
Lecture 6:

• Mandatory Nature of Priors 
• Bernstein - von Mises Theorem 
• Self-Itera6on and “Unfolding” 
• Confidence Intervals - Wilks' and Neyman 
• Meaning and Misinterpreta6on 
• Issues with Confidence Intervals

Priors & Confidence Intervals
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Charged particles produce light as they pass through plastic scintillators, which can 
be detected by photomultiplier tubes and used as an estimator for the energy 
deposition. Say that that you calibrate such an instrument using known gamma line 
energies from various radioactive sources and determine that the energy can be very 
well described by taking the mean number (N) of detected photons (drawn from a 
Gaussian distribution of width σ) and multiplying it a proportionality constant, α.

Now you measure emission from some continuous spectrum and detect No 
photons from an interaction. What is the best estimate of the gamma ray energy?

Relating data to model parameters requires a context (i.e a prior)!

Another example:
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Fluctuations into the No region 
from higher and lower energies
are equal and unbiased:

E  ~ αNo

energy range 
sampled by 
±1σ interval

i.e. energy 
resolution
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Fluctuations into the No region 
from lower energies are more 
likely (there are more chances):

E  < αNo

i.e. there are more low energy 
events in the resolution bin

energy

ra
te E  < αNoE  > αNo

E  ~ αNo

Different biases in the different 
regions of the spectrum



Any inference about models based on an observation 
is an inherently Bayesian undertaking as it requires 
an assessment of the posterior probability
and, thus, requires the choice of a prior!

P (Hi|D)

This is often not appreciated! The assumption that the 
relative likelihoods for two hypotheses alone is the 
same as the betting odds for which hypothesis is 
correct tacitly assumes an odds ratio of 1.

rarely



If there is an ambiguity in the choice of prior that 
can lead to notably different conclusions, you 
should show this!

People often view priors as a problematic aspect of 
Bayesian statistics; a nuisance that they have to 
find a way around.

But this is WRONG! An ambiguity in the form of a 
prior represents a REAL ambiguity in the 
interpretation of data! The choice of prior should 
only matter when the data itself isn’t strong enough 
to provide an unambiguous interpretation.





Example:
As the result of a random blood test, you are diagnosed 
with “Saturday Night Fever,” a disease suffered by 0.5% of 
the population that results in convulsions when exposed to 
anything associated with John Travolta. The blood test 
reliably diagnoses the disease in 80% of cases and yields a 
false positive 5% of the time. Should you avoid listening to 
BeeGees albums?

What if the reason you went to your GP for a blood test was that you got 
splitting headaches whenever someone mentioned the word “Grease?”

= (0.8)(0.005)
(0.8)(0.005) + (0.05)(0.995) = 0.074

P(SNF |B) = P(B |SNF)P(SNF)
P(B |SNF)P(SNF) + P(B |no SNF)P(no SNF)



These are basically the same numbers as for COVID-19 (early Oct 2020).

What if you feel ill and get a positive test? 
Say the average person is typically ill 10 days per year, so the odds  
of currently being ill from the common cold is ~10/365 = 0.027. With 
social distancing, reduce this by a factor of ~10 to 0.0027. So, the 
fraction of people feeling ill that have COVID-19 is perhaps 
something like 0.005/(0.005+0.0027) = 0.65 (this, then, is the prior 
instead of 0.005).

= (0.8)(0.65)
(0.8)(0.65) + (0.05)(0.35)

P(CV19 | + T ) = P(+T |CV19)P(CV19)
P(+T |CV19)P(CV19) + P(+T |no CV19)P(no CV19)

= 0.97

Priors are important!



Example 2:
Atmospheric neutrinos result from the decay of charged pions produced 
by hadronic interactions in the atmosphere. The characteristic decay 
sequences are: 

You are detecting these neutrinos coming from directly overhead with an 
underground water Cherenkov detector. From the fuzziness of the ring 
pattern of observed light from a particular event, simulations tell you 
that 70% of νe’s will produce a ring at least this fuzzy, whereas only 50% 
of νμ’s will do this. What is the probability that this event is a νe ?

! e� + ⌫µ + ⌫e
⇡� ! µ� + ⌫µ ⇡+ ! µ+ + ⌫µ

! e+ + ⌫µ + ⌫e

P (νe|R) =
P (R|νe)P (νe)

P (R|νe)P (νe) + P (R|νµ)P (νµ)

=
(0.7)(1/3)

(0.7)(1/3) + (0.5)(2/3)



Bernstein – von Mises Theorem

In the limit of an infinitely large data set, the 
posterior probability is independent of the 
exact form of the prior probability.

(the likelihood function that multiplies the prior crushes 
it’s impact away from the region of interest)

For example, if you instead asked for the probability for a 
large number Cherenkov events to be νe out of a big data 
set, the information contained in the distribution of ring 
fuzziness within the data itself carries more weight than 
the form of any previously assumed prior. 

Priors carry greater weight for weaker data sets



“Should I then use the outcome (i.e. posterior probabilities) 
from previous experiments to form the prior for this one?”

Yes, for other experiments that you 
have performed (e.g. calibrations) to 
assess certain aspects of detector 
performance, or related data that can 
be regarded as unimpeachable. 
Otherwise, generally not, because the 
ability to properly assess systematic 
uncertainties associated with individual 
experiments is not generally under 
your control and can be difficult. This is 
why each experiment should stand on 
its own and be independently cross-
checked by other experiments.



You might wonder what happens if we iteratively update 
the priors using the posterior probabilities that emerge 
from the same data set. Does this converge to 
something meaningful in a way that doesn’t depend so 
much on the initial choice of priors?

Let’s take the simple case of a single bin in a histogram, 
where a number of counts, , is observed, a 
background, , is expected, and we wish to determine 
the best estimate for the number of signal counts, . 

n
b

s

Say we want to do this in a Bayesian way, so we’ll start 
with some prior, , as a function of signal value, and 
then iterate…

P(si)

Self-Iteration and “Unfolding”



1st estimate: P(1)(si |n) = P(n |si + b) P(si)
→j P(n |sj + b) P(sj)

We can see what’s happening: this process simply accentuates 
features (including fluctuations) that are already in the likelihood. 
As , the posterior converges to 1 for the maximum 
likelihood value and zero elsewhere. In the case of a degeneracy, 
the convergence value is determined by the original choice of 
prior. Features outside the maximum likelihood values become 
artificially suppressed, but no additional information has 
been gained… because there is none!

N ∞ −

2nd estimate: P(2)(si |n) =
P(n |si + b) P(n |si + b) P(si)

→k P(n |sk + b) P(sk)

→j P(n |sj + b) P(n |sj + b) P(sj)
→k P(n |sk + b) P(sk)

= P2(n |si + b) P(si)
→j P2(n |sj + b) P(sj)

P(n)(si |n) = PN(n |si + b) P(si)
→j PN(n |sj + b) P(sj)Nth estimate:



One popular approach* used by some in particle physics to 
try to deconvolve or “unfold” underlying model distributions 
with minimum reliance on assumption from priors involves 
self-iteration of priors such as this… which then suffers from 
exactly these issues.

*G. D’Agustini, Nuclear Instruments and Methods in Physics Research A 362 (1995) 487-498 

At it’s heart, “unfolding” is, fundamentally, a Bayesian 
undertaking. A number of approaches have been 
suggested for different cases but, ultimately, it necessarily 
comes down to the use of the likelihood function guided, 
in some way, by prior probabilities to help break 
degeneracies, insure continuity, and generally constrain 
the solution to a physically meaningful and realistic form. 
So deal with this explicitly!

It gets you nowhere.



http://xkcd.com/1132/

http://xkcd.com/1132/




Confidence and Credibility I: 
Frequen6st Confidence Intervals 

(an aaempt to avoid priors)



Construction of Frequentist Confidence 
Intervals via Wilks’ Theorem

We’ve been here before…

Because this is an approximation, perfect statistical coverage is 
not guaranteed… but is is usually pretty close for most cases you 
will encounter, and actually works pretty well for counting statistics 
even for small numbers. For more unusual cases, the validity can 
often be “spot-checked” with Monte Carlo calculations.



CL = 1- a - b
(where “Confidence Level” refers 
to the frequency of hypothetical 
measurements landing in the 
defined region for a given model)

Neyman Construction of Frequentist Confidence Intervals
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xa xb

Hhypothesis

... etc.

x⟶ a x⟶ b x⟶ ⟶ a x⟶ ⟶ b

a b a b

H⟶ hypothesis H⟶ ⟶ hypothesis
(for example, assuming 
some particular value of 
the true mean µ) 

x is an “ordering parameter,” which can be a direct measurable (such as the 
number of counts) or can be a derived quantity (such as a likelihood ratio)



Note that the fraction of models to be included in a particular CL interval can 
be chosen with a number of different ordering rules to yield, for example: 
upper bounds, lower bounds, central intervals, most compact interval, 
intervals containing the highest probability densities or highest likelihood ratios 

useful for more complicated cases, 
such as multi-modal distributions
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In the example here, 
let’s assume that the 
measurement x is an 
unbiased estimator for 
the model parameter μ

Neyman Construction of Frequentist Confidence Intervals



The range of model parameter 
values for which the measurement 
is “likely” (i.e. would be contained 
within a CL frequency interval)
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In the example here, 
let’s assume that the 
measurement x is an 
unbiased estimator for 
the model parameter μ

Neyman Construction of Frequentist Confidence Intervals

x



Let’s consider the specific case of 
Poisson statistics as an example…



For a given model of signal 
strength, S, the observable number 
of counts would follow a Poisson 
distribution. Given a fixed observed 
value of n, we then want to find the 
range of models, from S=0 to Smax, 
that would be contained in a CL 
fraction of repeated experiments:

∫
Smax

0

(S + B)ne′(S+B)

n! = CL

Example:  Find the standard frequentist CL upper bound on the mean signal 
strength, S,  for a counting experiment where the expected background level 
is B and a total of n events are observed.

n

∑
m=0

(Smax + B)me′(Smax+B)

m! = 1 ′ CLIt can be shown, from repeated 
integration by parts, that this is 
equivalent to:

Then solve numerically for Smax

Note that there is no constraint to restrict the background from being greater than 
the observed number of counts!! This is because we are interested in the average 
background over an ensemble of experiments, not the particular background for 
this measurement. Frequentists only care about the ensemble, not about you!



When using likelihoods for CL intervals, you can often appeal to 
Wilks’ Theorem: for each true value of µ, the quantity x = -2log of 
the likelihood ratio between observed and expected quantities will 
be asymptotically distributed as a χ2 distribution for nested 
hypotheses. Then, for a given observed measure of x, the integral 
χ2 distribution for µ can be use to define the CL intervals.

Where this approximation breaks down, you can always resort to 
Monte Carlo methods to verify/derive the correct interval coverage.

Note: It’s a little weird that coverage here is no longer concerned 
with the frequency of physically observed quantities, but rather with 
the frequency of arbitrarily constructed mathematical quantities… 
but the construction is perfectly valid.

Always a good thing to check: Do my derived contours seem to 
behave in the correct manner if I repeat the measurement with 
multiple MC data sets?
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Neyman Construction of Frequentist Confidence Intervals

Say, for example, 
that x = total counts 
minus expected 
background, and 
the actual number 
of observed counts 
fluctuates low



Nothing! 
Frequentists 
don’t care 
about you, 
only about 
the ensemble 
of many 
experiments

Neyman Construction of Frequentist Confidence Intervals



Say we are setting a 90% CL:

The correct model is bounded 90% of 
the time in the ensemble

So, if you were to randomly choose a 
data set and its associated CL interval, 
the chance that you would pick one 
that bounds the correct model is 90%

It then sounds like you should be able 
to say that the probability that my CL 
interval (taken as a random sample) 
bounds the correct model is 90%…

0%… and you KNOW it is 0% !!

But what if this is your interval? 
What is the probability that your interval bounds the correct model?

All you’ve got is the ticket to say you’ve played the game



Weather forecasts are accurate in the sense that, when they 
say there is a 10% chance of rain, it rains 10% of the time.

The weather forecast says there is a 10% chance of rain. 
Without looking outside, what is the probability it is raining?

(Btw, you hear thunder and a gentle tapping on the roof)

When you use the term ‘probability,’ perhaps you don’t 
actually care about whether it’s raining somewhere else or 
how often it rained on similar days. You may instead mean 
“Given THIS location and THIS day, what is the degree of 
my belief that it is raining”

Do you take your raincoat?



Frequent Statement About Frequentist Intervals

“There is a 68% chance (for a ±1σ CL interval) that the model 
parameter lies in this range.”

“There is a 68% chance that my interval happens to bound the one, 
true value of the model parameter.”

“If someone else were to repeat the experiment, there is a 68% 
chance that they would land in this range.”

No! There is not a probability distribution associated with the 
model parameter, that’s a Bayesian concept. Either it lies in your 
interval or not, but your one measurement does not constrain it.

No! This is just an attempt to say the same thing with a wording 
that sounds more frequentist. Either it lies in your interval or it 
doesn’t. However, there is a 68% probability that you would have 
been dealt a set of data that would have lead to an interval (not 
necessarily this particular one) containing the true parameter.

No! Your particular data set could have been a 3σ fluctuation, in 
which case there is very little chance that the next measurement 
would land in your interval.



Pa
ra

m
et

er
 1

Parameter 2

68.3% CL

90% CL

99% CL

A

B

C

Consider a single experiment in which 2 parameters are 
measured (  ) and compared with predictions from 3 
different theoretical models (A, B, C) 

“Another Look at 
Confidence Intervals: 
Proposal for a More 
Relevant and Transparent 
Approach”
Biller and Oser, 
NIM A 774 (2015) 103-119
arXiv:1405.5010



Fre.quent.ist  [free-kwuh nt-ist] noun  

Qualifier:  
This is a generalisation and just a personal opinion. 

But check it out - it’s really true!

One who espouses the principles of the 
frequency definition of probability, and 
then misapplies them to answer the 
Bayesian question that they actually 
have in mind.



Many physicists don’t like the fact that statistical fluctuations can result 
in a bound extending into an “unphysical” region, or can result in a 
“null” interval if the unphysical region is rejected. 

(but frequentist intervals do not bound physical models, so there really 
is nothing at all wrong with this!! The concern suggests that you might 
want to ask a different question from the one you are answering)

This is generally dealt with by either:
1) Truncating the allowed parameter space and renormalising the 

distributions to the “physical region.” 
2) Defining the ordering parameter in a way that cannot wander into 

the “non-physical” region in the first place

(which corrupts the stated coverage)

(which distorts the interval definitions 
often in a non-intuitive way)

Both are effectively trying to introduce a prior for the model parameter, 
which is not very frequentist!



In addition, Feldman and Cousins* were concerned about “flip-flopping:
If experimenters choose for themselves when to quote a given type of 
interval based on the result, this can lead to a small statistical bias in 
frequentist coverage.

Worst case (at borderline of CL): 
a 90% CL might only have 85% coverage; 
a 99% CL might only have 98.5% coverage

So, F-C intervals use an ordering parameter of the likelihood ratio wrt 
to the maximum likelihood for parameters in the “physical” region, and 
use a highest probability density ordering for this ratio to specify either 
a one or two-sided interval, based on the CL value. Monte Carlo 
methods are used to determine intervals with the correct coverage.

*Unified Approach to the Classical Statistical Analysis of Small Signals (Phys.Rev.D 57:3873-3889,1998) 

A concern over tiny biases in unfiltered surveys of borderline results (!!)

In contrast, “Standard Frequentist Intervals” will be defined as those 
using the frequency of physical observables as the ordering parameter, 
without parameter space truncation and with distinct 1-sided and 2-
side bounds.



• Conflicts with scientifically well-motivated convention to quote 90% or 95% CL upper/lower 
bounds for results consistent with the null hypothesis, but only claim a 2-sided discovery 
interval when the null hypothesis is rejected at a considerably higher confidence level;

• Can’t easily cope with look-elsewhere effects: Search for gamma-ray emission from 1000 
different astrophysical sources results in no event excess above 3σ, consistent with statistical 
fluctuations. Most appropriate to quote upper bounds on the possible emission from each 
source, but unified approach forces 3σ detection interval;

• Even for a clear detection, it may still be relevant to also quote upper and lower bounds in 
the context of different models. Different interval constructions can be simultaneously 
valid and relevant for the same results, they simply address different questions!

• Intervals do not represent the frequency of physical observables, are asymmetric and can 
be non-intuitive: observations of physical observables that occur with the same frequency 
can be included or excluded from the intervals differently;

• Because the construction is designed to always return a value “in the physical region,” it 
fools people into thinking they are setting bounds on model parameters, which they are not! 
This has not dealt with the underlying issue and frequently leads to interpretation problems;

Issues with F-C In Particular

• Can be incredibly computationally expensive!

• All F-C concerns and methodologies are only relevant for borderline signals, otherwise you 
are just deriving “standard” parameter contours using likelihood… and it’s worth checking 
whether Wilks’ Theorem is good enough here (if you are dominated by Poisson statistics 
and Gaussian constraints, it probably is!).



Propagation of Systematic Uncertainties

There is no mathematically self-consistent way to 
propagate systematics in a frequentist paradigm!

Systematic uncertainties are exactly like model 
parameters: they have true fixed but unknown 
values. So, for a given assumed value of the 
model parameter and assumed values for the 
systematic uncertainties, you can define a 
frequentist confidence interval. That’s it!

There are a number of suggested propagation 
approaches (such as Highland-Cousins) that 
involve Bayesian integrations over systematic 
uncertainties, but the interpretation of the 
resulting bounds are unclear (being neither fully 
Bayesian nor guaranteeing statistical coverage)

General Frequentist Issues:



The Problem With Zero:

Consider the case where zero events are observed in an 
experiment and we then wish to set a 90% CL/CI upper 
bound on the average signal strength.

Bayesian: We know that the number of background 
events here is exactly zero. The 90% CI 
upper bound on the average number of 
signal events is 2.3 (i.e. there is a 10% 
Poisson probability to fluctuate from this to 0)

Frequentist: It depends on the expected number of 
background events… even though the 
known number is zero! That’s because 
frequentists don’t care about you, it’s all 
about the ensemble.

If you don’t have a model for the background, 
you can’t set a bound… even when you 
know the background.



90% CL/CI Upper Bounds on a Signal when Zero Counts are Observed

Because the background for this observation is exactly 
known to be zero, independent of the expected 
background level 

Because this is about the ensemble of "other 
experiments," and  intervals are defined based on the 
frequency of a constructed relative quantity for a given 
expected background, rather than the frequency of the 
actual observed number of counts  

Because this is about the ensemble of counts measured in 
"other experiments," which won't observe zero more than 
10% of the time for average backgrounds greater than 2.3 
(so no 90% CL bounds on an additional signal can exist) 

The specific frequentist intervals derived in this region are 
increasingly less likely to bound the true value of average signal flux 
because they are increasingly less representative of what would be 
seen by most of the ensemble (which will yield less restrictive bounds 
that carry much greater weight for determining the correct coverage)

Bayesian (const prior)

F-C FrequentistC
lassical Frequentist



The Problem With Zero:

Consider the case where zero events are observed in an 
experiment and we then wish to set a 90% CL/CI upper 
bound on the average signal strength.

If you try to ‘propagate’ uncertainties in the background 
estimate for frequentist bounds using a hybrid approach, 
such as H-C, the derived constraints can behave 
peculiarly, and sometimes even get better as the 
uncertainty grows!

This is a consequence of integrating over possible 
expected backgrounds, which have a downward trend for 
the obtained limits as the expected background increases



Highland-Cousins Error Propagation for 
FC Intervals when Zero is Observed

≃ ≃

(Bayesian bounds don’t care about the uncertainty in the expected background… 
because there is no uncertainty for this measurement: it is exactly zero!)

suppressed zero

In this region, as 
uncertainty in expected 

background gets 
larger, the constraints 

become better!!


