
Lecture 7:

• More Confidence Issues 
• Bayesian Credibility Intervals 
• CLs Method 
• Integra6on vs Maximisa6on 
• Dealing with Priors 
• Display of Frequen6st & Bayesian Informa6on

Confidence vs Credibility



90% CL upper bounds on a possible average 
signal level from a simple counting experiment

New analysis technique: 
suppresses backgrounds 
by a factor of 10 with no 
loss in signal efficiency!

Initial Test:

(prior uniform in rate)

Can appear to be overly 
strict bounds on the 
average signal strength



F-C: “Should always also quote expected sensitivity”

Consider the case where you look for a signal from 
1000 different astronomical objects and see one 
with an excess of 3σ. This is not significant given 
the context of the search, so you just want to set an 
upper bound on the possible flux from this object.

Not appropriate

Those constraints will be worse than the nominal 
expected sensitivity for this object because of the 
large excess, which is nonetheless still consistent 
with the null hypothesis because of the context



F-C automatically transitions from 1-sided to 2-sided bounds 
based on the p-value to avoid biases* due to “flip-flopping”

Consider the case where you look for a signal from 
1000 different astronomical objects and see one 
with an excess of 3σ. This is not significant given 
the context of the search, so you just want to set an 
upper bound on the possible flux from this object.

Not appropriate

* A purely frequentist issue, with the biases being very minor and 
only relevant for potential signals at the border of being significant.

2-sided bounds ONLY have meaning once 
you have rejected the null hypothesis!



Bayesian Credibility 
Intervals



CI = 1- a - b

Bayesian Credibility Intervals

Credibility Interval:

Note: This is not trying 
to represent the ‘actual 
distribution’ of the true 
model parameter (which 
wouldn’t make much 
sense). This shows how 
much you’d bet that a 
given value is true based 
on the data you have.Po
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Given the measured data set:

This is now the model prediction, 
not an ‘ordering parameter’ based 
on an observation



Let’s again consider the case of 
Poisson statistics as an example…



Example:   Find the Bayesian CI upper bound on the mean signal 
strength, S,  for a counting experiment where the expected 
background level is B and a total of n events are observed.

Likelihood Prior 

Normalisation

Posterior probability from signal from Bayes’ Theorem

We’ll assume there is no a priori reason why all values of 
S shouldn’t be considered equally likely in linear space, 
aside from the fact that it must be non-negative. So, take 
the prior to be zero for S<0 and constant otherwise.

Then just solve for Sup

Z Sup

�1

(S+B)ne�(S+B)

n! H(S)
R +1
�1

(S0+B)ne�(S0+B)

n! H(S0)dS0
dS = 0.98CI



Conveniently, this turns out to be 
mathematically identical to:

renormalises allowed 
range of background 
counts (which must be 
less than or equal to n) 

Pn
m=0

(Sup+B)me�(Sup+B)

m!Pn
m=0

Bme�B

m!

= 1� 0.98CI

Otherwise, same expression as for 
the “Standard” frequentist approach!



The CLs Method
Introduced by physicists at LEP to get around some of the apparent 
problems that arise when mis-interpreting frequentist upper bounds 
in the presence of background fluctuations. The idea is to take the 
the standard frequentist bounds and renormalise them only up to 
the range observed in the current data set.

Which is identical to a Bayesian bound with a prior that is constant 
and non-negative, if used to bound the space of possible models!

But this tends to be interpreted in a very different frequentist way: 
“If I were to repeat this experiment many times, and only looked at 
cases where fluctuations of the background are less than the total 
number seen in this particular observation, the true model would be 
bounded in a CL fraction of those cases.”

For example, in the case 
of a Poisson upper limit:

Pn
m=0

(Sup+B)me�(Sup+B)

m!Pn
m=0

Bme�B

m!

= 1� 0.98CL
normalising only up to 
observed range

“standard” frequentist



But this tends to be interpreted in a very different frequentist way: 
“If I were to repeat this experiment many times, and only looked at 
cases where fluctuations of the background are less than the total 
number seen in this particular observation, the true model would be 
bounded in a CL fraction of those cases.”

What this means is a little unclear: it’s not really a “frequentist” 
paradigm, since the intervals are not based on the frequency of all 
possible fluctuated measurements. Normalising this way tends to 
over-cover the range of all allowed occurrences to produce ‘more 
conservative’ frequentist bounds… but in a very ad hoc way.

It was adopted pragmatically, and is still used by some, because it 
seems to produce more “sensible results.”* 

*Amnon Harel. "Statistical methods in CMS searches" (PDF). indico.cern.ch. Retrieved 2015-04-10.

This is probably more of a statement that the question they really 
want addressed is, in fact, not the frequentist one: the behaviour of 
standard frequentist bounds is, of course, perfectly “sensible” and 
self-consistent… if that is the question you’re asking! Statements of 
“sensible behaviour” seem to instead refer to that expected from 
Bayesian bounds with a constant prior in the physical region.



A useful mantra:

Don’t Kludge!
• Understand the question
• Use a self-consistent framework
• Listen to the math!



(Back to Bayes)



Bayesian Propagation of Systematic Uncertainties

Just integrate over the posterior probability 
distribution for the systematic in question.



Bayesian Integration vs Profile Likelihood Maximisation

The Profile Likelihood method, where dimensionality is reduced by 
taking the maximum likelihood for marginalised parameters, does 
not, in fact, yield a true likelihood function in the reduced parameter 
space*. This basically is because “perfect knowledge” of the 
marginalised parameter (set to the maximised value) is then 
assumed in the new distribution without accounting for it’s 
uncertainty, so the effective number of degrees of freedom that may 
then be used to apply Wilks’ Theorem etc. isn’t quite right.

* Aitkin, M. (2005). Profile Likelihood. In Encyclopedia of Biostatistics, John Wiley & Sons.

Integration over nuisance parameters is the formally correct way to 
map to a new probability distribution in a lower dimensional space.

But you can only formally do this in a Bayesian paradigm, since 
frequentism is specifically designed to keep model separated!



→(q∞ ) = ∫ →(q∞ , q)dq
fixed 

parameters
parameters being 
marginalised over

Taylor expand about the maximum of the likelihood:

→(q∞ ) − ∫ exp ln →(q∞ , qm) ⟶ 1
2

d2 ln →(q∞ , q)
dq2

q=qm

(q ⟶ qm)2 dq

* P.S. Laplace, “Memoir on the probability of causes of events,” Memoires de Mathematique et de Physique, 
Tome Sixieme, (1774). (English translation by S. M. Stigler, Statist. Sci., 1(19):364378, 1986.).

= ∫ exp [ln (→(q∞ , q))] dq

However, in many cases, maximisation can be used to 
approximate integration, with an argument often attributed to 
Laplace*:

(ignoring higher order terms)



→(q∞ ) ′ →(q∞ , qm)∫ exp ⟶ 1
2

d2 ln →(q∞ , q)
dq2

q=qm

(q ⟶ qm)2 dq

′ →(q∞ , qm) 1
d2 ln →(q∞ , q)

dq2
q=qm

ln →(q∞ ) − ln →(q∞ , qm) ⟶ 1
2 ln d2 ln →(q∞ , q)

dq2
q=qm

+ C

for distributions, such 
as Gaussians, this is 
also a constant

Don’t care about 
constants for likelihood 
ratios (or differences in 

the log)

≃ ln →(q∞ ) − ≃→(q∞ , qm)Differences in the log 
likelihood marginalised 

via integrated

Differences in the log 
likelihood marginalised 

via taking maximum

→(q∞ ) − ∫ exp ln →(q∞ , qm) ⟶ 1
2

d2 ln →(q∞ , q)
dq2

q=qm

(q ⟶ qm)2 dq

This also works for 
Poisson distributions, 
since n! terms cancel 
in the likelihood ratio

BUT, for example, this doesn’t work for Gaussians where σ is nuisance 
parameter! Marginalising this way gets things wrong! (see Aitkin again)



Priors





What’s the way out??

Pragmatism!

There is no formally “correct” choice of prior! 
But it is generally possible to define choices 
that conservatively span the range of 
reasonable possibilities



• If using a more sensitive instrument to look for evidence of an “unconstrained” signal that 
has not been seen before, this rules out priors with a probability that rises with the 
signal rate (because the higher the rate, the more likely it would have been seen before). 
So using a prior that is constant with rate is conservative for setting an upper bound.

• Model parameter uncertainties generally tend to be either be about precision (i.e. I know 
the parameter is roughly in this range) or scale (i.e. I don’t really know what order of 
magnitude this is). So forms of priors that are constant with either linear or logarithmic 
scales often provide reasonable bounds.

• Choose simple prior forms that are easy to understand and visualise (e.g. constant over 
the range of interest) and try to use common parameter choices that will “make sense” for 
these priors.

• If there’s an ambiguity that leads to a non-conservative bound, show the 
sensitivity to the choice of prior!

Some Guidance on Priors

• For an unknown phase angle, a prior that is constant with phase angle often makes 
sense. (Note that if you choose a prior that is instead constant with sin(2θ) in a neutrino 
oscillation analysis, you are saying that you have an a priori preference for smaller 
angles!)

• If deciding between distinct, discreet hypotheses (e.g. normal or inverted neutrino mass 
orderings), use a prior that gives them equal weight unless there is a very strong 
argument to prefer one over another.

*It’s really not that hard!*



This refers to using a constant prior for a particular model 
parameter. For example, priors constant in signal rate mean 
that you ascribe equal weight to all signal rates.

But is that really realistic? That would allow the possibility of an 
infinitely large signal and results in a probability distribution that 
cannot be normalised!!

The Use of “Constant” Priors

prior

likelihood

assumed model signal rate

what happens outside the ROI, stays outside the ROI!

What we actually mean is that the prior is roughly constant in 
the vicinity of the region of interest, and then tails off in some 
way that does not need to be specified because the likelihood 
crushes its impact as soon as you get much outside the ROI

ROI



The choice of prior only matters if 
the data itself is not strong enough 
to unambiguously define the model!

And, if it is ambiguous, you should 
show the sensitivity of conclusions to 
reasonable choices of prior!

(more mantras)



Typically, especially when there’s a clear signal, the 
differences between bounds derived by frequentist 
and Bayesian constructions are often minor.

But, in the instances when it does matter, you want 
to be on the right side of things!



Note: Displaying the likelihood as a function of variables 
for which the priors are constant, automatically also then 
plots the Bayesian posterior probability.



Example of “Unified” Likelihood Map:  SNO salt phase solar ν data

(using publicly available data associated with Phys. Rev. Lett. 101, 111301, 2008)

Bayesian contours from 
integration of likelihood 
assuming priors constant 
in θ and log(Δm2)

Approximate Δχ2 
value from Wilks

Form for fundamental 
angle accounts for 
quadrant ambiguity

Sensitivity 
to prior is 
indicated



Example 2:  Rare Event Search Counting Experiment (B=5, n=10)

Bayesian upper bounds 
from integration of 
l ike l ihood assuming 
priors constant in S 
(‘conservative’)

Approximate 2-sided  
90% CL frequentist 
bound derived from 
W i l k s ’ t h e o r e m 
(comparable to FC)

 S < 10.4(15.2) 
at 90%(99%) CI



Example 3:  Rare Event Search Counting Experiment (B=9, n=5)

Bayesian upper bounds 
from integration of 
l ike l ihood assuming 
priors constant in S 
(‘conservative’)

Approximate 2-sided  
90% CL frequentist 
bound derived from 
W i l k s ’ t h e o r e m 
(comparable to FC)

 S < 3.88(7.25) 
at 90%(99%) CI



Robustness of Upper Bounds for Poisson Statistics

The numerical values of Bayesian bounds have notably less variance than 
frequentist methodologies - more robust for comparison of experimental results!



“Should I then use the outcome of previous 
experiments as part of the prior?”

                            Careful!! 
Yes for other experiments that you have performed 
(e.g. calibrations) to assess certain aspects of detector 
performance, or related data that can be regarded as 
unimpeachable. Otherwise, generally not because 
the ability to properly assess systematic uncertainties 
associated with individual experiments is not generally 
under your control and can be difficult. This is why each 
experiment should stand on its own and be 
independently cross-checked by other experiments.



But what if lots of people do experiments and each defines 
frequentist bounds, so that you start to have a real ensemble. 
How do you then use this to set bounds on models?

Still Bayesian! Make use of the likelihoods for all these data 
sets together (not their frequentist bounds!) and choose your 
prior etc. There is no other way! As the ensemble becomes 
larger and larger, the prior becomes less and less important, 
and the distinction between frequentist and Bayesian bounds 
goes away.

As previously stated, frequentist bounds are all about the 
distribution of the ensemble of hypothetical experiments and 
not about ascribing meaning to your particular interval.

Pragmatism: You can use frequentist bounds for models when 
it gives the same answer as Bayesian bounds.



The Point of Frequentism:

Want to display the results of analyses in a model-independent 
way that has the most general possible applicability

Absolutely!! Always do this! For example, try to provide 
sufficient views of the data to allow others to roughly reproduce 
your results, and show the likelihood distribution, which gives 
the full frequentist information content of the data.

But, if you then want to use this to constrain models, that’s 
Bayesian!

Both of these are important aspects of data presentation.



• Bayesian statistics is the only correct formalism that can address 
the question, “Given my measurement, what models do I constrain?” 
My experience is that this form of the question has been implicit in all 
discussions of the physical interpretation of experimental data I’ve seen.  

• The standard frequentist approach is a perfectly valid and self-
consistent formalism. However, it answers a different question, where 
the identification of a model only emerges from a theoretical ensemble 
of experiments. Unfortunately, this is often misinterpreted (or correctly 
interpreted but then misused).

• The Feldman-Cousins approach is an equally valid reformulation in 
terms of the frequency of a derived relative quantity, rather than of a 
direct measurement value, that shares exactly the same caveats (though 
may be even more prone to misinterpretation).

Fortunately, for many cases (especially in the large n limit), these different 
approaches all give very similar results. However, this is not always the 
case, so be clear about exactly what your question you are asking!

Summary


