Lecture 8:
Hypothesis Testing & Data Presentation

« Hypothesis Selection & Rejection

e Bayesian Information Criterion

e ‘Binsmanship’ and Dodgy Deviations

« The Meaning of Error Bars (and what to use)
« More Things to Avoid

e Displaying Uncertainties & Multi-
Dimensional Data

e Boxes, Whiskers and Violins



Hypothesis Selection

Frequentist:

In general, define the two hypotheses to be compared: Hi and Ha.
Also define an appropriate statistical test from considerations of:

o = probability to incorrectly reject H1 (“Type | error”) ~ — ‘false positive”
(essentially the p-value)

Define “critical” values for the test statistic in advance, and choose
to “accept” or “reject” a particular hypothesis based on the outcome.

probability to incorrectly accept Hz (“Type Il error”) — “faise negative’
(only makes sense if you know the distribution of an alternative hypothesis)

If H1 is the background hypothesis 2 |
and H2 is the signal hypothesis, L
then the standard Receiver g
Operating Characteristic (ROC) @qui;
curve can be drawn as follows: =8
O®
This can be useful in comparing the =%
performances of test statistics and =~
optimising selection cuts (e.g. E 0

maximising signal//background etc.) 0 P(false positive) = a 1
(background acceptance)



Hypothesis Selection

Frequentist:

We've already come across the Neyman-Pearson Lemma, which
states that the maximum likelihood ratio provides the uniformly
most powerful method to distinguish between simple hypotheses.

But we have the perennial issue with frequentist statistics:

Wikipedia:
“The p-value does not provide the probability that either
the null hypothesis or its opposite is correct”



Hypothesis Selection

Explicitly, the relative belief

BayeSian: (“betting odds”) in H2

relative to H1 given the data

Posterior P(H2 D)
Odds Ratio P(Hl |D)

_ P(D|H,) P(H,)
P(D|H,) P(H))

Let the indices j & k represent different sets of possible nuisance parameter values within each model.

Then, in discreet form:

3, POTHDPHD | PED)|  pig)

I — X
Y, P(DIHOPHO | PH))|  PED

4

Ratio of marginalised likelihoods, each Sometimes also
integrated (in a Bayesian way) over their called the ratio of
nuisance parameters (rather than maximised) “model evidences”

\

= Bayes Factor (BF) x Prior Odds Ratio



The heart of Bayesian hypothesis selection is the posterior
odds ratio, but many statisticians like to separately quote the
BF to indicate what the data “prefers” in isolation from the ratio
of priors. Quoting both explicitly shows the impact of the priors
and, hence, indicates the strength of the data itself.

But caution must be exercised in interpreting the BF on its own,
as previously discussed for frequentist statistics: ONLY the
posterior probability can give you the betting odds for a
particular hypothesis!

Some have advocated using BF as a replacement for p-
values® in null hypothesis testing. Amongst the advantages
often quoted is that it explicitly weighs the likelihood of
alternative hypotheses against that of the null hypothesis, as
well as being independent of hypothesis priors. But (as always)
there are potential issues here...

*For example, Williams, Baath & Philipp, Research in Human Development, 14:4, 321-337 (2017)



Say we observe some number of events, n, from a counting
experiment where the expected background is b and we wish
to test the null hypothesis of zero signal against a possible
non-zero signal. We will treat the exact number of signal as a
nuisance parameter, allowing it to be anything up to some Smax:

i Smax
}e\rllzltjyesf [ ,U(S)dS — 1
smax _ 0

BF — IO P(n |M —° + b)p(S) ds Let’'s assume p(s) is constant
B note: sam rior for s !
P(n|ﬂ=b) (note: sa easap;fos)

— p(s) = s_

Yo" Poulp =5+ b) ds o

max

P(n|p = b)

The answer is now highly dependent on the prior for the signal
hypothesis!

This is an example of a more general behaviour known as
“Lindley’s Paradox”, which comes about when comparing
“point-like” to “diffuse” hypotheses



Reverting to the posterior odds ratio by restoring the ratio of hypothesis priors
doesn’t necessarily fix things if you assign equal prior probabilities to both the
null and non-null hypotheses (POOR = BF x 1).

On the other hand, if you ascribe equal probabilities to all signal hypotheses,
including zero, then the term cancels!

PoOR = BF x

/s,
So, as always, it comes down to exactly what you mean when you say that you

have “no preference.” You are still dependent on this prior choice.

The problem is partly due to the fact that you can alway have an extremely
small signal that is non-zero, but indistinguishable from zero for all practical
purposes. It therefore becomes essentially impossible to ever rule out a non-
zero signal and, thus, prefer the null hypothesis without relying on a prior to
focus attention (to a greater or lesser extent) on a region where the signal
would be measurable.

An different approach for null hypothesis testing when the alternative is a
diffuse set of possibilities is to instead simply concentrate on the region in which
HO is no longer viable. Sounds like p-values again... but we can also consider a
Bayesian equivalent too...



Hypothesis Rejection

Frequentist:

In the approach originally proposed by Fisher, the p-value is defined
as the chance probability for a fluctuation in an ensemble of
possible data sets that is at least as extreme as that observed
assuming the null hypothesis. In discreet form, the confidence
interval that would exclude the observation is given by:

summation/integration
over the ensemble of

_ Zi [P(DilH()) > P(DObS|H())] <— data sets that are

more likely than what

zi [P(Di | HO)] has been observed.

CL

ex —

and

p-value=1-CL,,

We have discussed the pit-falls of p-value interpretation before:

Fisher: “Report the exact level of significance... and do not talk about
accepting or rejecting hypotheses.” (!!!)

Neyman-Pearson: “If the data falls into the rejection region of HI, accept
H2; otherwise accept HI. Accepting a hypothesis does not mean that you

believe in it, but only that you act as if it were true.” (???)
(Wikipedia)



Hypothesis Rejection

Bayesian:

The parallel Bayesian construction (in discreet form) would then be
as follows:

summation/integration
over the ensemble of
Zi [P(Hi | Dobs) > P(HO | Dobs)] <4— hypotheses more likely

than HO given what has

zi [P(Hl- | Dobs)] been observed.

CI

ex —

and

p-Bayes=1-CI,,

While priors are still in play for this Bayesian parameter, this follows a
much better parallel construction to frequentist p-values than the

Bayes Factor and avoids many of the previously discussed issues
with null-hypothesis testing



Comparisons between p-values and p-Bayes
(constant prior) for Poisson and Gaussian excesses:

Example pythOQ script using_a simple p-value vs p-Bayes for Poisson with p=5
adaptive 1-D grid search to find p-Bayes

(constant prior) for Poisson process: ~4 p-value
-o—p-Bayes
import math 1 H‘f—t::_’\

from scipy.stats import poisson <3~
B = float(input(" Expected Background ="))

n = int(input(" Observed ="))

def pBayes(n,B):
pO=poisson.pmf (k=n,mu=B)
i=max(n-B+1,1)

probabiity vaue
v

i A I - 0.01 D
while(poisson.pmf(k=n,mu=B+i)>p0): i=i+l N

i=i-1 N
j=0

\
while(poisson.pmf (k=n,mu=B+i+j/10)>p0): j=j+1 0.001

k=0 N
while (poisson.pmf (k=n,mu=B+i+j/10+k/100)>p0): k=k+1 X
x=i+3j/10+k/100 0.0001
return poisson.cdf(n,B+x)/poisson.cdf(n,B) 01 2 3 45 6 7 8 9 1011 12 13 14 15
pB=pBayes (n,B)
print(" p-Bayes=",pB)

number observed

p-value vs p-Bayes for Normal distribution

In contrast with p-values, p-Bayes always

returns 1 if there is no excess...because -4-p-value

you cannot exclude the null hypothesis with e = Py
e | . .

any credibility in this case! E o N

But, for the constant prior case, the two g \\

values quickly converge in the high tail, 2 00 a

where judgements are usually made. So -

the pragmatic and cautious use of p-values 0-001 \\

is not a bad approximation to p-Bayes for s our

this particular choice of prior 2 15 -1 05 0 05 1 15 2 25 3 35

number of standard deviations from zero



So, after all the fuss and discussion,
are p-values ok to use after all??

In fact, it’s the same pragmatic conclusion we came to earlier -

Look carefully at context:

Very small p-values, even after
careful accounting of trials, confirmed

lllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllll

Reject HO

*
*

*
*

p-values remain one of the
central tools for hypothesis
testing - it should just be
treated carefully!

Effectively a ‘loose’ Bayesian
comparison with other hypotheses!

Can be useful when ambiguities arise in BF and POOR from how weighting is
applied to diffuse hypotheses (e.g. is there a non-zero signal of some kind?)

It’s interesting to see that a Bayesian parallel, based on exclusion rather than
acceptance, can also be formulated, which can share similar properties for

certain choices of prior!



How do you decide between models that have
different numbers of free parameters? Clearly, the
more parameters you have, the easier it will be to fit
the data... but does this make it a better model??

Let’s start by defining something related to the
ability of a data set to constrain model parameters
(i.e. the information content of the data) and then
consider the overall probability of a hypothesis that
Is integrated over all possible values of its
parameters...



Bayesian Information Criterion (BIC)

P(D|H) = JQ(DIQ,H)p(QIH) dq

Recall our expansion around the maximum likelihood point:

| 02 log & N
log [Z(D|q,H)| ~ [log Sf] it q—q) [ —(q—q) [ o ] q-°
* =4 * q=q
0 - J(q)
) 1 A
P(D|H) = O?JeXp <—5(q - Q.7 (q)(q - q)T> p(q|H) dq
, N .
assume independent = Z | exp _E(q -q) Z J{@|@-@ | p(q|H) dq k-dimensional Gaussian
identically distributed (1ID) i=1
data and F(q) ~ F«(q)
and p(a|H) ~ p(@|H) R n - X - .~ (22\"* p(q|H)
near the maximum ~ g[exp (——(q - q)J (Q(q — q)T) pqlH)dq =Z|—
2 n) VT@

~ k 1 k
—2logP(D|H) ~ -2 [logff—alogn+logp((]|H)—Elogfx(fl)+510g2ﬂ]

these terms dominate
as n —- o

BIC (sort of a modified chi-squared to
account for the degrees of freedom)

~ —210g:?+k10gn =



BIC = =2 ]()g S\f + k log n (to be minimised)

A slightly different criteria derived by Akaike* is based on the “Kullback-Leibler Divergence,”
which is a measure of separation between probability distributions, with the result:

AIC = =2log & + 2k

These penalise models with more free parameters (BIC more than AIC)

This is effectively accounting for the use of additional degrees of freedom
(as we do with x2), which tends to allow a better fit to the data, but doesn’t
necessarily indicate a correct model.

This is all in line with Occam’s Razor, which does NOT say that the more
complicated model is incorrect, but merely that simpler models tend to be
good starting places. Also, while BIC and AIC can provide a sort of
relative goodness of fit between different hypotheses, they do not give an
absolute goodness of fit.

So, these criterion should be used with caution, but can provide good
guidance on model section.

*Akaike, H., "A new look at the statistical model identification", IEEE Transactions on Automatic Control, 19 (6): 716-723 (1974)
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100 uniform ‘background’ events generated with values between 0-120,
plus 18 ‘signal’ events with values between 30-45:



100 uniform ‘background’ events generated with values between 0-120,
plus 18 ‘signal’ events with values between 30-45:

104 16

bin width=1 bin width=3 “ bin width=6 .
. using

+/n
error
bars

=] - N w ~ wn o ~

o0 80 40 o RO 100

bin width=10 bin width=15 ; bin width=20

40 60 80 100 120

bin width=60

o 80 0 2 0 A 0 60 80 100

Optimal bin-size for visual inspection is comparable
to the resolution and/or scale of the relevant features



Poisson rms ‘deviations are
based on the true mean, not
the fluctuated value!
Expected in Signal Bin
18 excess compared to
average 12.5 background:
18/1/12.5 ~ 50
(p-value = 2.9x107)

So the common practise of
plotting Poisson rms values
on individual data points to
compare with a model is not
formally correct!

0 20 40 60 80 100 120

consistent

with 0.60

downward

fluctuation

0 20 40 60 80 100 120
Binning Parameter
But is this even really correct?
Prois( 230112.5) = 2% 10° ‘=410 Ppoi( 2 28]125) = 1.1x 107 =370
(equiv) equiv

(~1 8+1 2.5) (consistent with 0.40 downward fluctuation)



What are these error bars supposed to represent?

There is no uncertainty in what was measured:
this IS what was observed!

If you are trying to judge the consistency of the observation with a
given model, then you need to look at the observation in light of
the probability distribution predicted for that model, for which
the error bars are an approximate representation. So use model-
based error bars and do the appropriate statistical test.

What if you want to make some more general statement that
relates the observation to the range of possible models? The error
bar then represents some bin-by-bin confidence or credibility
interval...



Let’s start with a Frequentist approach:

Say we’re interested in an upper bound. For a given observed number of
counts, n, in a given bin, we then want to find the range of possible model
means for which the observed number of counts or less would occur with
some frequency at least as great as 1-a (Neyman construction).

(so, for a 90% CL, you want values of the mean for which the chance of this occurring is better than 10%)

For an upper bound, the maximum mean value would thus have to satisfy:

Recall that, for
a X2 distribution
with k degrees
of freedom:

n

m!
m=
Hmax ﬂne_'u
v dp =
0 n.

(can be shown from doing
repeated integration by parts)

) 5= x%—le—x
P(< y% k) = dx

0o (5-1)!

(for even k)

m “Hm
Z Hmax€ “ —1—a

Which is also identical
to a Bayesian upper
bound, assuming a prior
that is constant with g !

So, with a change of
variables, we can do
the integration using
standard tools for x2 !



We can then go through a similar process for a lower bound and, thus, we
can define a CL (or ClI) interval*:

1 1
Pomin = EF 1( Xpnins ) MPmax = EF 1(1 — Qg 2(1’l+ 1))

Where F-1,;is the inverse of the cumulative x2 distribution and we just
need to speC|fy the fractions of the distribution we want above (amax) and
below (amin) the observed number. One common protocol** is to define a
central confidence interval: &, = @,,,, = a/2

HOWEVER, this formalism runs into difficulties in trying to define
symmetric, continuous confidence regions for asymmetric, quantised
distributions like Poisson!

A trivial example:

The above formalism gives a 1 sigma (68.27% CL) region of O - 1.84 for
an observation of zero counts. But the Poisson integral for that case is:

—1.84 _ because the ‘half’ of the interval
l—e = 0.84 below zero doesn't exist!

*K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010); pdg.lbl.gov B kil Y
**Garwood, F. (1936), Biometrika, 28, 437-442; ATLAS Statistics Forum, 15 February, 201#gRC



http://pdg.lbl.gov

An alternative method of interval construction is to use an ordering rule
based on the highest probability densities, which more naturally handles
asymmetric and multi-peaked distributions:

For single-peaked distributions, such as Poisson, this is equivalent to
finding the shortest interval®, which can be numerically determined.

For 10 bounds on a Poisson distribution, a reasonable parameterisation
(mine) is as follows:

o = n—/n+033 [1 —exp (- 1.5n1/4)]

o =1 +4/n+0.34 +0.81 exp <_ 1.7n1/4)

*Casella, G., Robert, C. (1989), The Canadian Journal of Statistics, 17, 45-57; Kabaila, P., Byrne, J. (2000), The Canadian Journal of Statistics, 28, 1-9



The following table compares the “10” interval definitions and their
(Bayesian) integrals as a function of observed n for central, shortest and
also just +Vh, with the latter set to 0-1 for zero counts:

central interval shortest interval +sqrt(n) (with 0-1 for 0)
n lower upper integral lower upper integral 1lower upper integral
© 0.000 1.841 0.841 0.000 1.147 0.683 0.000 1.000 0.632
1 0.173 3.300 0.828 0.268 2.501 0.683 0.000 2.000 0.594
2 0.708 4.638 0.806 0.676 3.697 0.683 0.586 3.414 0.641
3 1.367 5.918 0.791 1.479 5.078 0.683 1.268 4.732 0.655
4 2.086 7.163 0.781 2.287 6.400 0.683 2.000 6.000 0.662
5 2.840 8.383 0.773 3.057 7.630 0.683 2.764 7.236 0.666
6 3.620 9.584 0.766 3.847 8.837 0.683 3.551 8.449 0.669
7 4.418 10.770 0.761 4.652 10.029 0.683 4.354 9.646 0.671
8 5.232 11.945 0.757 5.472 11.208 0.683 5.172 10.828 0.673
9 6.056 13.110 0.753 6.302 12.377 0.683 6.000 12.000 0.674
10 6.891 14.267 0.750 7.141 13.536 0.683 6.838 13.162 0.675
11 7.734 15.417 0.748 7.988 14.689 0.683 7.683 14.317 0.675
12 8.585 16.560 0.745 8.842 15.834 0.683 8.536 15.464 0.676
13 9.441 17.698 0.743 9.700 16.974 0.683 9.394 16.606 0.676
14 10.303 18.830 0.741 10.566 18.108 0.683 10.258 17.742 0.677
15 11.171 19.959 0.739 11.435 19.239 0.683 11.127 18.873 0.677
16 12.042 21.083 0.738 12.309 20.364 0.683 12.000 20.000 0.678
17 12.918 22.204 0.736 13.186 21.487 0.683 12.877 21.123 0.678
18 13.797 23.321 0.735 14.068 22.605 0.683 13.757 22.243 0.678
19 14.680 24.435 0.734 14.951 23.720 0.683 14.641 23.359 0.678
20 15.565 25.547 0.732 15.839 24.832 0.683 15.528 24.472 0.679

The integral for the central interval definition is notably too large, the
shortest interval is exactly correct (by definition), but the simple +Vn
formulation actually isn’t bad...



Frequentist coverage of 10 intervals as a function of true mean:

Statistical Coverage
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Note: For quantised observations, such as Poisson, it is fundamentally

impossible to guarantee perfect statistical coverage for all values of p!
(because interval boundaries jump discontinuously for different observed counts)

Anyone obsessed with obtaining “exact” coverage for Poisson is barking up
the wrong tree!

We see a similar story as with the integration: central intervals notably over-
cover, the shortest interval covers at about the right level on average, but
the simple +Vn formulation actually isn’t bad...
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So +Vn isn't terrible as a way to represent approximate ‘10’
intervals for an indeterminate model, especially if you ascribe
an error bar of 0-1 for zero counts, as is often done.

But at +20, problems start to become more obvious, and this
will become even worse at higher significance levels.

And remember that you shouldn’t use these to test a particular
model: you need to use model-based probability predictions!!

Be careful how you use these!



Counts per Bin

Same data set without any signal (i.e. just uniform ‘background’):

bin width=1

40

Binning Parameter

Counts per Bin

60 80 100

10

10

bin width=2

bin width=3

3.30 !!

Counts per Bin

80

Binning Parameter Binning Parameter

bin width=4

Counts per Bin

Binning Parameter

Counts per Bin

10

bin width=5

60 80 100 120

Binning Parameter

Poisson probability = 0.0073 (2.440) rather than 0.0005 (3.30)
Trials: taking best of 60 bins and then the best of 5 different binnings
(binnings not entirely independent... assume effective factor of ~2.5)

P

post trial —

1 — (1 —0.0073)2>>00) = (.67



* For visual presentation/inspection of data, choose a binning
based on the amount of statistics (to avoid bins with low
numbers) and the anticipated scale of possible features.

« Chi-squared tests (and minimisation) using vn errors in bins with
a reasonable number of counts are generally ok: it will still get
you near to the right minimum and, in the vicinity of the right
model, the behaviour is typically dominated by the cumulative
effect of small (~10) fluctuations, where the approximation isn’t
bad. But beware of how you interpret large fluctuations, setting
confidence intervals at high significance levels, or generally
setting any confidence intervals when the model does not look
like a good fit!

* Fitting and significance tests should be done using the correct
probability distributions where appropriate.

* Whenever possible, try to use un-binned tests. Otherwise, it’s
advisable idea to explicitly check the dependence of your
conclusions on the chosen binning.
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Avoid artificial
smoothing (like
running averages)
where possible,
which produce
correlated error
bars that are hard
to interpret and
can lead to false
conclusions

Much better to
use appropriate
binning to keep
data points
uncorrelated,
and use un-
binned tests of
significance
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Figure 5 Plots oﬁve-point running avcraéc &”Ar production and smoothed sunspot
numbers against time in years m . Solid circles, ¥Ar production; dotted curve,

sunspot numbers; open circles, solar diameter.
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FIG. 24: (Color online) Comparison of data to simulation
for #**Th source runs near the AV in Phase II, in (a) Tig,
(b) R*, and (c) Bia. The band represents the 1¢ uncertainty
on the Monte Carlo-prediction, taking the quadrature sum
of the statistical uncertainties with the effect of applying the
dominant systematic uncertainties.

Phys.Rev.C81:055504,2010
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FIG. 34: Fit of of R® pdfs created using calibration source
data to the neutrino data set, using an energy threshold of
Teg > 4.0 MeV. The extended maximum likelihood method
was used in the fit, and the band represents the systematic
uncertainties. The y-axis is in units of Events/0.03 cubic AV
radius.

Phys.Rev.C75:045502,2007
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FIG.9: (Color online) The zr dependence of Ax. The verti-
cal error bars show the statistical uncertainty, the blue bands Differential cross sections of Zp scattering

represent uncorrelated systematic uncertainties (see text for
details). The relative luminosity effect systematic uncertain-

ties are

not shown (see text and Table III)

Phys.Rev.D90:072008,2014
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Fig. 5 Derived differential cross sections (black points). The error bars and boxes show the statistical and systematic uncertainties,
respectively. Red points are averaged differential cross section of 0.4 < GeV/c < 0.7 taken in KEK-PS (the same points are

plotted in the four momentum regions). The dotted (magenta), dot-dashed (blue) and solid (yellow) lines represent the Nijmegen
ESCO8 based on boson-exchange picture, fss2 based on QCM and the extended chiral effective field theory (x EFT), respectively.
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Visualising Multi-Dimensional Data
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Parallel Coordinate Plot:

A W

zo8

8

T[4:12 MeV] R™3[0:1.3] cos(thetasun) [-1:1]

parallel coordinates(df_new||['Signal', 'T [4:12 MeV]', 'R"3 [0:1.3]', 'cos(thetasun) [-1:1]']],
"Signal", color=["lime", "tomato","dodgerblue"], alpha=0.2)



Ways to display information about data point distributions
when you’re not simply dominated by Poisson statistics:

Box and Whisker:
250
200 1 g —1— <«upper extreme 8
1507 o <«upper quartile
100 - median—
<«|ower quartile
50 T
0- 1
o) —1— <«|ower extreme
—=50 A |
outliers— H
~100 - ° © ©
-150 T T T
0.2 0.5 0.9

data = [datal,data2,data3

pos = [0.2,0.5,0.9)
plt.xlim([0,1))
plt.ylim([-150,250]))
axl.boxplot(data,positions=pos)



Ways to display information about data point distributions
when you’re not simply dominated by Poisson statistics:

Violin Plot:

160 R

140
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100 A

20 1

10 15 20 25 30 35 40

data_to_plot = [collectn_1, collectn_2, collectn_3, collectn_4]

# Create the boxplot
bp = ax.violinplot(data_to_plot)
plt.show()



