Lecture 2:

Trials and Errors

Properties of Normal Distributions
Trials and Tribulations!

Regression to the Mean
Correlations

Uncertainties & Error Propagation
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e.g. “Do my data points look ok relative to the model?”
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least this

an excess at
large?”



Note for Example: —> shift mean by 2o Summer
15 Temperature

20 4+ 15(30) — 22 + 13(2.60)

- P(> 35°) : 0.0013 — 0.0047

(i.e. nearly quadruples, with bigger
changes further into the tail)

'‘Global Warming Effect”




As a consequence of the Central Limit Theorem,
many (but not all!) physical processes often tend
towards the Normal Distribution shape.

However, few achieve this exactly !!

Although calculated probabilities are often couched in terms of
an ideal Normal Distribution to give a rough intuition of the scaling
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The Draupner wave, a single giant wave
measured on New Year's Day 1995, finally
confirmed the existence of freak waves, which
had previously been considered near-mythical
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V., survival probability

Borexino “1 o error” on solar pep flux (2011)
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Example: Search for Episodic X-Ray Emission

Over the course of a year, 36000 x-rays are
observed to come from a particular astrophysical
object. However, on one particular day, 130 events
are observed. What is the statistical significance of
this observed burst?

36000
(1) = S = 98.6 nw~(x)y o=.\/u

~ (130—98.6)
s = Jos6 = 3.160

odds of getting at least this many

events by a chance fluctuation from P — 8 X ]_ 0_4

the average rate of emission

Is this sufficient to claim the
observation of a burst from this object?






Correct question:

What is the chance of seeing at least one burst
with an excess at least as large given the number
of independent tests I’ve done ?

Binomial !!

N Bernoulli trials where the chance of each success is P

i (]ZV) pPi(1—P)N-t =1-— @) PO(1 — p)N-0

1=1

Ppost trial — — 1 o (1 o P)N (N NP for NP << 1)

P=8x104 N=365 =3 P i uia = 25%

How many timescales were considered? How many objects examined?
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An appreciation of trials factors (“look elsewhere effect”) is
hugely important... an improper handling of this can lead to
Incorrect conclusions and opens the door to biased analyses!

This is not trivial ! A full accounting for this can be tricky:

* How many hypotheses have you actually tested?

* How many different ways have you tested each hypothesis?
* How many other things would have caught your eye?

* In general, how many ways have you looked at the data?

At the same time, the data needs to be thoroughly checked to
look for possible problems and confirm how well it’s understood

This is why physicists set the bar high in terms of
significance level in order to claim a discovery

But it’s easy to get carried away...



KEEP
CALM

AND

Look
Elsewhere

1)

Trials factors apply to observations that would
potentially lead to making a meaningful claim.

2)

Verification based on applying the same
analysis to an independent set of data is a
good way to avoid misinterpretation of
statistical fluctuations.



How do you deal with trial factors in the context of an open-ended
search when an independent data set may not be available?

It’s possible to structure trial factors based on an a priori ranking
of hypothesis plausibility*:

Is there any evidence of
a signal from anywhere?

[

Priority Priority Less likely Pick most significant of
candidate #1 candidate #2 candidates these 3 hypotheses
would incur would incur
trial factor of 3 trial factor of 3
: highly Pick most significant of
zzﬁgﬁﬁttg/: speculative these 2 hypc?theses
candidates
Pick most significant of A
these 3 hypotheses A B C abcdef
would incur would incur
trial factor of trial factor of
3x2x3=18 6x2x3=36

If something is seen from one of these tests that indicates a clear signal, it then belongs to a different
population from random fluctuations. So, it can be removed and the search continued with the rest!

* S. Biller, Astroparticle Physics, Volume 4, Issue 3, p. 285-291



“Regression to the Mean”

Pop Quiz:

100 true/false questions on 17th
century Swedish architecture:

100 true/false questions on 17th
century Danish architecture:

bl
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The Kunstforeningen
building on Gammel
Strand was built in
1690.
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What an improvement! This particular group of
students knows much more about Danish architecture!!
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Bi-variate Distribution with Identical Marginal Distributions
(i.e. uncorrelated)




“The Effect of Hats on the Measurement of Gravitg”
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g=9.7 Much Better!!




So How Do You Handle Outliers?

No clear rules!

"""""

Rules of Thumb:

. *Look for possible systematic biases in the data;
1 *However, only reject outliers based on clear
e statistical/scientific criteria;

L iA4i= * Explicitly point out the issue and discuss the details;
4 W - Be aware of any potential bias that could result and
review the robustness of your final conclusions.




The total number of known species is ~1.5 million

The number of known species that can fly is ~500,000
P(flying) > 5x105/1.5x106 = 0.33

The number of plant species ~400,000
P(plant) = 4x105/1.5x106 = 0.27

Thus, probability of finding a flying plant is
P(plant) x P(flying) = 0.089

And the expected number of flying plant species is
(0.089)(1.5x106) = 133,500
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Flying

Non-Flying
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Just to be clear:

For example, if we have 2 dependent variables, x & y:

/P($,y)dxdy =1

and

Fay) = / F(x, y)P(z,y)dudy



How do you tell whether variables are correlated?



*

Correlated or Uncorrelated!

*




Correlated or Uncorrelated?
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Beware of jumping to conclusion

100 150

50

200

about cause and effect

Mobile Phone Subscriptions vs. Lifespan (2010)
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Uncertainties




Um:er&a&m Errar Propagation

Dependent

parameters
(e.g. temperature,
position, time,
pressure...)

The thing |
tt —

%Oel;:lﬁg ° f(q) - f(QIa QZ9 ¢ o Qn)
Want to use the distribution f to propagate uncertainties in q, but

1)  We don’t necessarily know the full joint distribution of ¢
(i.e. the probability distribution for all possible sets of values)
2) Even if we did, it’'s cumbersome to deal with!

So, instead, let’s approximate things to first order
and then estimate the variance of f

of
a_ (q; — H;)
qi
- “q=p
Taylor expansion about the mean values for ¢

where S = f(ug, pos - - 1)

AQ) ~f(m) + Z
i=1
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Soweget:  of = (f(@) — (f@)’

N of df B B
=2 [dq, aq]] (- )= 1)
’ g=p

/ “covariance matrix”

N A
- 0q; 0q; y
ij=1 L7
If the g parameters are uncorrelated,
Vy=(@-mG-p)) =0 for i#]
V — <(Qz _lui)2> — 0-1'2 _ 42
n for
52 ~ 2 a_f 52 | independent
= 0g; ! parameter
"dg=n uncertainties




Some simple examples:
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For a quadrature addition of uncertainties,
uncertainties that are half as big only carry
1/4 of the weight, and uncertainties that are
1/4 as big only carry 1/16 of the weight...
Only the dominant uncertainties matter!




More General Example: Measurement of Linear Thermal Expansion Coefficient

Start!

r.??'
-

O

ho=20m

(@T0=20°C)
IEWNr L =

4 o
g g
h=ho[1+0(T-To)] |

Bl e el g

Measure h by
timing the drop
of snowballs on
one particularly
cold day, then
compare with ho
to determine «




point | (s) | (°C In this simple analysis, we’re interested in determining the
202 -56

1

2

3

1.99 -4.8

205 -44

2.01

-5.3

average values of drop time and temperature for the day:
1 « 1 «
b~ G ==Y 1, T,~T,==)T,
n - n-
i=1 i=1

Then, from the relation /1 = ho[l — OI(T— TO)]

estimate the expansion coefficient:

Yy s
~ hy 2hy
a = — = —

T,u_TO T/A_TO

Now we want to find the uncertainty in @ by

propagating the uncertainties in 7, and TM



point S oC

time Temp
1 202 -56
2 199 -48 tim 2
' ' ime O; cov(t, T)
3 205 -44 ‘/. —
3
2
Temp | cov(t, T) Or
n 201 -53

Approach 1: Evaluate Approximately Using the Data

ot = () T D
i=1

= (0-17) ~ S R a1
i=1

n

1 . N
1 Y =i )T - T)

n=13

cov(t,T) = <(t -1, (T - Tﬂ)> ~

Drawback: Requires a large enough data set so that estimates are well determined



1 202 -56
2 199 -48 time o2
; cov(s, T)
3 205 -44 V —
I
Temp | cov(z, T) (7%

n 201 -5.3

Approach 2: Use Calibration Measurements and/or Physical Models
of = <(r - tﬂ)2> from calibration of timing accuracy

o7 = <(T— Tﬂ)2> from calibration of temperature reading accuracy

Temperature variations during the day are sufficiently small that the
correlation with time measurements is very weak, so cov(z,T) ~ 0

Drawback: Model could be wrong

The temperature variations might influence reaction times and this might
have a noticeable systematic impact on the stopwatch measurements



point L_(s) __(°C time Temp

1 202 -56

3 205 -44 ‘ / —

Temp | cov(z,T) op=

n 201 -5.3

Best Approach: Do both!

Check the consistency or your model and calibrations with the data
(If things don’t add up, dig around to understand it!)
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The Statistical Calculation That You Should Have Done at the Start!

Typical linear expansion coefficients for building materials ~5x10-6 per °C
Take (T-To) ~ 20°C

ho-h ~ (20m)(5x10-6)(20°C) = 0.002m

velocity at impact = 4/2gh, = \/2(9.8m/s2)(20m) ~ 20m/s
So, timing must be known to an accuracy of (0.002/20) = 0.0001s

Accuracy of any one timing timing measurement ~ 0.1s

o
But we improve by averaging lots of measurements accordingto o0,, = ——

n
How many measurements do we need?

2

o 0.1 ;

n=—~ =10 (ignoring systematic uncertainties!)
o2~ \0.0001



Statistical Uncertainties

Fundamental, calculable, random variations
due to an inherent limited sampling of the
underlying distribution (i.e. counting statistics).

Systematic Uncertainties

Incidental, estimated (bounded), systematic biases
Incurred as a result of limited measurement precision
(also always present).



There is no universally applicable method for estimating/bounding*
systematic uncertainties. A typical approach often relies on independent
cross-checks, accounting for possible statistical limitations of calibration
procedures, knowledge about the experimental design and general

consistency arguments.

* Systematic errors that are “determined” become corrections!

Because of their very different nature, there is no standard,
mathematically rigorous way to combine the 2 types of uncertainties.

The convention is thus to quote results in the form:

Result = Uncertainty (stat) = Uncertainty (sys)

\

And error bars such as: @

(Much more on error bars later!!)

or

—SYS

—

= Stat




How do you then make use of
such data points to fit a model?

It is often generally assumed that systematic uncertainties
can be treated in a similar way to statistical uncertainties,

with careful attention to correlations.

|deally, the best way to treat systematic uncertainties are as
free parameters in the model fit, constrained by the
separately determined bounds on their values.

@ Or ® —Sys 0 stat

(Much more on error bars later!!)



