
Lecture 8:

• Hypothesis Selec6on & Rejec6on 
• Bayesian Informa6on Criterion 
• ‘Binsmanship’ and Dodgy Devia6ons 
• The Meaning of Error Bars (and what to use) 

• More Things to Avoid 
• Displaying Uncertain6es & Mul6-

Dimensional Data 
• Boxes, Whiskers and Violins

Hypothesis Testing & Data Presentation



Hypothesis Selection

Frequentist:
In general, define the two hypotheses to be compared: H1 and H2. 
Also define an appropriate statistical test from considerations of:  

Define “critical” values for the test statistic in advance, and choose 
to “accept” or “reject” a particular hypothesis based on the outcome.

μ → probability to incorrectly reject H1 (“Type I error”)
(essentially the p-value)

“false positive”

τ → probability to incorrectly accept H2 (“Type II error”)
(only makes sense if you know the distribution of an alternative hypothesis)

“false negative”

P(false positive) = μ
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curve can be drawn as follows:

This can be useful in comparing the 
performances of test statistics and 
optimising selection cuts (e.g. 
maximising signal/√background etc.)
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Hypothesis Selection

Frequentist:

We’ve already come across the Neyman-Pearson Lemma, which 
states that the maximum likelihood ratio provides the uniformly 
most powerful method to distinguish between simple hypotheses.

Wikipedia:
 “The p-value does not provide the probability that either 
the null hypothesis or its opposite is correct” 

But we have the perennial issue with frequentist statistics:



Bayesian:

Hypothesis Selection

Posterior 
Odds Ratio = P(H2 |D)

P(H1 |D)

Explicitly, the relative belief 
( “bett ing odds”) in H2 
relative to H1 given the data 

= P(D |H2) P(H2)
P(D |H1) P(H1)

Let the indices j & k represent different sets of possible nuisance parameter values within each model. 
Then, in discreet form:

= [−j P(D |H( j)
2 )P(H( j)

2 |P(H2))]
[−k P(D |H(k)

1 )P(H(k)
1 |P(H1))]

⟶ P(H2)
P(H1)

→ Bayes Factor (BF) ⟶ Prior Odds Ratio

Ratio of marginalised likelihoods, each 
integrated (in a Bayesian way) over their 
nuisance parameters (rather than maximised)

Somet imes a lso 
called the ratio of 
“model evidences”



The heart of Bayesian hypothesis selection is the posterior 
odds ratio, but many statisticians like to separately quote the 
BF to indicate what the data “prefers” in isolation from the ratio 
of priors. Quoting both explicitly shows the impact of the priors 
and, hence, indicates the strength of the data itself. 

But caution must be exercised in interpreting the BF on its own, 
as previously discussed for frequentist statistics: ONLY the 
posterior probability can give you the betting odds for a 
particular hypothesis!  

Some have advocated using BF as a replacement for p-
values* in null hypothesis testing. Amongst the advantages 
often quoted is that it explicitly weighs the likelihood of 
alternative hypotheses against that of the null hypothesis, as 
well as being independent of hypothesis priors. But (as always) 
there are potential issues here…

*For example, Williams, Baath & Philipp, Research in Human Development, 14:4, 321-337 (2017)



BF =
∫ smax

0 P(n |σ = s + b)α(s) ds
P(n |σ = b)

=
1

smax
∫ smax

0 P(n |σ = s + b) ds

P(n |σ = b)

Say we observe some number of events, n, from a counting 
experiment where the expected background is b and we wish 
to test the null hypothesis of zero signal against a possible 
non-zero signal. We will treat the exact number of signal as a 
nuisance parameter, allowing it to be anything up to some smax:

The answer is now highly dependent on the prior for the signal 
hypothesis!

This is an example of a more general behaviour known as 
“Lindley’s Paradox”, which comes about when comparing 
“point-like” to “diffuse” hypotheses

density of 
s values ∫

smax

0
α(s)ds = 1

Let’s assume  is constant
(note: same as a prior for s !)

α(s)

′ α(s) = 1
smax



Reverting to the posterior odds ratio by restoring the ratio of hypothesis priors 
doesn’t necessarily fix things if you assign equal prior probabilities to both the 
null and non-null hypotheses (PoOR = BF x 1).

The problem is partly due to the fact that you can alway have an extremely 
small signal that is non-zero, but indistinguishable from zero for all practical 
purposes. It therefore becomes essentially impossible to ever rule out a non-
zero signal and, thus, prefer the null hypothesis without relying on a prior to 
focus attention (to a greater or lesser extent) on a region where the signal 
would be measurable.

An different approach for null hypothesis testing when the alternative is a 
diffuse set of possibilities is to instead simply concentrate on the region in which 
H0 is no longer viable. Sounds like p-values again... but we can also consider a 
Bayesian equivalent too…

On the other hand, if you ascribe equal probabilities to all signal hypotheses, 
including zero, then the term cancels! 

PoOR = BF x 

So, as always, it comes down to exactly what you mean when you say that you 
have “no preference.” You are still dependent on this prior choice.

1
1/smax



Hypothesis Rejection
Frequentist:

In the approach originally proposed by Fisher, the p-value is defined 
as the chance probability for a fluctuation in an ensemble of 
possible data sets that is at least as extreme as that observed 
assuming the null hypothesis. In discreet form, the confidence 
interval that would exclude the observation is given by:

Fisher: “Report the exact level of significance… and do not talk about 
accepting or rejecting hypotheses.” (!!!)
Neyman-Pearson: “If the data falls into the rejection region of H1, accept 
H2; otherwise accept H1. Accepting a hypothesis does not mean that you 
believe in it, but only that you act as if it were true.” (???)

(Wikipedia)

We have discussed the pit-falls of p-value interpretation before:

summation/integration 
over the ensemble of 
data sets that are 
more likely than what 
has been observed.

CLex =
−i [P(Di |H0) > P(Dobs |H0)]

−i [P(Di |H0)]

p-value → 1 ∞ CLex

and



Hypothesis Rejection

Bayesian:
The parallel Bayesian construction (in discreet form) would then be 
as follows:

While priors are still in play for this Bayesian parameter, this follows a 
much better parallel construction to frequentist p-values than the 
Bayes Factor and avoids many of the previously discussed issues 
with null-hypothesis testing

summation/integration 
over the ensemble of 
hypotheses more likely 
than H0 given what has 
been observed.

CIex =
−i [P(Hi |Dobs) > P(H0 |Dobs)]

−i [P(Hi |Dobs)]

p-Bayes → 1 ∞ CIex

and



Example python script using a simple 
adaptive 1-D grid search to find p-Bayes 
(constant prior) for Poisson process:

Comparisons between p-values and p-Bayes 
(constant prior) for Poisson and Gaussian excesses: 

In contrast with p-values, p-Bayes always 
returns 1 if there is no excess…because 
you cannot exclude the null hypothesis with 
any credibility in this case!

But, for the constant prior case, the two 
values quickly converge in the high tail, 
where judgements are usually made. So 
the pragmatic and cautious use of p-values 
is not a bad approximation to p-Bayes for 
this particular choice of prior



So, after all the fuss and discussion, 
are p-values ok to use after all??

p-values remain one of the 
central tools for hypothesis 
testing - it should just be 
treated carefully!

Very small p-values, even after 
careful accounting of trials, confirmed 
by other observations/crosschecks, 
which could be explained by self-
consistent (plausible) alternatives…

Reject H0

Look carefully at context:
In fact, it’s the same pragmatic conclusion we came to earlier -

Can be useful when ambiguities arise in BF and PoOR from how weighting is 
applied to diffuse hypotheses (e.g. is there a non-zero signal of some kind?)

It’s interesting to see that a Bayesian parallel, based on exclusion rather than 
acceptance, can also be formulated, which can share similar properties for 
certain choices of prior!

Effectively a ‘loose’ Bayesian 
comparison with other hypotheses!



How do you decide between models that have 
different numbers of free parameters? Clearly, the 
more parameters you have, the easier it will be to fit 
the data… but does this make it a better model??

Let’s start by defining something related to the 
ability of a data set to constrain model parameters 
(i.e. the information content of the data) and then 
consider the overall probability of a hypothesis that 
is integrated over all possible values of its 
parameters…



P(D |H ) = ∫ ≃(D |q, H ) p(q |H ) dq

∞⟨(q)0

P(D |H ) ⟩ ≪≃∫ exp (∞ 1
2 (q ∞ ≪q)⟨(q)(q ∞ ≪q)T) p(q |H ) dq

= ≪≃∫ exp ∞ 1
2 (q ∞ ≪q)[

n

∑
i=1

⟨i(q)](q ∞ ≪q)T p(q |H ) dq

≫ ≪≃∫ exp (∞ n
2 (q ∞ ≪q)⟨x( ≪q)(q ∞ ≪q)T) p( ≪q |H ) dq = ≪≃ ( 2δ

n )
k/2 p( ≪q |H )

⟨x( ≪q)

∞2 log P(D |H ) ⟩ ∞ 2 [log ≪≃ ∞ k
2 log n + log p( ≪q |H ) ∞ 1

2 log ⟨x( ≪q) + k
2 log 2δ]

∞2 log ≪≃ + k log n → (sort of a modified chi-squared to 
account for the degrees of freedom)

Bayesian Information Criterion (BIC)

log [≃(D |q, H )] ⟩ [log ≃]q= ≪q + (q ∞ ≪q)[ ≡ log ≃
≡q ]q= ≪q

+ 1
2 (q ∞ ≪q)[ ≡2 log ≃

≡q2 ]
q= ≪q

(q ∞ ≪q)T + . . .

Recall our expansion around the maximum likelihood point:

as n ∑ ∼
these terms dominate 

≫ BIC

k-dimensional Gaussianassume independent 
identically distributed (IID) 
data and
and                     
near the maximum

⟨i(q) ≫ ⟨i( ≪q)
p(q |H ) ≫ p( ≪q |H )



∞2 log ≪≃ + k log n→BIC

(                       )A slightly different criteria derived by Akaike* is based on the “Kullback-Leibler Divergence,” 
which is a measure of separation between probability distributions, with the result:

AIC → ∞ 2 log ≪≃ + 2k

*Akaike, H., "A new look at the statistical model identification", IEEE Transactions on Automatic Control, 19 (6): 716–723 (1974) 

(to be minimised)

These penalise models with more free parameters (BIC more than AIC)

This is effectively accounting for the use of additional degrees of freedom 
(as we do with χ2), which tends to allow a better fit to the data, but doesn’t 
necessarily indicate a correct model. 

This is all in line with Occam’s Razor, which does NOT say that the more 
complicated model is incorrect, but merely that simpler models tend to be 
good starting places. Also, while BIC and AIC can provide a sort of 
relative goodness of fit between different hypotheses, they do not give an 
absolute goodness of fit.

So, these criterion should be used with caution, but can provide good 
guidance on model section.



ERROR	BARS

(and Data Presentation)



100 uniform ‘background’ events generated with values between 0-120, 
plus 18 ‘signal’ events with values between 30-45:



bin width=1 bin width=3 bin width=6

bin width=10 bin width=15 bin width=20

bin width=30 bin width=40 bin width=60

100 uniform ‘background’ events generated with values between 0-120, 
plus 18 ‘signal’ events with values between 30-45:

Optimal bin-size for visual inspection is comparable 
to the resolution and/or scale of the relevant features

using 
±√n 

error 
bars



3σ ?
Poisson rms ‘deviations are 
based on the true mean, not 
the fluctuated value!

So the common practise of 
plotting Poisson rms values 
on individual data points to 
compare with a model is not 
formally correct! 

But is this even really correct?

4.4σ

consistent 
with 0.6σ 
downward 
fluctuation

PPois( ∂ 30 |12.5) = 2 ⟶ 10∞5 = 4.1π
(equiv)

PPois( ∂ 28 |12.5) = 1.1 ⟶ 10∞4 = 3.7π
(consistent with 0.4σ downward fluctuation)

(equiv)

Expected in Signal Bin
18 excess compared to 
average 12.5 background:     

18/√12.5 ~ 5σ
(p-value = 2.9x10-7)

(~18+12.5)



What are these error bars supposed to represent?

There is no uncertainty in what was measured: 
this IS what was observed!

If you are trying to judge the consistency of the observation with a 
given model, then you need to look at the observation in light of 
the probability distribution predicted for that model, for which 
the error bars are an approximate representation. So use model-
based error bars and do the appropriate statistical test.

What if you want to make some more general statement that 
relates the observation to the range of possible models? The error 
bar then represents some bin-by-bin confidence or credibility 
interval…



Let’s start with a Frequentist approach:
Say we’re interested in an upper bound. For a given observed number of 
counts, n, in a given bin, we then want to find the range of possible model 
means for which the observed number of counts or less would occur with 
some frequency at least as great as 1-α (Neyman construction).

n

∑
m=0

σm
maxe∞σmax

m! = 1 ∞ μ

For an upper bound, the maximum mean value would thus have to satisfy:

∫
σmax

0

σne∞σ

n! dσ = μ

(can be shown from doing 
repeated integration by parts)

Which is also identical 
to a Bayesian upper 
bound, assuming a prior 
that is constant with µ !

P( < χ2, k) = ∫
χ2
2

0

x k
2 ∞1e∞x

( k
2 ∞ 1)!

dx
Recall that, for 
a χ2 distribution 
with k degrees 
of freedom:

(for even k)

So, with a change of 
variables, we can do 
the integration using 
standard tools for χ2 !

(so, for a 90% CL, you want values of the mean for which the chance of this occurring is better than 10%)



We can then go through a similar process for a lower bound and, thus, we 
can define a CL (or CI) interval*:

σmin = 1
2 F∞1

χ2 (μmin; 2n) σmax = 1
2 F∞1

χ2 (1 ∞ μmax; 2(n + 1))

Where F-1χ2 is the inverse of the cumulative χ2 distribution and we just 
need to specify the fractions of the distribution we want above (αmax) and 
below (αmin) the observed number. One common protocol** is to define a 
central confidence interval: μmin = μmax = μ/2

HOWEVER, this formalism runs into difficulties in trying to define 
symmetric, continuous confidence regions for asymmetric, quantised 
distributions like Poisson!

A trivial example:

The above formalism gives a 1 sigma (68.27% CL) region of 0 - 1.84 for 
an observation of zero counts. But the Poisson integral for that case is:

1 ∞ e∞1.84 = 0.84 because the ‘half’ of the interval 
below zero doesn’t exist!

*K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010); pdg.lbl.gov
**Garwood, F. (1936), Biometrika, 28, 437-442; ATLAS Statistics Forum, 15 February, 2011; ROOT error bar option kPoisson

http://pdg.lbl.gov


An alternative method of interval construction is to use an ordering rule 
based on the highest probability densities, which more naturally handles 
asymmetric and multi-peaked distributions:

For 1σ bounds on a Poisson distribution, a reasonable parameterisation 
(mine) is as follows:

σmin ⟩ n ∞ n + 0.33 [1 ∞ exp (∞1.5n1/4)]
σmax ⟩ n + n + 0.34 + 0.81 exp (∞1.7n1/4)

*Casella, G., Robert, C. (1989), The Canadian Journal of Statistics, 17, 45-57; Kabaila, P., Byrne, J. (2000), The Canadian Journal of Statistics, 28, 1-9

For single-peaked distributions, such as Poisson, this is equivalent to 
finding the shortest interval*, which can be numerically determined.



The following table compares the “1σ” interval definitions and their 
(Bayesian) integrals as a function of observed n for central, shortest and 
also just ±√n, with the latter set to 0-1 for zero counts:

The integral for the central interval definition is notably too large, the 
shortest interval is exactly correct (by definition), but the simple ±√n 
formulation actually isn’t bad…



Frequentist coverage of 1σ intervals as a function of true mean:

Note: For quantised observations, such as Poisson, it is fundamentally 
impossible to guarantee perfect statistical coverage for all values of μ!

(because interval boundaries jump discontinuously for different observed  counts)

Anyone obsessed with obtaining “exact” coverage for Poisson is barking up 
the wrong tree!

We see a similar story as with the integration: central intervals notably over-
cover, the shortest interval covers at about the right level on average, but 
the simple ±√n formulation actually isn’t bad…



So ±√n isn’t terrible as a way to represent approximate ‘1σ’ 
intervals for an indeterminate model, especially if you ascribe 
an error bar of 0-1 for zero counts, as is often done.
But at ±2σ, problems start to become more obvious, and this 
will become even worse at higher significance levels.

Be careful how you use these!

And remember that you shouldn’t use these to test a particular 
model: you need to use model-based probability predictions!!



3.3σ !!

bin width=1 bin width=2 bin width=3

bin width=4 bin width=5

Same data set without any signal (i.e. just uniform ‘background’):

Ppost trial = 1 ∞ (1 ∞ 0.0073)(2.5⟶60) = 0.67

Poisson probability = 0.0073 (2.44σ) rather than 0.0005 (3.3σ)
Trials: taking best of 60 bins and then the best of 5 different binnings
     (binnings not entirely independent… assume effective factor of ~2.5)



• For visual presentation/inspection of data, choose a binning 
based on the amount of statistics (to avoid bins with low 
numbers) and the anticipated scale of possible features.

• Whenever possible, try to use un-binned tests. Otherwise, it’s 
advisable idea to explicitly check the dependence of your 
conclusions on the chosen binning.

• Fitting and significance tests should be done using the correct 
probability distributions where appropriate.

• Chi-squared tests (and minimisation) using √n errors in bins with 
a reasonable number of counts are generally ok: it will still get 
you near to the right minimum and, in the vicinity of the right 
model, the behaviour is typically dominated by the cumulative 
effect of small (~1σ) fluctuations, where the approximation isn’t 
bad. But beware of how you interpret large fluctuations, setting 
confidence intervals at high significance levels, or generally 
setting any confidence intervals when the model does not look 
like a good fit!



Try to avoid 
suppressed 

zeros!

Show detail with residual plotGive full scale whenever possible
(can be linear and/or log scale)



Avoid artificial 
smoothing (like 

running averages) 
where possible, 
which produce 
correlated error 

bars that are hard 
to interpret and 
can lead to false 

conclusions

Much better to 
use appropriate 
binning to keep 

data points 
uncorrelated, 
and use un-

binned tests of 
significance



Phys.Rev.C81:055504,2010 Phys.Rev.C75:045502,2007

Ways to Display Uncertainties



Phys. Rev. C 104, 045204 (2021)

Phys.Rev.D90:072008,2014



Visualising Multi-Dimensional Data



Parallel Coordinate Plot:



Ways to display information about data point distributions 
when you’re not simply dominated by Poisson statistics:

Box and Whisker:

upper extreme

lower extreme

outliers

median

upper quartile

lower quartile



Violin Plot:

Ways to display information about data point distributions 
when you’re not simply dominated by Poisson statistics:


