
Lecture 2:

• Proper6es of Normal Distribu6ons 
• Trials and Tribula6ons! 
• Regression to the Mean 
• Correla6ons 
• Uncertain6es & Error Propaga6on

Trials and Errors



FWHM ~ 2.35σ

“Two-Sided”
Chance Prob. To Be Within:

±1 σ  :  0.6827 
±2 σ  :  0.9545  
±3 σ  :  0.9973  
±4 σ  :  0.99994

Chance Prob. To Be Outside:
±1 σ  :  0.3173 
±2 σ  :  0.0455 
±3 σ  :  0.0027 
±4 σ  :  6x10-5

e.g. “Do my data points look ok relative to the model?”

“One-Sided”
Chance Prob. To Be:

>1 σ  :  0.1587 
>2 σ  :  0.0228 
>3 σ  :  1.35x10-3 
>4 σ  :  3x10-5

e.g. “What’s the chance 
of seeing an excess at 
least this large?”
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“Global Warming Effect”

shift mean by 2o

20o

σ~5o

35o

  Summer 
Temperature

(i.e. nearly quadruples, with bigger 
changes further into the tail)

Note for Example:



As a consequence of the Central Limit Theorem,
many (but not all!) physical processes often tend 
towards the Normal Distribution shape.

The Draupner wave, a single giant wave  
measured on New Year's Day 1995, finally  
confirmed the existence of freak waves, which  
had previously been considered near-mythical

However, few achieve this exactly !!
Although calculated probabilities are often couched in terms of
an ideal Normal Distribution to give a rough intuition of the scaling



Beware the Distribution Tails!!



Borexino “1 σ error” on solar pep flux (2011)

    3.5σ ?

  No!
“98% CL”
  (~2σ)



µ ' hxi � =
p
µ

Over the course of a year, 36000 x-rays are 
observed to come from a particular astrophysical 
object. However, on one particular day, 130 events 
are observed. What is the statistical significance of 
this observed burst?

Search for Episodic X-Ray Emission

        Is this sufficient to claim the 
observation of a burst from this object?

Example:

odds of gekng at least this many  
events by a chance fluctua6on from 
the average rate of emission

�x� = 36000

365
= 98.6

s ∼= (130−98.6)√
98.6

= 3.16σ





Correct question: 
What is the chance of seeing at least one burst 
with an excess at least as large given the number 
of independent tests I’ve done ?

N Bernoulli trials where the chance of each success is P

Binomial !!

P = 8 x 10-4,  N = 365 Ppost-trial  =  25%

Ppost-trial

How many timescales were considered? How many objects examined?



7776



An appreciation of trials factors (“look elsewhere effect”) is 
hugely important... an improper handling of this can lead to 
incorrect conclusions and opens the door to biased analyses!

This is not trivial ! A full accounting for this can be tricky:

• How many hypotheses have you actually tested?
• How many different ways have you tested each hypothesis?
• How many other things would have caught your eye?
• In general, how many ways have you looked at the data?

This is why physicists set the bar high in terms of 
significance level in order to claim a discovery 

But it’s easy to get carried away...

At the same time, the data needs to be thoroughly checked to 
look for possible problems and confirm how well it’s understood



1) Trials factors apply to observations that would 
potentially lead to making a meaningful claim.

2) Verification based on applying the same 
analysis to an independent set of data is a 
good way to avoid misinterpretation of 
statistical fluctuations.



How do you deal with trial factors in the context of an open-ended 
search when an independent data set may not be available?

Is there any evidence of 
a signal from anywhere?

Priority 
candidate #1

Priority 
candidate #2

Less likely 
candidates

A     B     C a  b  c  d  e  f

speculative 
candidates

highly 
speculative 
candidates

would incur 
trial factor of 3

would incur 
trial factor of 3

would incur 
trial factor of 

3x2x3=18

would incur 
trial factor of 

6x2x3=36

Pick most significant of 
these 3 hypotheses

Pick most significant of 
these 2 hypotheses

Pick most significant of 
these 6 hypotheses

Pick most significant of 
these 3 hypotheses

It’s possible to structure trial factors based on an a priori ranking 
of hypothesis plausibility*:

If something is seen from one of these tests that indicates a clear signal, it then belongs to a different 
population from random fluctuations. So, it can be removed and the search continued with the rest!

* S. Biller, Astroparticle Physics, Volume 4, Issue 3, p. 285-291



Pop Quiz:
100 true/false questions on 17th 
century Swedish architecture:

0         25         50        75        100
number of correct answers

0         25         50        75       100
number of correct answersWhat an improvement! This particular group of 

students knows much more about Danish architecture!!

“Regression to the Mean”

The Kunstforeningen 
building on Gammel 
Strand was built in 
1690.

100 true/false questions on 17th 
century Danish architecture:
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Bi-variate Distribution with Identical Marginal Distributions
(i.e. uncorrelated)



g = 9.6            9.3          9.9           9.7            9.8 

“The Effect of Hats on the Measurement of Gravity”

g = 9.7 Much Better!!



So How Do You Handle Outliers?

• Look for possible systematic biases in the data;
• However, only reject outliers based on clear
  statistical/scientific criteria;
• Explicitly point out the issue and discuss the details;
• Be aware of any potential bias that could result and
  review the robustness of your final conclusions.

Rules of Thumb:

?No clear rules!



The total number of known species is ~1.5 million

The number of plant species ~400,000
          P(plant) = 4x105/1.5x106 = 0.27

The number of known species that can fly is ~500,000
          P(flying) > 5x105/1.5x106 = 0.33

Thus, probability of finding a flying plant is
         P(plant) x P(flying) = 0.089  

And the expected number of flying plant species is
         (0.089)(1.5x106) = 133,500  



Correlations
       And 12 points   
from Norway go to... 

   SWEDEN !!



Insects        Birds      Mammals     Plants       Reptiles

   Flying 

Non-Flying

500k                 10k                 400

500k                   54                    6k                    400k               10k

0.35        0.007       2.8x10-4        0               0

0.35        3.8x10-5     0.004        0.28         0.007

Joint 
PDF

Insects        Birds     Mammals     Plants        Reptiles

500k                   54                    6k                    400k               10k

0.54        5.9x10-5     0.006        0.44         0.011

PDF for
Non-Flying
Species

Insects        Birds     Mammals      Plants         Reptiles

500k                   54                    6k                    400k               10k

0.70        0.00704   0.00428      0.28         0.007

“Marginalised”
 PDF for All
 Species



Just to be clear:

For example, if we have 2 dependent variables, x & y:

and



How do you tell whether variables are correlated?



Correlated or Uncorrelated!



y

x

y

x

y

x

Correlated or Uncorrelated?

relatively uncorrelated correlated

 relatively uncorrelated
(symmetric with similar marginal distributions)

y

x
relatively uncorrelated

y

x
relatively uncorrelated mean,

but correlated variance



Beware of “hidden” correlations 
between ANY parameters that 
distinguish elements of your data set

IQ           Shoe Size

IQ            Age



Beware of jumping to conclusion 
about  cause and effect



Beware of spurious 
correlations



Uncertainties



Error Propagation

Want to use the distribution f  to propagate uncertainties in q, but 
1) We don’t necessarily know the full joint distribution of q        

(i.e. the probability distribution for all possible sets of values)
2)     Even if we did, it’s cumbersome to deal with!

So, instead, let’s approximate things to first order
and then estimate the variance of f

Uncertainty

f(q) = f(q1, q2, . . . qn)

Taylor expansion about the mean values for q
where f(μ) = f(μ1, μ2, . . . μn)µ

The th ing 
you want to 
measure

Dependent 
parameters 
(e.g. temperature, 
p o s i t i o n , t i m e , 
pressure…)



zero by definition

zero by definition

= f(μ)µ→ f(q)∞ − f(μ) +
n

∑
i=1 [ ⟶f

⟶qi ]q=μ

⟨qi ′ μi⟩µ
µ

⟨f 2(q)⟩ − ⟨ f (μ) +
n

∑
i=1 [ ⟶f

⟶qi ]q=μ

(qi ′ μi)

2

⟩µ

µ

= f 2(μ) + ⟨
n

∑
i=1 [ ⟶f

⟶qi ]q=μ

(qi ′ μi)
n

∑
j=1 [ ⟶f

⟶qj ]q=μ

(qj ′ μj) ⟩µ

µ µ

+ 2f(μ)
n

∑
i=1 [ ⟶f

⟶qi ]q=μ

⟨qi ′ μi⟩µ

µ

= f 2(μ) +
n

∑
i, j=1 [ ⟶f

⟶qi

⟶f
⟶qj ]q=μ

⟨(qi ′ μi)(qj ′ μj)⟩µ
µ



So we get: τ2
f = ⟨f 2(q)⟩ ′ → f(q)∞2

≃
n

∑
i, j=1 [ ⟶f

⟶qi

⟶f
⟶qj ]q=μ

⟨(qi ′ μi)(qj ′ μj)⟩
µ

Vij = ⟨(qi ′ μi)(qj ′ μj)⟩ = 0 for i ⟨ j

Vii = ⟨(qi ′ μi)2⟩ = τ2
i

τ2
f ≃

n

∑
i=1 [ ⟶f

⟶qi ]
2

q=μ

τ2
i

µ

for 
independent 
parameter 

uncertainties

If the q parameters are uncorrelated, 

=
n

∑
i,j=1 [ ⟶f

⟶qi

⟶f
⟶qj ]q=μ

Vij
µ

“covariance matrix”



Some simple examples:

Ttot = t1 + t2

τ2
T ≃ [ ⟶T

⟶t1 ]
2

τ2
1 + [ ⟶T

⟶t2 ]
2

τ2
2

τ2
s ≃ [ ⟶s

⟶v ]
2

τ2
v + [ ⟶s

⟶t ]
2

τ2
t

= τ2
1 + τ2

2

= t2τ2
v + v2τ2

t

( τs

s )
2

≃ ( τv

v )
2

+ ( τt

t )
2

s = vt



For a quadrature addi6on of uncertain6es, 
uncertain6es that are half as big only carry 
1/4 of the weight, and uncertain6es that are 
1/4 as big only carry 1/16 of the weight... 
Only the dominant uncertain=es ma"er!



ho=20m
(@To=20oC)

h=ho[1+α(T-To)]

More General Example: Measurement of Linear Thermal Expansion Coefficient

Start!

Measure h by 
timing the drop 
of snowballs on 
one particularly 
cold day, then 
compare with h0 
to determine α



data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

tμ − t̃μ = 1
n

n

∑
i=1

ti Tμ − T̃μ = 1
n

n

∑
i=1

Ti

In this simple analysis, we’re interested in determining the 
average values of drop time and temperature for the day:

h = h0[1 ′ σ(T ′ T0)]Then, from the relation

estimate the expansion coefficient: 

σ̃ =
h̃μ

h0
′ 1

T̃μ ′ T0
=

gt̃ 2
μ

2h0
′ 1

T̃μ ′ T0

Now we want to find the uncertainty in       by 
propagating the uncertainties in        and

σ̃
t̃μ T̃μ



data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

Approach 1: Evaluate Approximately Using the Data

τ2
t = ⟨(t ′ tμ)2⟩ − 1

n ′ 1
n

∑
i=1

(ti ′ t̃μ)2

τ2
T = ⟨(T ′ Tμ)2⟩ − 1

n ′ 1
n

∑
i=1

(Ti ′ T̃μ)2

cov(t, T ) = ⟨(t ′ tμ)(T ′ Tμ)⟩ − 1
n ′ 1

n

∑
i=1

(ti ′ t̃μ)(Ti ′ T̃μ)

Drawback: Requires a large enough data set so that estimates are well determined

Vij =

time

time

Temp

Temp

τ2
t

τ2
T

cov(t, T )

cov(t, T )



Vij =

time

time

Temp

Temp

Approach 2: Use Calibration Measurements and/or Physical Models

Drawback: Model could be wrong

τ2
t = ⟨(t ′ tμ)2⟩ from calibration of timing accuracy

τ2
T = ⟨(T ′ Tμ)2⟩ from calibration of temperature reading accuracy

Temperature variations during the day are sufficiently small that the 
correlation with time measurements is very weak, so cov(t, T ) − 0

data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

The temperature variations might influence reaction times and this might 
have a noticeable systematic impact on the stopwatch measurements

τ2
t

τ2
T

cov(t, T )

cov(t, T )



Vij =

time

time

Temp

Temp

Best Approach: Do both!

Check the consistency or your model and calibrations with the data
(If things don’t add up, dig around to understand it!)

data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

τ2
t

τ2
T

cov(t, T )

cov(t, T )



σ =
gt2

2h0
′ 1

T ′ T0

[ ⟶σ
⟶t ]

tμ,Tμ

=
gtμ
h0

′ 1
Tμ ′ T0

[ ⟶σ
⟶T ]

tμ,Tμ

= ′
gt2

μ

2h0
′ 1

(Tμ ′ T0)2



τ2
σ = [ ⟶σ

⟶t ]
tμ,Tμ

, [ ⟶σ
⟶T ]

tμ,Tμ
( τ2

t cov(t, T )
cov(t, T ) τ2

T )
[ ⟶σ

⟶t ]tμ,Tμ

[ ⟶σ
⟶T ]tμ,Tμ

τ2
σ = [ ⟶σ

⟶t ]
2

μ
τ2

t + [ ⟶σ
⟶T ]

2

μ
τ2

T + 2 [ ⟶σ
⟶t

⟶σ
⟶T ]

μ
cov(t, T )

µµ µ



Typical linear expansion coefficients for building materials ~5x10-6  per oC

Take (T-To) ~ 20oC

h0-h ~ (20m)(5x10-6)(20oC) = 0.002m

velocity at impact = 2gh0 = 2(9.8m /s2)(20m) − 20m /s
So, timing must be known to an accuracy of  (0.002/20) =  0.0001s

Accuracy of any one timing timing measurement ~ 0.1s

But we improve by averaging lots of measurements according to τm = τ
n

How many measurements do we need?

n = τ2

τ2m
− ( 0.1

0.0001 )
2

= 106 (ignoring systematic uncertainties!)

The Statistical Calculation That You Should Have Done at the Start!



Statistical Uncertainties

Fundamental, calculable, random variations 
due to an inherent limited sampling of the 
underlying distribution (i.e. counting statistics).

Systematic Uncertainties

Incidental, estimated (bounded), systematic biases
incurred as a result of limited measurement precision
(also always present).



There is no universally applicable method for estimating/bounding* 
systematic uncertainties. A typical approach often relies on independent 
cross-checks, accounting for possible statistical limitations of calibration 
procedures, knowledge about the experimental design and general 
consistency arguments.

* Systematic errors that are “determined” become corrections!

Because of their very different nature, there is no standard, 
mathematically rigorous way to combine the 2 types of uncertainties. 
The convention is thus to quote results in the form:

Result ± Uncertainty (stat) ± Uncertainty  (sys)

And error bars such as: or sys stat

(Much more on error bars later!!)



or sys stat

How do you then make use of 
such data points to fit a model?

It is often generally assumed that systematic uncertainties 
can be treated in a similar way to statistical uncertainties, 
with careful attention to correlations. 

Ideally, the best way to treat systematic uncertainties are as 
free parameters in the model fit, constrained by the 
separately determined bounds on their values.

(Much more on error bars later!!)


