
Lecture 4:

• What is ‘Normal?’ 
• Robust parameter es6ma6on 
• p-values 
• Combined p-values as a Sta6s6c 
• Maximum Likelihood 
• Neyman-Pearson Lemma 
• Fisher Informa6on 
• Wilk’s Theorem

Distribution Tails & Likelihood



Is That Normal?

We frequently encounter vague statements about the assumption 
that distributions are “sufficiently Normal,” but exactly what does 
that mean and how do you check that things are Normal enough?



It depends on what you’re trying to do:
• For example, if you’re fitting a function to a set of data, so long as the 

probability distributions for the data points are reasonably symmetric and tails 
are not very large, the derived central values for the fit parameters will 
generally be pretty good.

• If you want to make a precise measurement and quote Gaussian error bars, 
the probability distribution for the parameters should be Normal to at least ~2σ 
or more, as this is a tacit assumption by the reader when you quote ±1σ error 
bars. If this is not the case, the details should be given.

• If you want to exclude models at high confidence based on Gaussian error 
bars, the relevant distribution should obviously be Normal to at least that 
confidence level.

Note: the requirement on the precise Gaussian nature of individual data points may be less 
restrictive, since the variance of fit parameters generally arises from the accumulation of 
smaller deviations from the data points.

So the nature of Gaussian requirements is necessarily 
pragmatic, but is generally logically straight-forward.



The real issue is about:
 
1) Notably asymmetric distributions 
that can lead to systematic biases

2) Long distribution tails, whereby 
large deviations from the expected 
mean (“outliers”) occur much more 
frequently than assumed, which can 
skew fits and lead to misinterpretation.

Goodness of fit parameters, such as chi-squared, can be useful indicators 
of issues, but these don’t catch everything and won’t diagnose the issue

It is always advisable to look at the distributions!



But how do you deal with very large and complex data sets, 
where visually inspecting every distribution is not very practical?

• If distributions are symmetric, then mean = median = peak (mode)

• Different ways to compute the standard deviation:
1) Perform an explicit Gaussian fit
2) Compute the sampled RMS deviation
3) Find the peak and then the FWHM = 2.35σ for Gaussian
4) The central ±1σ should contain 68% of the events

Building some of these checks into your analysis 
is an extremely useful way to flag potential issues 
that warrant further investigation

• The sample “skew”                              should be close to zero 



Robust Parameter Estimation

The idea is to minimise the effect of distribution tails and asymmetries 
on the determination of derived parameters

For example, the median (or 50th percentile) is much more robust in 
this regard than the mean:

xmed = x(n+1)/2

xmed = xn/2 + xn/2+1
2

n odd →

n even →

In general, distribution percentiles are robust. So, for example, one 
could define an equivalent distribution “width” by the 84th percentile 
(i.e. the value below which contains 84% of the distribution) minus the 
16th percentile to give a region containing 68% of the distribution 
(roughly ±1σ for a Gaussian distribution) centred on the median.
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A fit to parameters based on minimising the sum of RMS deviations 
provides an unbiased estimator for the mean:

To instead provide an unbiased estimator for the median, minimise 
with respect to the sum of the absolute deviations:

ε

these are all ε closer these are all ε further
plus this 

additional ε

So the minimum 
sum of absolute 
deviations finds 
the median! 



In general, the function to be minimised in order to find 
the best set of parameters is called the “Loss Function”

An alternative loss function suggested by Huber* provides smooth 
convergence in the vicinity of the minimum, while maintaining 
robustness from the distribution tails:

A “Pseudo Huber Loss Function” provides a more convenient form 
that has continuous derivatives at all degrees:
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where δ is a tuneable parameter that 
would equal σ for a Gaussian distribution
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*P. Huber, “Robust Estimation of a Local Parameter,” Ann. Math. Statist. 35(1): 73-101 (1964)



p-value (“chance probability”):
The probability of obtaining a value 
of some parameter at least as 
extreme as that which is observed, 
assuming the null hypothesis is true.

“How much does this particular data set look 
like what is expected from the null hypothesis?”

A common quantity to compute when testing the null hypothesis:

But the p-value is NOT the 
probability of a particular 
hypothesis being true or false!



Example 1:

p-value for this test, but 
need to look at it in the 
context of all other tests



Example 2:

During his year of self-isolating, 
Dave peered out of his bunker 
on six random occasions and 
found that it was always dark.

Assuming that the earth goes 
around the sun, you would 
expect it to be dark about half 
the time, averaged over the 
year. So the chance probability 
for it to be dark outside on all 
six occasions is:

P(dark all 6 times) = (0.5)6 = 0.0156
“Gosh, That’s pretty small! Hey everyone, it 
looks like there’s a very good chance that 
we’re no longer going around the sun!!”

Hey guys… I think 
dad has totally lost it!

Importance 
of prior 

probabilities 
(more on 
this later)



Pragmatism!

Very small p-values, even after 
careful accounting of trials, confirmed 
by other observations/crosschecks, 
which could be explained by self-
consistent (plausible) alternatives…

Reject H0

Look carefully at context:



Two identical experiments observe evidence of the brexiton 
(a particle now outside of the Standard Model that inevitably 
then decays to a less attractive state). The first experiment 
assesses the odds that their observation is due to chance 
fluctuations as being 1%, while the second assesses their 
observation to have a chance probability of 10%. What is the 
combined chance probability that these two data sets are 
consistent with the null hypothesis (i.e. there is no brexiton)?

Combination of p-values

P1 − P2 = 0.001 ?
Need to look at properties of the product:

Define the statistic:

What is the chance probability for Γ 

to be at least as small as some value α ?

⟶ ′ P1 − P2



Integrated area
under the curve:
α ( 1 - ln α )

= P(α)
i.e. this is the chance 
that a background 
fluctuation would yield 
a value of Γ that is at 
least as small as α.0                                     0.5                                   1.0

1.0 

0.5 

0

α

α

P2

P1

P1 − P2 = μ

So, for the case here: μ = (0.01)(0.1) = 0.001
P( ∞ μ) = 0.001(1 → ln(0.001)) = 0.004



Fisher’s Method
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More generally…



The EXO experiment uses liquid xenon to 
search for evidence of neutrinoless double 
beta decay, which produces 2 electrons with a 
total energy that is well defined. The 
interaction produces scintillation light in the 
liquid xenon target, and the ionisation tracks of 
charged particles are also drifted to a readout 
plane to record the time and position of 
charges. Backgrounds come from radioactivity 
in the xenon and, to a greater extent, from the 
walls of the detector.

Assume that an event is observed and the chance probability for it 
to be background is assessed using several independent measures:

Event energy estimated from the scintillation light:
Event energy estimated from the total charge:
The proximity of the event to the cavity walls:
The density of charge deposition (event topology):

Pscint = 0.14
Pcharge = 0.05
Pcharge = 0.32
Pcharge = 0.53

What is the overall 
chance probability  
(p-value) that this 
event is background?

→2 log(0.14 − 0.05 − 0.32 − 0.53) = 13.43
P(σ2 > 13.43, DoF = 2 − 4) = 0.10

Example:



We wish to express the 
likelihood for a given set 
of data to have resulted 
from a particular model of  
probability distributions:

for independent events

Likelihood

likelihood data 
set

conditional probability

assuming a particular 
hypothesis defined by 
a set of parameters q

L = P (D |H(q))

more practical 
to compute

log L =
n

∑
i=1

log [P (xi |H(q))]
More likely data sets for H(q) will have a 
higher combined probability (i.e. likelihood)



Note: When used in this way, L is referred 
to as the “Likelihood Function” rather than a 
probability, because it is used to describe 
the relative probability for different models 
given a fixed data set… however that 
dependence need not be normalised to 1 
over the models tested!

The game will then be to find the model for 
which the observed data set is “most likely”

(the normalisation is instead defined over 
all possible data sets for the correct model)

log L =
n

∑
i=1

log [P (xi |H(q))]



Simple hypothesis: All parameters of the relevant distributions are specified.      
                       (i.e. PDFs can be used to completely characterise the problem)
Composite hypothesis: Where this is not the case and parameters span a           
                                        range of possibilities.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
more than £15 per week on this.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
£17 per week on this with a standard 
deviation of ~ £13.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
£17 per week on this with a standard 
deviation of ~ £13, whereas this is 
normally what is expected for the typical 
UK household with an average of 1.9 
adults.

SIMPLE

COMPOSITE
(exact distribution not defined)

COMPOSITE
(distribution of alternative not defined)

Tests of Simple vs Composite Hypotheses



Statistical Power
When comparing 2 hypotheses, H0 and H1, the 
“statistical power” is the fraction of times that H0 is 
correctly rejected when H1 is true if one were to 
repeat the test many times with “identical” ensembles 
of data subject only to statistical fluctuations



Statistical Power
When comparing 2 hypotheses, H0 and H1, the 
“statistical power” is the fraction of times that H0 is 
correctly rejected when H1 is true if one were to 
repeat the test many times with “identical” ensembles 
of data subject only to statistical fluctuations

Bayesian Power
When comparing 2 hypotheses, H0 and H1, the 
“Bayesian power” is the confidence you have in 
correctly rejecting H0 given the assumed probability 
distributions of H0 and H1 for this particular set of data

“Frequentist”
That’s ridiculous… I only care whether I’VE made the right choice given THIS set of data!

That’s ridiculous… hypotheses don’t have probability distributions: they are true or false!



≃ ′ L(D |H0)
L(D |H1)

Neyman-Pearson Lemma:

(The exact distribution of Λ will, in general, depend on the distributions of L)

sometimes defined 
as one over this(                )

“Uniformly Most Powerful”
discriminate between simple hypotheses

is

(in a frequentist sense)



Assume that the set of possible hypotheses that describe 
a particular data set are distinguished only by the values of 
some unknown set of model parameters (e.g. the number 
of signal events, or the slope and intercept of a line, etc.). 

Determining the best set of model parameters by 
comparing to find the Maximum Likelihood is therefore 
the UMP method of parameter estimation! 

Simple example:  You wait at a bus stop and no bus arrives for 
the first 10 minutes, but then 2 buses arrive in the next 10 minute 
interval. What is the best estimate of the mean number of buses 
per 10 minutes?

P(n |α) = αne→α

n!
assume 
Poisson 
process

L = P(0 |α)P(2 |α) = (e→α)( 1
2 α2e→α) = 1

2 α2e→2α

⟨ αm = 1
(as expected)

maximise the likelihood:
⟩L
⟩α

= αe→2α → α2e→2α = 0



constant

Thus, maximising L = maximising logL = minimising -2logL 
is equivalent to the Method of Least Squares in this limit !!
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Consider the case where uncertainties on data points are normally distributed. 
Assume that the mean values and variances, µi and σi, are predicted at each 
data point by some model. Then we have:

logL =
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log L

looks 
like χ2



The “score” for data set D given a single model parameter q is defined as:

s(D |q) ′ ⟩ log ≪(D |q)
⟩q

essentially the change in the fractional value 
of the likelihood as parameters are varied 
(for multiple parameters, this is a vector)

The Fisher Information is defined as the variance of the score.

If the relative likelihood changes rapidly as parameters change 
(i.e. high variance), the data is therefore carrying a large 
information content for those parameters. 

The score is zero at the maximum likelihood. So, if q represents the true model 
parameter, then

≫s(D |q)≡ = ⟨ ⟩ log ≪(D |q)
⟩q ⟩ = 0

for k model parameters, 
this is a k x k covariance 

matrix

Fisher Information

∑(q) ′ var [s(D |q)] = ⟨( ⟩
⟩q

log ≪(D |q))
2

⟩
Given the above, this is then:



If the log likelihood is twice differentiable, then

⟩2

⟩q2 log ≪(D |q) =
⟩2

⟩q2 ≪(D |q)
≪(D |q) →

⟩
⟩q ≪(D |q)
≪(D |q)

2

=
⟩2

⟩q2 ≪(D |q)
≪(D |q) → ( ⟩

⟩q
log ≪(D |q))

2

⟨
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⟩2

⟩q2 ≪(x |q)
≪(x |q) ≪(x |q) d x = ⟩2

⟩q2 ∫ ≪(x |q) d x = 0and

so ∑(q) = ⟨( ⟩
⟩q

log ≪(D |q))
2

⟩ = → ⟨ ⟩2

⟩q2 log ≪(D |q)⟩
∑(qij) = → ⟨ ⟩2

⟩qi⟩qj
log ≪(D |q)⟩

for k model parameters, 
this is a k x k covariance 

matrix with entries:

Note that, since the log likelihood for the 
date set is the sum of log likelihoods of 
the n independent data points, then

∑(q) =
n

∑
i=1

∑i(q)



Example: Bernoulli Distribution

⟩ log P(1)
⟩p

= 1
p

⟩ log P(0)
⟩p

= → 1
1 → p

∑(p) = ⟨( ⟩ log P
⟩p )

2

⟩ = → ⟨ ⟩2 log P
⟩p2 ⟩ = p − 1

p2 + (1 → p) − 1
(1 → p)2

= 1
p

+ 1
1 → p

= 1
p(1 → p)

P(1) = p P(0) = 1 → p

2 possible outcomes, depends on single 
parameter p, the probability of success:
pass: fail:

Note that this is equivalent to one 
over the distribution variance, since

⟩x2∏ = 12 − p + 02 − (1 → p) = p
≫x≡ = 1 − p + 0 − (1 → p) = p

var = p → p2 = p(1 → p)

(underpins all basic probability distributions)

Exercise: 
Show explicitly that 
this is also true for 
binomial, Poisson 
and Gaussian 

∑ = 1
δ2var



Consider a single parameter, q, which maximises the likelihood at q=qm. 
Now Taylor expand around the maximum likelihood point:

ln L(q) = ln L(qm) + [ ⟩ ln L
⟩q ]

q=qm

(q → qm) + 1
2! [ ⟩2 ln L

⟩q2 ]
q=qm

(q → qm)2 + . . .

zero by 
definition

ln L(q) ∼ ln L(qm) → 1
2

(q → qm)2

δ2qm

ln L(qm ± δqm
) ∼ ln L(qm) → 1

2

Can we approximate the general shape of likelihood functions?

q ⟨ qm ± δqm

→2[ln L(qm ± δqm
) → ln L(qm)] ∼ 1or

looks like Δχ2 !!

must be negative, since 
we are at the maximum 
and, as , the 
magnitude tends to  

n ⟨ ∂

∼ ∑(qm) = 1/δ2
qm



Wilks’ Theorem

→2[ln L(qo) → ln L(q)] = → 2 ln ( L(qo)
L(q) ) ′ → 2 ln LR ∼ σ2

d

more generally:

where qo are the set of model parameters that define the default (null) hypothesis,
and the  d = DoF = the difference in the number of model parameters constrained

• For nes!d hypo"eses (i.e. a con$nuous 
%ansi$on &om one hypo"esis ' "e next)
• Away &om boundaries in likelihood space

• In "e limit of large amounts of data

Legal Sta!ment:

However, for example, in the case of Poisson distributions, this 
actually works pretty well even for small numbers of events and 
also near μ=0. But generally need to check. Can do this, for 
example, by generating simulated data sets under a given 
hypothesis to directly look at the distribution of likelihood estimates.

(i.e. how many extra degrees of freedom one model has compared to the other)



Regarding the requirement of continuity for Wilks’ Theorem…

Example 1: A model where you have some number of signal 
and some number of background, and you allow the relative 
fractions of these to change continuously while finding the 
most likely values.

Example 2: Using neutrino oscillation measurements to try to 
determine whether they have a normal or inverted mass 
ordering.

Perfectly fine!!

Violates Wilks’ !! 
The likelihood ratio still provides the UMP test, but the 
distribution of                    cannot be assumed to follow→2 log ≪R σ2



Example:

A newly commissioned underground neutrino 
detector sees a rate of internal radioactive 
contamination decreasing as a function of 
time. 10 events are observed over a period of 
15 consecutive days. Determine the best fit 
mean decay time in order to determine the 
source of the contamination.

P(t) = 1
to

e→ t
to

decay probability:

to = mean decay lifetime



best fit 
value

~1σ ~1σ

No absolute goodness-of-fit,
just the “relative goodness” 

between different models


