Lecture 6:
Priors & Confidence Intervals

Mandatory Nature of Priors

Bernstein - von Mises Theorem
Self-Iteration and “Unfolding”
Confidence Intervals - Wilks' and Neyman
Meaning and Misinterpretation

Issues with Confidence Intervals
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Another example:

Charged particles produce light as they pass through plastic scintillators, which can
be detected by photomultiplier tubes and used as an estimator for the energy
deposition. Say that that you calibrate such an instrument using known gamma line
energies from various radioactive sources and determine that the energy can be very
well described by taking the mean number (N) of detected photons (drawn from a
Gaussian distribution of width 0) and multiplying it a proportionality constant, Q.

Now you measure emission from some continuous spectrum and detect No
photons from an interaction.VWhat is the best estimate of the gamma ray energy!?

Fluctuations into the N, region
from higher and lower energies
are equal and unbiased:

Fluctuations into the N, region
from lower energies are more
likely (there are more chances):

Different biases in the different
regions of the spectrum
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Relating data to model parameters requires a context (i.e a prior)!



Any inference about models based on an observation
IS an inherently Bayesian undertaking as it requires
an assessment of the posterior probability P(H;|D)
and, thus, requires the choice of a prior!

raratj
This is piter-r10T appreciated! The assumption that the
relative likelihoods for two hypotheses alone is the
same as the betting odds for which hypothesis is
correct tacitly assumes an odds ratio of 1.



People often view priors as a problematic aspect of
Bayesian statistics; a nuisance that they have to

find a way around.

But this is WRONG! An ambiguity in the form of a
prior represents a REAL ambiguity in the

interpretation of data! The choice of prior should
only matter when the data itself isn’t strong enough
to provide an unambiguous interpretation.

If there is an ambiguity in the choice of prior that
can lead to notably different conclusions, you

should show this!
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Sclentists say they have extraordinary new evidence to support a Big Bang Theory for the
origin of the Universe.

Researchars believe they have found the signal eft in the sky by the super-rapid axpansion of
space thal must rave occurred just fractons of & seconc after eserything came into being.

It ;akes the form of a distinctive twist in the oldeat light detoctable with telescopes.
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Fehns Hopkins University.

“This Is spectacular,” commentec Prof Marc Karl e

“I've seen the ressarch; the arguments are persuasive, and
tha sclentsts invoived are among the mest carelul and
ccnservatve people | know,* he told BBC News.

" Naturs died nat have 16 ha o kin
and the theory didn't have to be
right

The breakthrough was arnounced by an American team
working 01 a projact known as BICEP2.

This has been usng a telescope at the South Pcle to make
detalled coservatons of a small patch of sky.
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Example:

As the result of a|random |blood test, you are diagnosed
with “Saturday Night Fever,” a disease suffered by 0.5% of
the population that results in convulsions when exposed to
anything associated with John Travolta. The blood test
reliably diagnoses the disease in 80% of cases and yields a

false positive 5% of the time. Should you avoid listening to
BeeGees albums?

P(B|SNF)P(SNF)
P(B|SNF)P(SNF) + P(B|no SNF)P(no SNF')

B (0.8)(0.005)
~ (0.8)(0.005) + (0.05)(0.995)

P(SNF|B) =

= 0.074

What if the reason you went to your GP for a blood test was that you got
splitting headaches whenever someone mentioned the word “Grease?”



These are basically the same numbers as for COVID-19 (early Oct 2020).

What if you feel ill and get a positive test?

Say the average person is typically ill 10 days per year, so the odds
of currently being ill from the common cold is ~10/365 = 0.027. With

social distancing, reduce this by a factor of ~10 to 0.0027. So, the
fraction of people feeling ill that have COVID-19 is perhaps
something like 0.005/(0.005+0.0027) = 0.65 (this, then, is the prior

instead of 0.005).

P(+T|CV19)P(CV19)

PEVIOI+T) = P(+T|CV19)P(CV19) + P(+T |no CV19)P(no CV19)
(0.8)(0.65)
= = (0.97
(0.8)(0.65) + (0.05)(0.35)

Priors are important!



Example 2:

Atmospheric neutrinos result from the decay of charged pions produced
by hadronic interactions in the atmosphere. The characteristic decay
sequences are:

T =W FU, ™ = ut Hv,

Ly e~ + U, Ly e “7u

You are detecting these neutrinos coming from directly overhead with an
underground water Cherenkov detector. From the fuzziness of the ring
pattern of observed light from a particular event, simulations tell you

that 70% of V. ’s will produce a ring at least this fuzzy, whereas only 50%

of V“’s will do this. What is the probability that this eventis a v, ?
P(R|ve)P(ve)
(Rlve)P(ve) + P(R[v,)P(vy)

(0.7)(1/3)
(0.7)(1/3) + (0.5)(2/3) — 0.41

P(v|R) =




Bernstein — von Mises Theorem

In the limit of an infinitely large data set, the
posterior probability is independent of the
exact form of the prior probability.

(the likelihood function that multiplies the prior crushes
it’s impact away from the region of interest)

For example, if you instead asked for the probability for a
large number Cherenkov events to be v_out of a big data

set, the information contained in the distribution of ring
fuzziness within the data itself carries more weight than
the form of any previously assumed prior.

Priors carry greater weight for weaker data sets



“Should | then use the outcome (i.e. posterior probabilities)
from previous experiments to form the prior for this one?”

Yes, for other experiments that you
have performed (e.g. calibrations) to
assess certain aspects of detector
performance, or related data that can
be regarded as unimpeachable.
Otherwise, generally not, because the
ability to properly assess systematic
uncertainties associated with individual
experiments is not generally under
your control and can be difficult. This is
why each experiment should stand on
its own and be independently cross-
checked by other experiments.




Self-Iteration and “Unfolding”

You might wonder what happens if we iteratively update
the priors using the posterior probabilities that emerge
from the same data set. Does this converge to
something meaningful in a way that doesn’t depend so
much on the initial choice of priors?

Let’s take the simple case of a single bin in a histogram,
where a number of counts, n, is observed, a
background, b, is expected, and we wish to determine
the best estimate for the number of signal counts, s.

Say we want to do this in a Bayesian way, so we’ll start
with some prior, P(s;), as a function of signal value, and
then iterate...



- . P(n|s; + b) P(s;
1st estimate: PW (s, ) = s Zl(l,:is +)b) ib;,()s)
j ] ]

P(n|s; + b) P(s;)
. 2
P(n|s;+ D) > P(nls,+b) P(s)  _ P(n|s;+b) P(s)

i : 2) — -
2nd estimate: Py, |n) = Prls 5 () 2, P(n|s;+b) P(s)

P -
ZJ (nlsj +b) 2, P(n| s +b) P(sy)

PN(n| s;+ b) P(s;)
ZJ. PN(n|s; + b) P(s))

Nth estimate: PU(s;|n) =

We can see what’s happening: this process simply accentuates
features (including fluctuations) that are already in the likelihood.
As N — oo, the posterior converges to 1 for the maximum
likelihood value and zero elsewhere. In the case of a degeneracy,
the convergence value is determined by the original choice of
prior. Features outside the maximum likelihood values become
artificially suppressed, but no additional information has
been gained... because there is none!



One popular approach” used by some in particle physics to
try to deconvolve or “unfold” underlying model distributions
with minimum reliance on assumption from priors involves
self-iteration of priors such as this... which then suffers from
exactly these issues. It gets you nowhere.

At it’s heart, “unfolding” is, fundamentally, a Bayesian
undertaking. A number of approaches have been
suggested for different cases but, ultimately, it necessarily
comes down to the use of the likelihood function guided,
In some way, by prior probabilities to help break
degeneracies, insure continuity, and generally constrain
the solution to a physically meaningful and realistic form.
So deal with this explicitly!

*G. D’Agustini, Nuclear Instruments and Methods in Physics Research A 362 (1995) 487-498
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DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. |F THEY
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OTHERWISE,, IT TELLS THE TRUIH.

LETS TRY.
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FREQUENTIST STRATISTICIAN: BAYESIAN STATISTIOAN:
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Confidence and Credibility I:
Frequentist Confidence Intervals

(an attempt to avoid priors)




Construction of Frequentist Confidence
Intervals via Wilks’ Theorem

We've been here before...

_ Lg.) \ _ :
~2[In L(q,) — In L(g)] = — 21n ( @ ) =-2nke ~ X5

where g, ara the set of model paramaters that define the default (null) hypothesis,

and the = DoF = the difference in the number of model parameters constrained
{l.e. now many extra degraes of freeZom one model has compared to the other)

Legal Statement:
+ For nested hypotheses (i.e. a continuous
wansition from one Aypothesis to the next)
+ Away from Boundaries fn l'iﬁefft'iood'syaca
* In the liomir af l’argz amounts c_.T data

Because this is an approximation, perfect statistical coverage is
not guaranteed... but is is usually pretty close for most cases you
will encounter, and actually works pretty well for counting statistics
even for small numbers. For more unusual cases, the validity can
often be “spot-checked” with Monte Carlo calculations.



Neyman Construction of Frequentist Confidence Intervals

hypothesis H

(for example, assuming

hypothesis H'

hypothesis H'

@ some particular value of
= the true mean )
Q.)
~
S
N
~
b\
Xa Xp
X
CL=1-a-b

(where “Confidence Level” refers
to the frequency of hypothetical
measurements landing in the
defined region for a given model)

x is an “ordering parameter,” which can be a direct measurable (such as the
number of counts) or can be a derived quantity (such as a likelihood ratio)



Note that the fraction of models to be included in a particular CL interval can
be chosen with a number of different ordering rules to yield, for example:
upper bounds, lower bounds, central intervals, most compact interval,
intervals containing the@ighest probability densities or highest likelihood ratios)

useful for more complicated cases,
such as multi-modal distributions

v




Model Parameter of Interest ()

Neyman Construction of Frequentist Confidence Intervals

In the example here,
let’'s assume that the
measurement x is an
unbiased estimator for
the model parameter




Model Parameter of Interest ()

Neyman Construction of Frequentist Confidence Intervals

The range of model parameter
values for which the measurement
is “likely” (i.e. would be contained
within a CL frequency interval)

In the example here,
let’'s assume that the
measurement x is an
unbiased estimator for
the model parameter



Let’s consider the specific case of
Poisson statistics as an example...



Example: Find the standard frequentist CL upper bound on the mean signal
strength, S, for a counting experiment where the expected background level
is B and a total of n events are observed.

For a given model of signal
strength, S, the observable number

of counts would follow a Poisson Smax (S + B)”e_(S+B)
distribution. Given a fixed observed _ C L
value of n, we then want to find the ' —

range of models, from S=0 t0 Smax, 0 n:

that would be contained in a CL
fraction of repeated experiments:

=1-CL

integration by parts, that this is
equivalent to:

n m,_ —(S __ +B
It can be shown, from repeated Z (Smax + B) e (SnaxtB)

!
=0 m.

Then solve numerically for Smax

Note that there is no constraint to restrict the background from being greater than
the observed number of counts!! This is because we are interested in the average
background over an ensemble of experiments, not the particular background for
this measurement. Frequentists only care about the ensemble, not about you!



When using likelihoods for CL intervals, you can often appeal to
Wilks’ Theorem: for each true value of u, the quantity x = -2log of
the likelihood ratio between observed and expected quantities will
be asymptotically distributed as a y2 distribution for nested
hypotheses. Then, for a given observed measure of x, the integral
v2 distribution for g can be use to define the CL intervals.

Where this approximation breaks down, you can always resort to
Monte Carlo methods to verify/derive the correct interval coverage.
Always a good thing to check: Do my derived contours seem to
behave in the correct manner if | repeat the measurement with
multiple MC data sets?

Note: It’s a little weird that coverage here is no longer concerned
with the frequency of physically observed quantities, but rather with
the frequency of arbitrarily constructed mathematical quantities...
but the construction is perfectly valid.



Model Parameter of Interest ()

Neyman Construction of Frequentist Confidence Intervals

What if the model parameter is a
quantity like number of counts or
‘mass’ and your measurement is
subject to a large statistical
fluctuation?

statistical
fluctuation

Say, for example,
that x = total counts
minus expected
background, and
the actual number
of observed counts
fluctuates low




Model Parameter of Interest (l)

Neyman Construction of Frequentist Confidence Intervals
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Model Parameter of Interest ()

Say we are setting a 90% CL.:

The correct model is bounded 90% of

If everyone plays this game,
then the true parameter vaue
is correctly bounded with a
frequency of CL

=
B

the time in the ensemble J

So, if you were to randomly choose a

data set and its associated CL interval,

+ end up outside of
. these bounds

" 1L of the time you that bounds the correct model is Qy

4 i Hitt ¢

sQ the chance that you would pick one

X

But what if this is your interval?
What is the probability that your interval bounds the correct model?

0%...

and you KNOW it is 0% !!

All you’ve got is the ticket to say you’ve played the game



Weather forecasts are accurate in the sense that, when they
say there is a 10% chance of rain, it rains 10% of the time.

The weather forecast says there is a 10% chance of rain.
Without looking outside, what is the probability it is raining?
(Btw, you hear thunder and a gentle tapping on the roof)

Do you take your raincoat?

When you use the term ‘probability,’ perhaps you don’t
actually care about whether it’s raining somewhere else or
how often it rained on similar days. You may instead mean
“Given THIS location and THIS day, what is the degree of
my belief that it is raining”



Frequent Statement About Frequentist Intervals

or a 10 CL interval) that the model

No! There is not a probablllty distribution associated with the
model parameter, that’s a Bayesian concept. Either it lies in your
interval or not, but your one measurement does not constrain it.

“There is a 68% chance thaf _' mterva ~ appens to bound the one,
true value of the model parameter.”

No! This is just an attempt to say the same thing with a wording
that sounds more frequentist. Either it lies in your interval or it
doesn’t. However, there is a 68% probability that you would have
been dealt a set of data that would have lead to an interval (hot
necessarily this particular one) containing the true parameter.

“If someone else were to repeat the,

chance that they would land i&this

No! Your particular data set could haver been a 30 fluctuation, in
which case there is very little chance that the next measurement
would land in your interval.

exp erlment there is a 68%




Consider a single experiment in which 2 parameters are

measured (

different theoretical models (A, B, C)

Parameter |

99% CL

90% CL

68.3% CL

Parameter 2

) and compared with predictions from 3

“Another Look at
Confidence Intervals:
Proposal for a More
Relevant and Transparent
Approach”

Biller and Oser,

NIM A 774 (2015) 103-119
arXiv:1405.5010



Freequenteist [free-kwuh nt-ist] noun

One who espouses the principles of the
frequency definition of probability, and
then misapplies them to answer the
Bayesian question that they actually
have 1n mind.

Qualifier:
This is a generalisation and just a personal opinion.

But check it out - it’s really true!



Many physicists don’t like the fact that statistical fluctuations can result
in a bound extending into an “unphysical” region, or can result in a
“null” interval if the unphysical region is rejected.

(but frequentist intervals do not bound physical models, so there really
is nothing at all wrong with this!! The concern suggests that you might
want to ask a different question from the one you are answering)

This is generally dealt with by either:

1) Truncating the allowed parameter space and renormalising the
distributions to the “physical region.” (which corrupts the stated coverage)

2) Defining the ordering parameter in a way that cannot wander into
the “non-physical” region in the first place (which distorts the interval definitions

often in a non-intuitive way)

Both are effectively trying to introduce a prior for the model parameter,
which is not very frequentist!



In addition, Feldman and Cousins* were concerned about “flip-flopping:
If experimenters choose for themselves when to quote a given type of
interval based on the result, this can lead to astatistical bias in
frequentist coverage.

Worst case (at borderline of CL):
a 90% CL might only have 85% coverage;
a 99% CL might only have 98.5% coverage

A concern over tiny biases in unfiltered surveys of borderline results (!!)

So, F-C intervals use an ordering parameter of the likelihood ratio wrt
to the maximum likelihood for parameters in the “physical” region, and
use a highest probability density ordering for this ratio to specify either
a one or two-sided interval, based on the CL value. Monte Carlo
methods are used to determine intervals with the correct coverage.

In contrast, “Standard Frequentist Intervals” will be defined as those
using the frequency of physical observables as the ordering parameter,
without parameter space truncation and with distinct 1-sided and 2-
side bounds.

*Unified Approach to the Classical Statistical Analysis ok Small Signals gPhys.Rev.D 57:3873-3889,1998)



Issues with F-C In Particular

* Conflicts with scientifically well-motivated convention to quote 90% or 95% CL upper/lower
bounds for results consistent with the null hypothesis, but only claim a 2-sided discovery
interval when the null hypothesis is rejected at a considerably higher confidence level;

* Can't easily cope with look-elsewhere effects: Search for gamma-ray emission from 1000
different astrophysical sources results in no event excess above 30, consistent with statistical
fluctuations. Most appropriate to quote upper bounds on the possible emission from each
source, but unified approach forces 30 detection interval,;

* Even for a clear detection, it may still be relevant to also quote upper and lower bounds in
the context of different models. Different interval constructions can be simultaneously
valid and relevant for the same results, they simply address different questions!

* Intervals do not represent the frequency of physical observables, are asymmetric and can
be non-intuitive: observations of physical observables that occur with the same frequency
can be included or excluded from the intervals differently;

* Because the construction is designed to always return a value “in the physical region,” it
fools people into thinking they are setting bounds on model parameters, which they are not!
This has not dealt with the underlying issue and frequently leads to interpretation problems;

 Can be incredibly computationally expensive!

* All F-C concerns and methodologies are only relevant for borderline signals, otherwise you
are just deriving “standard” parameter contours using likelihood... and it’s worth checking
whether Wilks’ Theorem is good enough here (if you are dominated by Poisson statistics
and Gaussian constraints, it probably is!).



General Frequentist Issues:

Propagation of Systematic Uncertainties

There is no mathematically self-consistent way to jj
t propagate systematics in a frequentist paradigm! {

Systematic uncertainties are exactly like model
parameters: they have true fixed but unknown
values. So, for a given assumed value of the
model parameter and assumed values for the
systematic uncertainties, you can define a
frequentist confidence interval. That’s it!

There are a number of suggested propagation
approaches (such as Highland-Cousins) that
involve Bayesian integrations over systematic
uncertainties, but the interpretation of the
resulting bounds are unclear (being neither fully
Bayesian nor guaranteeing statistical coverage)



The Problem With Zero:

Consider the case where zero events are observed in an
experiment and we then wish to set a 90% CL/CI upper
bound on the average signal strength.

Bayesian:

Frequentist:

We know that the number of background
events here is exactly zero. The 90% CI
upper bound on the average number of
signal events is 2.3 (i.e. there is a 10%
Poisson probability to fluctuate from this to 0)

It depends on the expected number of
background events... even though the
known number is zero! That’s because
frequentists don’t care about you, it's all
about the ensemble.

If you don’t have a model for the background,
you can't set a bound... even when you
know the background.



90% CL/CI Upper Bounds on a Signal when Zero Counts are Observed
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Because the background for this observation is exactly
known to be zero, independent of the expected

Because this is about the ensemble of "other
experiments," and intervals are defined based on the
frequency of a constructed relative quantity for a given
expected background, rather than the frequency of the
actual observed number of counts

—

—

Because this is about the ensemble of counts measured in
"other experiments," which won't observe zero more than
10% of the time for average backgrounds greater than 2.3
(so no 90% CL bounds on an additional signal can exist)

3 4 s 6 7 S o 10
Average Expected Background Counts

—

The specific frequentist intervals derived in this region are
increasingly less likely to bound the true value of average signal flux
because they are increasingly less representative of what would be
seen by most of the ensemble (which will yield less restrictive bounds
that carry much greater weight for determining the correct coverage)



The Problem With Zero:

Consider the case where zero events are observed in an
experiment and we then wish to set a 90% CL/CI upper
bound on the average signal strength.

If you try to ‘propagate’ uncertainties in the background
estimate for frequentist bounds using a hybrid approach,
such as H-C, the derived constraints can behave
peculiarly, and sometimes even get better as the
uncertainty grows!

This is a consequence of integrating over possible
expected backgrounds, which have a downward trend for
the obtained limits as the expected background increases



Highland-Cousins Error Propagation for
FC Intervals when Zero is Observed
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(Bayesian bounds don’t care about the uncertainty in the expected background...
because there is no uncertainty for this measurement: it is exactly zero!)



