Lecture 9:

Useful Tools for Experimental Design

« Effective Contributions to
Uncertainties and “Pulls” Analysis

e Blind Analysis

e Bifurcated Side-Band Analysis
 Statistical Optimisation

« A Note on Redundancy & Calibration



Separating Contributions of Systematic Uncertainties

Systematic uncertainties are often handled by “floating” them as free or
constrained (priors!) nuisance parameters within the likelihood fit that are
then marginalised over when extracting the parameters of interest. But
we also want to make clear the separate contributions from systematic
and statistical uncertainties due to their different natures (lecture 5).

We can assess the impact of statistical uncertainties alone by simply
fixing the systematic nuisance parameters to their nominal values and
measuring the shape of the likelihood. This can then be compared to the
likelihnood with systematics floating to determine their impact.

It is often useful to show this in terms of the equivalent 1-sigma Gaussian
uncertainties:
total equiv. Gaussian uncertainty with floated systematics
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O

stat equiv. Gaussian uncertainty with fixed systematics



Then treating these as if we had independent Gaussian uncertainties:
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Otor = Stat + Gsys Usys = Otot — Ogtar

_> X + 0 where X is the result obtained
Ostar = Sys from the combined fit
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More typically, the likelihood will not have a symmetrical shape in the
region of the maximum. In this case, a better approximation can be
obtained by quoting different upper and lower Gaussian equivalent
uncertainties using the same approach:

+o0,. +o0,.
X T (stat) T30 (sys)



“Pulls” Analysis

More generally, the result itself may well have shifted as a result of
propagating the systematic uncertainties if it appreciably alters the shape
of the likelihood. The significance of the shift in terms of ‘standard
deviations’ due to systematic uncertainties can be quantified by defining

the systematic “pull”:

_ X(total) — X(stat only)

sys —

Gsys

difference in the determined parameter of interest

— X(tO[Cll) - X(Stat OI’lly) due to the inclusion of floating systematics

appropriate (‘hi’ or ‘lo’) equivalent Gaussian
2 2 +— o .
Oiot Ostat contribution to the total uncertainty.

Pulls can be separately assessed for individual systematics to show their
impact and check for consistency.



Pulls Decomposition in a Constrained Fit

Assume we have made a measurement of some quantity, X, * 0,,, that has been
combined with an independent constraint, X. £ 0, (perhaps from a calibration or a
separate measurement etc.), to obtain an improved fit estimate of Xf == 7
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Pulls Decomposition in a Constrained Fit

Assume we have made a measurement of some quantity, X, * 0,,, that has been
combined with an independent constraint, X. £ 0, (perhaps from a calibration or a
separate measurement etc.), to obtain an improved fit estimate of Xf == 7

For Gaussian XWX W, XWX Wy,
uncertainties:  Xg = Xp— X =
W, + W, W, + W,
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Blindness




ALEPH (9094) Electron spectra
0.1649+0.0070+0.0066

ALEPH (91.95) D* excl./incl.
0.1761+0.013+0.011

ALEPH (91-95) D excl/excl.
0.169+0.013+0.011

DELPHI (91-94) Charm counting
0.168+0.011+0.013

DELPHI (91-95) D* excl./incl.
0.167+0.015+0.015

DELPHI (91-94) D* incl/incl.
0.171+0.013+0.015

OPAL(91.93) Charm counting
0.167+0.011+0.011

OPAL(91.95) D* excl./incl
0.182+0.011+0.014

ALEPH average
0.1683+0.0091

DELPHI average
0.1657+0.00741+0.0071

OPAL average
0.1745+0.00781+0.0086

LEP Average
0.1715+0.0056
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CDF Run 0/1 o 80.436 + 0.081
DO Run | — 80.478 + 0.083
CDF Run I —— 80.413 £ 0.048
Tevatron 2007 —— 80.432 + 0.039
DO Run |l —— 80.402 + 0.043
Tevatron 2009 —— 80.420 + 0.031
LEP2 average — g 80.376 + 0.033
World average & 80.399 + 0.023
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Neutron lifetime (s)

1100 V‘Y'V‘V‘UIVY"IUUI'V""V‘VV'UV]"VU'UYUI“[VV'VIUV"

1050 - -
1000 - -
a50 -

- Tl 28 % wexx 1
&U -11111llllllLLlllllllLLllllllllLlllllllllllllllll‘[-

1960 1870 18980 1990 2000 2010

105

[
Qo
Q

tw
n

II'II'II"IIIIIIIIIIIIII

W
o

mean lifetime (ps)

Kg
%

&0

1350 1960 1870 1980 1990 2000 2010

VUV'V”‘V"'VYYTUVVIUTI'Ul""l""‘l"ll"”"'”'III"""VV
1

cENENBUN SR RN

ﬁmg

‘AllL‘lLl‘ll‘lll‘lll‘Al

lllLlll;lllllllxlllllllxllll‘LllAAlll;lllAlllLlllxlllellLll




EVENTS /S MeV

BEST EW FIT

The ‘Split” A, Meson
(CERN, mid 1960’s)

biased data
selection




ete- bump at 6 GeV

T

"Oops-Leon"”
(Fermilab, 1976)

Statistical fluctuation
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Figure 5 Plots of five-point running average of ¥Ar production and smoothed sunspot
numbers against time in years (from 130). Solid circles, ¥Ar production; dotted curve,

sunspot numbers; open circles, solar diameter.



REPUBLICAN SENATORS CAUSE SUNSPOTS
OR MAYBE SUNSPOTS CAUSE REPUBLICAN SENATORS?
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CERN, 2011

NewScientist

Surprise LHC blip hints at Higgs — again

22:49 22 July 2011

“...The combinea statistical signimcance, taking all tTnree Types OT eXCess reported by AILAS INTO account, IS 2.8 SIgmMa, slgntly below
the 3 sigma threshold (equivalent to a 1-in-370 chance of being due to a fluke) that a measurement must pass to count as
"evidence" for something new: only 5 sigma data, equivalent to a 1-in-1.7 million chance of being due to a fluke, gains "discovery"
status.

The other main detector at the LHC, called CMS, has found an excess in a similar range, between 130 and 150 GeV, reports Nature.
The size of that excess is roughly 2 sigma, writes physicist Adam Falkowski on the Resonances blog.

If all this sounds a tad familiar, rewind back to April, when four physicists claimed to have found hints of the Higgs in ATLAS data in a
study abstract leaked online. A subsequent official analysis by the collaboration of 700 physicists who run ATLAS concluded that
result was an error. Unlike that claim, the new excesses have been vetted by the ATLAS and CMS collaborations respectively.”

guardian.co.uk

Higgs boson signals fade at Large
Hadron Collider

Cern scientist says he sees 'no striking evidence of anything that
could resemble a discovery' in hunt for Higgs boson

lan Sample
guardian.co.uk, Monday 22 August 2011 17.10 BST
Article history
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“Blind” Analysis Techniques

Goal: To remove the ability to unconsciously tune on
statistical fluctuations and/or adjust analyses towards a

particular outcome by hiding the final result until the full
analysis (incl. assessment of uncertainties) is fixed.

ﬁ:{ules of the Gam&

* Agree on an appropriate blindness
scheme in advance

* Make sure no one breaks it

* Agree on the criteria necessary
to “open the box”

- State the blindness scheme up
front in any publication

* Agree to show exactly what results

from box-opening and then justify
\@y alterations /

At which point you then
“open the box” and take
what life brings you!
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Divided Data Sample

NOMAD Search for
v, - Vv, oscillations
(Feb, 1999)

Used 20% of data to
confirm background
predictions and define
search window, then
iImpose signal box
method on remaining
80% of the data

Expected background
In signal box: 6.5 1.1

CALORIMETRE
ELECTROMAGNETIQUE

RESULTS:

Le Detecteur NOMAD

13 Neutrinos

Vi



Hidden Parameters

SNO Measurement of
total solar neutrino flux
(Sept, 2003)

Excluded a hidden fraction

of the final data set (unknown
flux normalisation), included
hidden admixture of tagged
background neutrons, scaled
simulation NC cross section
by hidden factor

RESULTS:

Events per 500 keV
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Bifurcated Side-Band Analysis*

Assume we have a data set with a total number of signal S and a total
number of background B. Further assume that we have two
independent parameters (for example, energy and fiducial volume) that
can be used to cut out some number of unknown background while
maintaining high signal efficiency (based on simulations of the signal).
We wish to estimate the background contamination in the signal region:

B

pass-pass

C

Cut1

fail-fail
Cut 2

Generalisation of Adler et al., PRL 79, 12 1997 and Nix et al., NIM A615, 2, 2010 to account for signal efficiencies



Take the efficiency of retaining signal from
each cut in the signal region to be €1 and &z,
respectively. Similarly, take the fractions of
background rejected by each cut in this

region to be r1 and rz, respectively.
pass-pass

C

Cutl

N, = Se¢,€e, + Bryr, =s+5b
Ny = S¢/(1 —€)) + Bri(1 — ry)
Ne=8¢,(1 —€)) + Bry(1 —ry)

fail-fail

Cut 2 Np=8(-€)1 —-¢6)+B(—-r)1—r)

To simplify the algebra a bit, let’s redefine variables:

N I N, 1 —
n, = —- =S+B(—12> ne < =S+B(r2( rl))

€1€; €1€; er(1 —¢€)) ex(1 —¢€y)

) N, _S+B<rl(1—r2)) ) N, =S+B<(1—rl)(1—r2)>
P e(l-—6) /(1 — e) P70 =ep -6y (1—¢)(1 — ¢




nA—S=B<ﬂ) nB_S=B<n(1—r2)> nC_S=B<r2(1—rl)> nD_S=B<(1—r1)(1—r2)>
€16 ei(l =€) e(1 —€) (1—e)(1 —e)
(ne —S)ng —S) = (ny — S)(np = S)

neng — neS — Sng + S* = nynp, — n,S — Sny + S*

¢ — NAllp — Ncllg
Ny +np—nec—ng
re-expanding:
G NyNp — N-Np
Ny(1 — €)1 — €3) + Npejey — Neey(1 — €) — Npex(l —€y)

s = S€€, b =N, — Se€,

Do not need to know details about r1 and r2 !



S . NAND - NCNB
Ny(1 —€)(1 — €3) + Npejey — Neey(1 — €) — Npex(1 —€p)

S = S€1€2 b — NA — S€1€2
Do not need
_ 1 b — NBNC to even look
note: as €y,€p = > : :
ND in the signal
region !

So, for large efficiencies, the variance in the estimated
background contamination, b, is approximately:

Could first use tight cuts with high efficiency for 1st order look,
then loosen cuts in pre-determined way once box is opened to
better evaluate signal and background contamination



Remember, this assumes cut parameters are uncorrelated!
Note that a mixed background model can inadvertently
produce correlations if, for example, both r1 and r2 are notably
different between background components: then a particular
cut value could favour a particular background, which could
then produce a correlated rejection for the second cut.

In general, should look for possible correlations by plotting one
cut parameter versus another, for example, in the anti-signal
cut region (i.e. box D).

If a correlation is present, you may be able to redefine your
parameters to remove this to first order. For example:
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4 .. [OR0]
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S LN A,
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Alternatively, we can first define the background model as the sum of
various components. Now assume that we can decompose these into a set
of backgrounds that are well-modelled and/or sub-dominant, plus a
background with the highest uncertainty that we most wish to evaluate:

B },. },. background we most
1'2 want to evaluate

Then, similar to before, we can define the following quantities:

172
_E(NA ZBrlr2> S+B<€1€2>
S+B<”1(1_’”2)>
el(1 —€)
S+B<”2(1—r1)>
el —¢€p)
_ 1 ) IR (1-r)( =1
U= —e) <ND ;B’“ fae rz))‘“B((l—el)(l—ez))

I IS Nallp — Nl Does not depend on knowing

the rejection factors for the
Na+MNp—Nnc—ng unknown background!

1 . .
ng = (NB - Y Bri - r5)>

e1(1 — &)

1 . |
Ne = (NC - Y Bri(1- r;))

e(1 —¢€))




o HaAlp — Nl
I Ha+MNp —Nhc—nhp
as €,6 — 1

[No= ZBrit = | [Ne= Z, Bl - 1))

b
[ND — ¥ B(1 —r)(1 - ;g)]

Again, no need to even look in the signal region !



Statistical
Optimisation



2bpwon8 pnidtoW

Assume that both the signal and background
levels are proportional to the detector mass, M,
and running time, T. Find an expression for the
maximum background level that can be
tolerated to achieve a 30 detection as a
fraction of the expected signal for a given
model. How does the sensitivity change as a
functionof Mand T ?

B=fS

10:\/52\/]075

under HO

e 35 = §

Significance (¢’s) =

(able to tolerate
more background —

S

for larger signal) 5 87 M T
S? —
9

Sk

-

or B —= \/fOéMT



Example of Statistical Optimisation

Assume that we are in
the “large N” limit and
expected the number of
~R3 counts to be dominated
(~R differentially) by background events.

We wish to exclude the

- —— worst of the background
Radius by choosing a radius to

define a “fiducial volume,”

within which will look for

an excess of events as

evidence of a signal.

What choice of fiducial
3 radius will give the best
S R . R?’e_o‘ R/2 “Radius” sensitivity for the search?

VB y/exp(aR)
. From the plot, it looks like backgrounds
maximise: fall by ~1/e when R changes by 10%

Q
3R2e— /2 _ §R36_O‘R/2 — () of the detector radius... so a ~10

3p2 = 2ps R=0 [Rf — O.GRd}

2 Qo




VHE y-Ray Astronomy Direction of the primary
y-ray reconstructed from

Assuming an angular resolution timing of secondary
characterised by a Gaussian, what air-shower particles.
is the optimal angular bin radius '

‘ J

to maximise signal sensitivity? // /
S ~ / 6 exp( ——)d9
CL2
[1 — exp(—g)]

B ~ / 0do =

a1 _, What if the expected
ﬁ ~ - eXp(_ﬁ) a background is very small?
Maximise:
1 a’ 1 a’
— [1 — exp(——)] + —exp(—5=5)=0
a 2072 o2 2072

2 2\ —1 a
a a . ) ’
eXp(_ﬁ) = <1 + —2) [Numemcallyz == 1.58} reconstructed source
o

direction direction




A Brief Note On
Redundancy
&

Calibrations:



Sudbury Neutrino Observatory (SNO) Vg P

3 Different Operational Phases

Found that estimated systematic uncertainty

in possible position-dependent energy resolution| /| §
was larger for the 2nd phase, which should have |~ & /|
performance at least as good as |st phase(?!) (AR

V

Realised that fewer calibrations had been done
in 1st phase, so there was less data to compare!

Unbiical Retrioval

If you don’t look,
you don’t see!!

(Some groups seem to have elevated this
to a strategy for getting small errors!)
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3 Experimental Techniques,
at Least 2 Analyses/Technique + Combined Cross-checks



