is 
emergent from the 
learning process!



Ok, we now have our token vectors,

∑T i

∑T j

 let’s move on to assessing associations…



The learned associations between tokens are characterised 
by tuned weights in two matrices (called “Query” and “Key”) 
that create vectors in an “association space,” where the 
strength of associations are represented by the alignment of 
these vectors.

The impact of these associations are then defined by 
another learned matrix of weights (called “Value”), which 
provide modification vectors to be added to the tokens.

“Attention” is the application of these modifications, 
weighted by the strength of the associations.

How Learned Interactions Take Place



For the ith token vector, we now want to allow the presence of other tokens in 
the sequence (e.g. words in the sentence, measurements from other detector 
sensors etc.) to provide context so as to modify the interpretation.
The first step is to produce a new vector, in a new space, that represents what 
the token under consideration is ‘looking for.’ We will assume that this ‘query 
vector’ can be produced from some linear transformation of the token vector, 
and need not necessarily have the same dimensions as the embedding space. 
Again, the production of this will be learned from examples, we just need to 
provide the structure: ∑Qi ≡ WQ ∑T i

where  is a matrix of weights to be learned for the transformation and  is 
the produced ‘query’ vector corresponding to the the ith token. 

WQ
∑Qi

We can thus produce a list of query vectors:

Q ≡ WQTT
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Similarly, we’ll also have each of the tokens produce a new 
vector, in the same space as the query, that represents what 
relevance it can offer. We will similarly assume that this ‘key 
vector’ can be produced from some linear transformation of 
the other token vectors. Again, this will be learned, we just 
need to provide the structure: K ≡ WKTT

where  is a matrix of weights to be learned for the transformation and  is 
the resulting list of key vectors, transformed from the list of token characteristics.

WK K

So, the dot product between Key and Query indicates the strength of association, 
which can be fed to softmax to give a comparative relevance on a scale of 0-1

Key

∑T i

∑T j

∑Qi

∑K j

∑Qj

∑K i

produce
association 
vectors

Key vectors that line up with 
Query vectors in this space 
are said to ‘attend’ to them

embedding ‘characterisation space’ for 
individual tokens

‘association space’ operating between tokens

Spaces are very different: the words ‘sunrise’ 
and ‘tequila’ may individually have classifications 
that look very different, but the appearance of 
both together in a particular sequence has a 
strong association with a hangover!
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We now want the characterisation for each token vector to be modified by the 
presence of each of the other tokens according to the computed strength of 
their associations. But how should these modifications be done?

Value and Attention

This, too, is learned! Tuned weights define a series of 
vectors, back in the original embedding space*, that 
are added to the original token vectors to modify their 
directions. These are the ‘value’ vectors, which thus 
provides a list of proposed modifications due to 
associations with a each token.

*In practise, this is done in 2 steps: a learned value matrix is first computed in the same space as the key 
and query, and a second learned matrix then upscales this to the dimensionality of the embedding space.

Value
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Attention** is then defined as the matrix of proposed modifications multiplied 
by the computed strength of the association:

Attention(Q, K, V ) = softmax ( QKT

dK ) V

dimensionality of Q and K matrices, added 
to keep the product of ‘raw’ Q and K 
values in a reasonable range for softmax

** Bahdanau et al., arXiv:1409.0473
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Masking
There are times when we may want to remove the influence of certain tokens. 
This can, for example, be for ‘padded’ inputs that don’t exist (sometimes more 
computationally efficient than removing them altogether), or as a diagnostic to 
separate the impact of certain information, or guiding the training process to 
only look at certain bits of the provided information.

A natural way to do this is to set the 
corresponding attentions to zero, so 
that they cannot make modifications.

Attention(Q, K, V ) = softmax (mask+ QKT

dK ) V

But rather than directly setting the 
attentions themselves to zero, the 
corresponding arguments of the 
softmax in attention are instead set to 

, which does the job and also 
keeps the calculations of relevance 
normalised to the range between 0-1 
for the tokens that are present:

−≃

mask elements set to 0 for present 
tokens, and to  for absent tokens−≃
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Embedded Characteristics

Pay No Attention
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Typically, the key and query space is broken into 
multiple pieces and processed simultaneously as 
‘multi-headed attention.’ This takes advantage of 
parallel processing to efficiently provide different 
independent assessments of Attention

The new set of token vectors are a dynamic, 
adaptive modification of the initial set
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modified characteristics

T* = T+Attention (for stability, re-normalise  to 
have mean 0 and unit variance) 

T*
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Attention

Attention Head 1 etc.
Attention(Q, K , V ) = softmax ( Q KT

dK ) V Attention(Q→ , K→ , V→ ) = softmax ( Q→ K → T
d→ K ) V→ Attention(Q→ → , K→ → , V→ → ) = softmax ( Q→ → K → → T

d→ → K ) V→ → 
Attention Head 2

Multi-Headed Attention



C*m+1

C*m+2

C*2m+1

C*2m+2

C*1

C*2

∑1

∑2

∑3

∑4

∑5

∑d

Finally, for each of the vectors in the modified Token matrix, elements from different 
attention heads ‘talk’ to each other via a simple feed-forward network, typically via a 
single hidden layer with larger dimension (this layer often contains most of the weights!).

Together, this whole process 
constitutes one ‘Attention 
Block.’ One can then string 
multiple such blocks together 
for even deeper learning

T** = T* + Σ

The same learned network 
is used to consolidate 
information across the 
different attention heads 
and permit a (piece-wise) 
non-linear mixing to yield 
more nuanced tweaks to 
the modified token matrix

(and normalise again) 



Encoder

Attention block

‘Skip’ connection 
for adding back 
modifications 

(residual network)

To make use of this, it’s convenient to 
have a single vector ( ) that captures 
relevant information from the final ‘hidden 
state’ of the encoder.

′henc

There are a number of ways to do this, 
including:
1) Sum or linearly combine all the 

individual modified token vectors
2) Explicitly add another ‘dummy’ vector 

to the token matrix to gather this 
information

3) Just take the last vector in the token 
matrix to represent this

In any case, all token vectors interact with 
each other via Attention. If you treat a 
given vector as having the relevant 
information, the learning process will 
adjust weights to make this the case, 
because that’s what will work best to 
minimise the loss function!

The process described so far constitutes an ‘encoder,’ for providing context to input data

(Deep learning magic!)



Encoder
Decoder

In a language translation task, the encoder output (source language) then 
needs to be fed into a decoder to generate a translated sentence in the 
target language word-by-word



Encoder
Decoder

In a language translation task, the encoder output (source language) then 
needs to be fed into a decoder to generate a translated sentence in the 
target language word-by-word

We will also need a ‘hidden state vector’ 
for the decoder to represent information 
about the next word to be generated, in 
the same embedding space of tokens in 
the target language. This can be initially 
generated, for example, by applying a 
‘decoder initialisation’ matrix (to be 
learned) to the hidden state vector from 
the  encoder: 

′hdec = Dinit ′henc

The decoder uses the same sorts of elements in a modified configuration. 
We’ll run through this very briefly, and then move on to a practical 
example of transformers applied to a problem in experimental physics…



Encoder-Decoder Pair Used for Translation*

sentence to 
be translated

translated words 
generated so far
PLUS the hidden state vector ′hdec

During training, don’t look at answers for examples provided 
beyond the words already generated (i.e. don’t cheat!)

Look at context of words already generated (self-attention)

Cross-attention: Q from decoder (looking for relevance of 
the next word to be generated in the target language), K 
from encoder (relevance provided by the input source) and 
V also from the encoder (this is how basic characteristics 
should be adjusted). Attention is then applied to ′hdec

Used to generate next word in translated sentence

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

A simple, fully connected layer (matrix transformation) 
from  to a vocabulary vector, providing weights that 
can be turned into probabilities for the next word choice

′hdec





light detector (PMT)

interaction 
producing 
isotropic light

Example of an encoder-based reconstruction algorithm for position using timing

• Detection volume is a 10m cube with 
a fully contained non-dispersive 
medium of refractive index 1.5

• Light from the interaction is point-
like, instantaneous and isotropic

• PMTs have uniform 4π efficiency and 
an instantaneous response function 

• Each PMT has a trigger efficiency of 
0.8 when the event is at the centre of 
the detector, scaling with the inverse 
square of distance to the event

• A valid event trigger requires at least 
4 PMTs to register hits

Simplified Idealised Scenario
10

m

10m

(Thanks to Cal Hewitt for help with this!)



Generate 
Training Data



Define the 
Network



Training Loop

Learning curves for different 
starting random seeds

Note that the transformer is fitting the event position 
using the PMT timing information… even though we 
have not given it the positions of the PMTs!

There is not a physical model here - the 
transformer is simply looking at individual 
associations (e.g. when these tubes are hit with 
these times, the position is here) and using a 
large number of parameters to do a numerical 
interpolation



In Event_Generator, provide the PMT positions as part of the output:

In TransformerNN, define the linear encoding of the PMT positions:

In the forward, encode the PMT positions, adding this to the embedding along with the hit time encoding:

But would it help to provide the PMT position information?

Let’s try adding an encoding for these by modifying the following lines:

without PMT 
position 
encoding

with PMT 
position 
encoding

Yes, learning is faster… at 
least initially, before settling 
down to a very similar curve



We can also try adding more attention blocks:
5

5 attention blocks

2 attention blocks

But, for this particular problem, it is possible to construct an analytical solution that would give 
the event position exactly, whereas here we are limited to a gradual power-law improvement!

This is because there is still no physical model, so the resolution is limited by the 
extent of arbitrarily tuned parameters!

Physical models are better, but ML approaches like this are useful when the complexity of a 
problem is such that analytic modelling is not tractable or too time consuming to implement


