
Lecture 16:

• Deep Learning Principles
• Transformer Overview
• Embedding and Encoding
• Aken%on!
• Encoders and Decoders
• More Play%me with PyTorch…

Deep Learning & Transformers

The term ‘Deep Learning’ is not precisely defined, but generally
involves the use of an enormous number of learned parameters
to solve problems, often starting from relatively ‘raw’ input data.

The trick to keep this from descending into total chaos is to
define a structure, with notional logical units that have functional
purposes, around which the learning must take place.

The actual functions of different parts of the network are then
emergent from the learning process, driven entirely by the loss
function that defines the goal through back-propagation.

It is, nonetheless, remarkable that just this is enough to prevent
complete anarchy from millions of free parameters, and that
simple back-propagation turns out to be so robust and scalable!

Deep Learning

Transformers* were initially invented for Language Models, but have multiple uses. They allow
for non-sequential input of variable length and, thus, do not have a fixed network architecture
for interactions. Instead, interaction between elements happens via the ‘Attention Mechanism,’
which evaluates associations and propagates their impacts. They are also very good at
handling/processing large input strings.

Transformers

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

Input

translate
to abstract

vector space

translate
from modified
vector space

vector representations interact with
each other to encode information

relevant to the goal

Output

The first step begins with the input, which could be a sentence or a recorded detector event.
This is then broken up into separate items, such as words (or word fragments), or detector
elements or individual pieces of information from an event. Each discreet item is mapped to a
unique mathematical object (e.g. a vector) that acts as a ‘token’ for the item (we will talk about
continuous parameter inputs shortly). This process is called Tokenization

‘Big Picture’ Snapshot:

Here’s the basic idea behind the attention mechanism:

1) Produce a space in which to generically characterise individual tokens

2) Add further pertinent information relating to any particular token

3) Using this, produce another space for associations between tokens

4) Also produce a set of proposed modifications to token characterisations
due to these associations

5) Implement modifications in accordance with the strengths of these
associations

Ok, let’s dive in!

Take each token to be represented by a vector in some
large, d-dimensional space of characteristics. The exact
nature of this space is something that will be learned by
the network from examples, so we will just define a
working area for this with a large dimensional vector for
the “embedding” space.

Once learned, these embeddings represent the basic
descriptions for each token, independent of its use.

All relevant characteristics and operations will
need to be couched in the language of this space!

Embedding
embedding ‘characterisation space’

for individual tokens

To
ke

n
La

be
l

d-dimensional ‘Working Space’ for
Embedded Characteristics

We can form a list of embedding tokens, , by pasting
together the individual vectors corresponding to the
vocabulary of possible tokens (e.g. words or event
characteristics) of size S

E
learned weights

Any given input (e.g. a sentence or event) of length L
can then be translated into an initial table of tokens, ,
(sometimes called the ‘context window’) drawn from this
vocabulary

T

To
ke

n

Embedded Characteristics

We also want to account for additional information about the specific token,
such as the order of a given word in a sentence, or the position of a given
detector element, or a continuous property like time, temperature or energy
that some sensor registered.

The modifications can either be a fixed property of the token, or something
that can vary from case to case. At the end of the day, the network will learn to
interpolate from examples of the combined vector and, for a large enough
embedding space, the chance of ambiguities arising between different initial
vectors becomes vanishingly small.
The form of the modification vectors can be chosen at the start to convey
useful structural properties (e.g. similarity, periodicity etc.), and the network
will then ‘learn around’ these with the remaining freedom of vector definitions.

One way to do this is to define a modification
vector to represent this information in terms of the
embedding space, and then define a structure of

where a given token vector is the sum of the initial
vector and a modification vector, , containing the
additional information.

∑T i = ∑T init
i + ∑U

∑U

∑T init
i

∑U

∑T i

Encoding

Say we want to encode the position of a token from a vocabulary of length L
using a d-dimensional embedding space. One suggested approach* is to first
divide the embedding space into even and odd components and then use a
harmonic sequence of sin and cos functions to define a modification vector for
a position k of a given token as:

k

ith component of modification vector (in embedding space)

• vector is normalised between -1 and 1 (good for stability)
• unique encoding for each position
• nearby positions have more similar looking vectors (relative distance)

Example of specified encoding:

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

U2n(k) = sin (k
σ2n/d) U2n+1(k) = cos (k

σ2n/d)
where is an index running from 0 to L/2 and is a large constant (typically
chosen to be ~10000 for LLMs)

n σ

(even) (odd)

t

U5

U6

Ud

U3

U4

U2

U1

An encoding can also be learned using a simple ANN!

Say we have some
time measurement
from a particular
detector element:

Feeding the value through some activation functions followed by a fully
connected layer can be used to produce a modification vector in the
embedding space, which can be added as an encoding to the token vector

∑T i = ∑T init
i + ∑U

The encoding is
emergent from the
learning process!

Ok, we now have our token vectors,

∑T i

∑T j

 let’s move on to assessing associations…

The learned associations between tokens are characterised
by tuned weights in two matrices (called “Query” and “Key”)
that create vectors in an “association space,” where the
strength of associations are represented by the alignment of
these vectors.

The impact of these associations are then defined by
another learned matrix of weights (called “Value”), which
provide modification vectors to be added to the tokens.

“Attention” is the application of these modifications,
weighted by the strength of the associations.

How Learned Interactions Take Place

For the ith token vector, we now want to allow the presence of other tokens in
the sequence (e.g. words in the sentence, measurements from other detector
sensors etc.) to provide context so as to modify the interpretation.
The first step is to produce a new vector, in a new space, that represents what
the token under consideration is ‘looking for.’ We will assume that this ‘query
vector’ can be produced from some linear transformation of the token vector,
and need not necessarily have the same dimensions as the embedding space.
Again, the production of this will be learned from examples, we just need to
provide the structure: ∑Qi ≡ WQ ∑T i

where is a matrix of weights to be learned for the transformation and is
the produced ‘query’ vector corresponding to the the ith token.

WQ
∑Qi

We can thus produce a list of query vectors:

Q ≡ WQTT

To
ke

n

Query

Query

characteristics

qu
er

ie
s WQ

(learned conversion weights)

Similarly, we’ll also have each of the tokens produce a new
vector, in the same space as the query, that represents what
relevance it can offer. We will similarly assume that this ‘key
vector’ can be produced from some linear transformation of
the other token vectors. Again, this will be learned, we just
need to provide the structure: K ≡ WKTT

where is a matrix of weights to be learned for the transformation and is
the resulting list of key vectors, transformed from the list of token characteristics.

WK K

So, the dot product between Key and Query indicates the strength of association,
which can be fed to softmax to give a comparative relevance on a scale of 0-1

Key

∑T i

∑T j

∑Qi

∑K j

∑Qj

∑K i

produce
association
vectors

Key vectors that line up with
Query vectors in this space
are said to ‘attend’ to them

embedding ‘characterisation space’ for
individual tokens

‘association space’ operating between tokens

Spaces are very different: the words ‘sunrise’
and ‘tequila’ may individually have classifications
that look very different, but the appearance of
both together in a particular sequence has a
strong association with a hangover!

Key

To
ke

n

We now want the characterisation for each token vector to be modified by the
presence of each of the other tokens according to the computed strength of
their associations. But how should these modifications be done?

Value and Attention

This, too, is learned! Tuned weights define a series of
vectors, back in the original embedding space*, that
are added to the original token vectors to modify their
directions. These are the ‘value’ vectors, which thus
provides a list of proposed modifications due to
associations with a each token.

*In practise, this is done in 2 steps: a learned value matrix is first computed in the same space as the key
and query, and a second learned matrix then upscales this to the dimensionality of the embedding space.

Value

To
ke

n

Attention** is then defined as the matrix of proposed modifications multiplied
by the computed strength of the association:

Attention(Q, K, V) = softmax (QKT

dK) V

dimensionality of Q and K matrices, added
to keep the product of ‘raw’ Q and K
values in a reasonable range for softmax

** Bahdanau et al., arXiv:1409.0473

To
ke

n

Attention

Masking
There are times when we may want to remove the influence of certain tokens.
This can, for example, be for ‘padded’ inputs that don’t exist (sometimes more
computationally efficient than removing them altogether), or as a diagnostic to
separate the impact of certain information, or guiding the training process to
only look at certain bits of the provided information.

A natural way to do this is to set the
corresponding attentions to zero, so
that they cannot make modifications.

Attention(Q, K, V) = softmax (mask+ QKT

dK) V

But rather than directly setting the
attentions themselves to zero, the
corresponding arguments of the
softmax in attention are instead set to

, which does the job and also
keeps the calculations of relevance
normalised to the range between 0-1
for the tokens that are present:

−≃

mask elements set to 0 for present
tokens, and to for absent tokens−≃

To
ke

n

Embedded Characteristics

Pay No Attention

characteristics

qu
er

ie
s

WQ

characteristics

ke
ys

WK

Typically, the key and query space is broken into
multiple pieces and processed simultaneously as
‘multi-headed attention.’ This takes advantage of
parallel processing to efficiently provide different
independent assessments of Attention

The new set of token vectors are a dynamic,
adaptive modification of the initial set

To
ke

n

modified characteristics

T* = T+Attention (for stability, re-normalise to
have mean 0 and unit variance)

T*

To
ke

n

Attention

Attention Head 1 etc.
Attention(Q, K , V) = softmax (Q KT

dK) V Attention(Q→ , K→ , V→) = softmax (Q→ K → T
d→ K) V→ Attention(Q→ → , K→ → , V→ →) = softmax (Q→ → K → → T

d→ → K) V→ →
Attention Head 2

Multi-Headed Attention

C*m+1

C*m+2

C*2m+1

C*2m+2

C*1

C*2

∑1

∑2

∑3

∑4

∑5

∑d

Finally, for each of the vectors in the modified Token matrix, elements from different
attention heads ‘talk’ to each other via a simple feed-forward network, typically via a
single hidden layer with larger dimension (this layer often contains most of the weights!).

Together, this whole process
constitutes one ‘Attention
Block.’ One can then string
multiple such blocks together
for even deeper learning

T** = T* + Σ

The same learned network
is used to consolidate
information across the
different attention heads
and permit a (piece-wise)
non-linear mixing to yield
more nuanced tweaks to
the modified token matrix

(and normalise again)

Encoder

Attention block

‘Skip’ connection
for adding back
modifications

(residual network)

To make use of this, it’s convenient to
have a single vector () that captures
relevant information from the final ‘hidden
state’ of the encoder.

′henc

There are a number of ways to do this,
including:
1) Sum or linearly combine all the

individual modified token vectors
2) Explicitly add another ‘dummy’ vector

to the token matrix to gather this
information

3) Just take the last vector in the token
matrix to represent this

In any case, all token vectors interact with
each other via Attention. If you treat a
given vector as having the relevant
information, the learning process will
adjust weights to make this the case,
because that’s what will work best to
minimise the loss function!

The process described so far constitutes an ‘encoder,’ for providing context to input data

(Deep learning magic!)

Encoder
Decoder

In a language translation task, the encoder output (source language) then
needs to be fed into a decoder to generate a translated sentence in the
target language word-by-word

Encoder
Decoder

In a language translation task, the encoder output (source language) then
needs to be fed into a decoder to generate a translated sentence in the
target language word-by-word

We will also need a ‘hidden state vector’
for the decoder to represent information
about the next word to be generated, in
the same embedding space of tokens in
the target language. This can be initially
generated, for example, by applying a
‘decoder initialisation’ matrix (to be
learned) to the hidden state vector from
the encoder:

′hdec = Dinit ′henc

The decoder uses the same sorts of elements in a modified configuration.
We’ll run through this very briefly, and then move on to a practical
example of transformers applied to a problem in experimental physics…

Encoder-Decoder Pair Used for Translation*

sentence to
be translated

translated words
generated so far
PLUS the hidden state vector ′hdec

During training, don’t look at answers for examples provided
beyond the words already generated (i.e. don’t cheat!)

Look at context of words already generated (self-attention)

Cross-attention: Q from decoder (looking for relevance of
the next word to be generated in the target language), K
from encoder (relevance provided by the input source) and
V also from the encoder (this is how basic characteristics
should be adjusted). Attention is then applied to ′hdec

Used to generate next word in translated sentence

* “Attention is All You Need,” Vashwani et al., arXiv:1706.03762

A simple, fully connected layer (matrix transformation)
from to a vocabulary vector, providing weights that
can be turned into probabilities for the next word choice

′hdec

light detector (PMT)

interaction
producing
isotropic light

Example of an encoder-based reconstruction algorithm for position using timing

• Detection volume is a 10m cube with
a fully contained non-dispersive
medium of refractive index 1.5

• Light from the interaction is point-
like, instantaneous and isotropic

• PMTs have uniform 4π efficiency and
an instantaneous response function

• Each PMT has a trigger efficiency of
0.8 when the event is at the centre of
the detector, scaling with the inverse
square of distance to the event

• A valid event trigger requires at least
4 PMTs to register hits

Simplified Idealised Scenario
10

m

10m

(Thanks to Cal Hewitt for help with this!)

Generate
Training Data

Define the
Network

Training Loop

Learning curves for different
starting random seeds

Note that the transformer is fitting the event position
using the PMT timing information… even though we
have not given it the positions of the PMTs!

There is not a physical model here - the
transformer is simply looking at individual
associations (e.g. when these tubes are hit with
these times, the position is here) and using a
large number of parameters to do a numerical
interpolation

In Event_Generator, provide the PMT positions as part of the output:

In TransformerNN, define the linear encoding of the PMT positions:

In the forward, encode the PMT positions, adding this to the embedding along with the hit time encoding:

But would it help to provide the PMT position information?

Let’s try adding an encoding for these by modifying the following lines:

without PMT
position
encoding

with PMT
position
encoding

Yes, learning is faster… at
least initially, before settling
down to a very similar curve

We can also try adding more attention blocks:
5

5 attention blocks

2 attention blocks

But, for this particular problem, it is possible to construct an analytical solution that would give
the event position exactly, whereas here we are limited to a gradual power-law improvement!

This is because there is still no physical model, so the resolution is limited by the
extent of arbitrarily tuned parameters!

Physical models are better, but ML approaches like this are useful when the complexity of a
problem is such that analytic modelling is not tractable or too time consuming to implement

