
Lecture 5:

• Joint Analysis 
• Constraints 
• Extended Likelihood 
• Asimov Data Sets 
• Binned Histogram PDFs & Error Propaga6on 
• Bayes Theorem

More Likelihood & Bayes’ Theorem
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∑
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∑
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Likelihood for the same hypothesis, but a 
different set of data. Could even be from a 
different experiment and assessed in a 
completely different way, so long as it is 
eventually turned into a probability.

Likelihood for one set of data under H(q).

Can jointly analyse multiple data sets from multiple experiments 
to determine the best overall parameter estimations by adding 
together their likelihoods over the same parameter space

It’s always good to show your likelihood space as part of the 
presentation of results both as an overall summary of the relevant 
information content of your data and to allow for such joint analyses

Joint Analysis of Multiple Data Sets



Applying Constraints

Assume that several parameters in your model have 
uncertainties that are subject to external constraints, for 
example, from a series of calibrations. These can generally 
also be included as part of the likelihood. For instance, if 
there are m parameters subject to Gaussian constraints, then:
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⟨
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∑
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∑
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Can ignore this term, since this 
is a constant and we’re only 
concerned with derivatives and 
differences of the likelihood



“Extended” Likelihood

The number of events, n, in a data set is often the result 
of Poisson fluctuations about the expected mean 
number of events. If the expected mean is itself a 
parameter of interest (e.g. the “true” flux of signal and/or 
background events), the associated Poisson fluctuation 
can then be included in the likelihood as follows:

L = ( σne→σ

n! )
n

⟨
i=1

P(xi |H(q))

log L = n log σ → σ → log(n!) +
n

∑
i=1

log [P (xi |H(q))]
Can ignore this term, since this 
is a constant and we’re only 
concerned with derivatives and 
differences of the likelihood



Example of a 2-component model of signal and background:

An Experiment Searching 
for Rare Interactions

Reconstructed energy and position could 
be correlated (e.g. higher energy events 
could be easier to reconstruct accurately). 
So, form 2-D histograms to preserve these 
correlations and normalise these to one to 
produce PDFs for each type of event class: 

“Energy”“Radius”

“Radius” “Energy”

Simulation and/or Calibration Data

signal
(~ R3)

signal

background background



Consider a hypothesis, H, in which a certain fraction of 
the data is signal and remaining fraction is background:

log L = n log(σS + σB) → (σS + σB)

+
n

∑
i=1

log P(Ẽi, R̃i |S)( σS

σS + σB ) + P(Ẽi, R̃i |B)( σB

σS + σB )

P(Ẽi, R̃i |H ) = P(Ẽi, R̃i |S)( σS

σS + σB ) + P(Ẽi, R̃i |B)( σB

σS + σB )
σtotal = σS + σBwhere

Maximise log L (or minimise -2log L) over µS and µB 
in addition to any other parameters of the model

extended likelihood part
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We’re particularly interested in the value and 
significance of the signal, so look at the 
projection where the likelihood is maximised over 
all other free model parameters as μS is varied: 

“nuisance 
parameters”

“Profile Likelihood”



The Asimov Data Set

“Franchise” 
(1955)



∞ =
Nbins

⟨
i=1 [ mi(q)nie→mi(q)

ni! ]
log ∞ =

Nbins

∑
i=1

[ni log mi(q) → mi(q) → log ni!]

Assume that we have a set of multi-dimensional PDFs defined by an 
arbitrary number of bins (Nbins) that can be combined under a particular 
model (m, defined by q parameters) to yield a predicted mean number of 
observed counts (n) in each bin (i) from a given data set. The likelihood 
can then be expressed as:

log ∞
∞0

− log ∞R

=
Nbins

∑
i=1

[ni log mi(q) → mi(q) → ni log mi(q0) + mi(q0)]

The log-likelihood ratio with respect to some nominal model, m(q0), is 
then given by:

q0 might, for example, represent the null hypothesis or 
could just be the point where the likelihood is maximum



⟩log ∞R∏ = ⟨
Nbins

∑
i=1

[ni log mi(q) → mi(q) → ni log mi(q0) + mi(q0)]⟩

=
Nbins

∑
i=1

⟨[ni log mi(q) → mi(q) → ni log mi(q0) + mi(q0)]⟩

=
Nbins

∑
i=1

[⟩ni∏ log mi(q) → mi(q) → ⟩ni∏ log mi(q0) + mi(q0)]

Say we’re interested in what to expect on average for the log-likelihood 
ratio as a function of ‘test’ parameter values:

So we just need to substitute in “perfect, un-fluctuated” expectation 
values for a representative data set. This could, for example, be taken 
from scaling the PDF model for some particular set of parameters to the 
size of a typical data set.



Can be used to find the expected sensitivity for discovering a 
particular phenomenon, or the expected power to discriminate 
between different model, or the expected accuracy in 
constraining model parameters.

Incredibly useful! Also an excellent way to check if your code 
is doing the right thing and understanding basic characteristics 
without having to run the full analysis chain thousands of times!

Expected ability to 
constrain oscillation 
parameters after 5 years 
of reactor anti-neutrino 
data from SNO+

(thanks to Iwan Morton-Blake)

input modelPerfect data ought to 
give perfect results if 
you’re doing things right!





A common approach to producing PDFs involves binning 
data generated by simulation or calibration runs and then 
normalising the resulting histogram by the number of entries.

It is important to ensure that sufficient statistics are used in 
the  production of these histograms so as to accurately 
characterise the true PDFs, preserve important correlations 
and avoid sampled bins that appear to have ‘zero probability’ 
due to fluctuations, which will zero out the entire likelihood 
calculation (and cause infinities in the log).

This can be particularly tricky for multi-dimensional PDFs 
with a large phase space…

Binned Histogram PDFs



• Focus on the main parameters and most important correlations;

• Minimise the dimensionality by choose parameters and 
parameter combinations that are as independent as possible to 
reduce sharp correlation features and allow factorisation;

• Choose the largest binning that still provides adequate 
resolution for important features;

• Use overflow and underflow bins at the distribution edges to 
avoid empty bins;

• PDF statistics should be at least an order of magnitude larger 
than the data set to which it will be applied.

Useful Rules of Thumb



Let’s say you create a set of PDFs for some 
parameters by running lots of simulations, 
binning the resulting distributions of 
parameter values and then normalising the 
areas of each histogram to one.

parameter 2

parameter 1

How do you deal with the statistical uncertainties in the constructed PDFs?

Could smooth PDFs, but can be tricky in multiple dimensions and has the 
potential to produce artefacts

Accounting for Statistical Uncertainties in PDFs

P(Data |Model) P(Data |PDF Histograms)

P(Data, PDF Histograms |Model)



First analysed by Barlow and Beeston (Comp. Phys. Comm. 77, 219, 1993)

A much more practical approximation was given by Conway (PHYSTAT 2011, 
arXiv:1103.0354), which is what we’ll follow here.

∞ =
Nbins

⟨
i=1 [ (αiσi)nie→αiσi

ni! ] [ σNi
i e→σi

Ni! ]
data PDF

PDF scaling 
to data set

“true” PDF mean 
for this bin

Complicated by model correlations between bins and multi-component models

Want to maximise 
overall likelihood, 
so maximise here 
over the set of 
“true” PDF means



For the ith bin in the data and PDF histogram, the contribution to the 
extended likelihood is: →ln ∞i = → ni ln σi + σi
where ni = number observed and µi = model prediction based on the PDFs

We can then drop the bin subscript for simplicity incorporate the Gaussian 
uncertainty scaling into the likelihood for that bin as follows:

→ln ∞ = → n ln δσ + δσ + (δ → 1)2

2τ2
We want to maximise the likelihood (minimise -lnL), which can be explicitly 
done bin-by-bin in the parameter β by differentiation:

δ2 + (στ2 → 1)δ → nτ2 = 0
Solve for β in each bin and calculate the likelihood…

Make Two Simplifying Assumptions: 
1) Take model systematics to be uncorrelated between bins to allow bin-

by-bin error propagation (conservative);
2) Assume the uncertainty in µ due to statistical fluctuations in the 

contributing PDFs can be approximated by a single Gaussian scaling.



What is σ for the bin?

Assume we are using k PDFs to model the 
total number of events predicted in this bin:

σ =
k

∑
j=1

σj

τj −
⟶σj

σj
′

⟶mj

mj
′ 1

mj
=

fj
σjNj

τ2 =
k

∑
j=1

τ2
j

So just need to 
remember this

Still issues for mj ~ 0,
(hard to get around)

σj = fj (
mj

Nj )where

PDF 
normalisation

# simulated events 
for this PDF that 

fall in this bin

total # simulated 
events for this PDF



Nuisance Parameters in Binned PDFs

Nuisance parameters can affect the PDFs definitions in two ways: 
1) Though unknown model parameters that define the PDF 

shape
2) Through systematic uncertainties in the modelled parameters 

themselves (such as calibration uncertainties in the energy 
scale etc.)

In principle, each exploration of different possible nuisance 
parameter values would involve re-making each PDF from scratch 
before applying the likelihood calculation, which can be a real 
pain in the neck and expensive in terms of computation time!

There are a couple useful tricks for dealing with this…



1. Re-interpret the binning (“shift the data”)
Here, you basically re-interpret the PDF binning as 
representing modified data values.
For example, say there are systematic uncertainties in the 
scale and offset for reconstructed energies, , due to 
limitations in calibrations. We can take the binned PDF to 
represent the ‘corrected’ energy estimator:

≃Ei

≃E*i = α ≃Ei + δ
where  and  are nuisance parameters varied in the fit and 
applied to each individual data point, but without the need to 
recompute the PDFs themselves.

α δ

This works well for some cases but, for example, is less 
straightforward for resolution systematics or for model 
parameter uncertainties that affect bin-to-bin correlations



2. Transform the PDFs
A more general approach* is to treat the different bins of a PDF as 
a representing a vector that can then be transformed to a new 
PDF using a modification matrix:

b⟨ i =
Nbins

∑
j=0

Mijbj
where  is the modified bin content for the new 
PDF.  is the matrix of modification weights 
based on the nature of the nuisance parameters.

b⟨ i
M

* Jack Dunger, Springer Theses (Oxford). Springer International Publishing, Cham, 2019, 10.1007/978-3-030-31616-7 

1) A single matrix can be used to represent all 
systematic distortions in a single step;

2) Typically, # bins being manipulated << # of 
events used to build the PDFs

3) Highly optimised code exists for matrix 
operations like this for both CPUs and GPUs

This process is fast for 3 reasons:

Care must be taken near distribution edges, since modifications 
can move events into and out of the nominal fiducial fitting region. 
This can be handled using adjustable buffer regions that extend 
beyond the edges and keeping track of normalisations.



Bayesians  vs  Frequentists
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C

Consider a single experiment in which 2 parameters are 
measured (  ) and compared with predictions from 3 
different theoretical models (A, B, C) 



Bayesian: 
Degree of belief. Given a single measurement, ascribe “betting odds” to 
the phase space of possible models. Requires an assumed context for the 
comparison of these models (prior). There is no relevance to the 
“statistical coverage of a confidence interval,” because there is only one 
measurement (which is not repeated over and over again).

Frequentist: 
Frequency of occurrence given a hypothetical ensemble of ‘identical’ 
experiments. Individual measurements are not used to assess the validity 
of a model. There is no such thing as a “probability” for a model 
parameter to lie within derived bounds - either it does or it doesn’t. 
However, if everyone played the same game, the correct model would be 
bounded a known fraction of the time. 

Different Definitions of Probability in relation to models:



Bayes’ Theorem

P(A |B) = P(B |A)P(A)
P(B)

P(B) = ∑
j

P(B |Aj)P(Aj)

P(Ai |B) = P(B |Ai)P(Ai)
⟩j P(B |Aj)P(Aj)

If there are multiple versions 
of A to choose from, then

P(A |B) ≪ P(B |A)
note:

(e.g. different hypotheses)

To
m  

rul
es!



posterior
probability

YOUR confidence that a particular 
hypothesis is true given the data and 
any prior understanding

P (Hi|D) =
P (D|Hi)P (Hi)�

j
P (D|Hj)P (Hj)

“likelihood” of the data  
 given the hypothesis 
likelihood of the data 
given the hypothesis     prior 

probability 
prior

probabilityhypothesis

datadata
total probability of the data under the 

set of possible hypotheses

YOUR understanding of whether any 
one hypothesis is favoured more than 
any other prior to looking at the data



P (Hi|D)

P (Hk|D)
=

P (D|Hi)

P (D|Hk)

P (Hi)

P (Hk)

Relative probability 
ratio between two 
different hypothesis 
(or variants of some 
hypothesis) given the 
same observed data: likelihood ratio “odds” ratio



PRIORS

1. Informative:

Permits known, physical constraints to be 
imposed (e.g. energies and masses must be 
greater than zero; the position of observed 
events must be inside the detector, etc.) 
and allows known attributes of the 
physical system to be taken into account 
(e.g. energies are being sampled from 
some particular spectrum; the relative 
probabilities for different event classes are 
drawn from some given distribution, etc.).

2. Non-Informative: 
(A Case of Too Much History!)

When there is no clear a pr ior i 
preference, you must still choose a 
context to be used for comparing models.

The probabilities of different 
hypotheses are the same in 

what metric?
All 

values of 
A are 

equally 
likely

≪
All 

values of 
A2 are 
equally 
likely



Your brain inherently makes Bayesian inferences:



Your brain inherently makes Bayesian inferences:

Context is necessary to relate data to model parameters
(visual observation) (optical properties of surface)

Prior: How are 
the squares likely 
being illuminated?

The model is of central importance to enable  predictions


