
Lecture 9:

• Effec%ve Contribu%ons to 
Uncertain%es and “Pulls” Analysis 

• Blind Analysis 
• Bifurcated Side-Band Analysis 
• Sta%s%cal Op%misa%on 
• A Note on Redundancy & Calibra%on

Useful Tools for Experimental Design



Systematic uncertainties are often handled by “floating” them as free or 
constrained (priors!) nuisance parameters within the likelihood fit that are 
then marginalised over when extracting the parameters of interest. But 
we also want to make clear the separate contributions from systematic 
and statistical uncertainties due to their different natures (lecture 5).

We can assess the impact of statistical uncertainties alone by simply 
fixing the systematic nuisance parameters to their nominal values and 
measuring the shape of the likelihood. This can then be compared to the 
likelihood with systematics floating to determine their impact.

It is often useful to show this in terms of the equivalent 1-sigma Gaussian 
uncertainties:

equiv. Gaussian uncertainty with fixed systematicsσstat ≡
total equiv. Gaussian uncertainty with floated systematicsσtot ≡

Separating Contributions of Systematic Uncertainties



More typically, the likelihood will not have a symmetrical shape in the 
region of the maximum. In this case, a better approximation can be 
obtained by quoting different upper and lower Gaussian equivalent 
uncertainties using the same approach:

σlo σhi

X +σhi−σlo
(stat) +σhi−σlo

(sys)

Then treating these as if we had independent Gaussian uncertainties:

σ2
tot = σ2

stat + σ2
sys σ2

sys = σ2
tot − σ2

stat

X ± σstat ± σsys
where X is the result obtained 
from the combined fit



More generally, the result itself may well have shifted as a result of 
propagating the systematic uncertainties if it appreciably alters the shape 
of the likelihood. The significance of the shift in terms of ‘standard 
deviations’ due to systematic uncertainties can be quantified by defining 
the systematic “pull”:

gsys ≡ X(total) − X(stat only)
σsys

“Pulls” Analysis

difference in the determined parameter of interest 
due to the inclusion of floating systematics
appropriate (‘hi’ or ‘lo’) equivalent Gaussian 
contribution to the total uncertainty.

Pulls can be separately assessed for individual systematics to show their 
impact and check for consistency.

= X(total) − X(stat only)

σ2tot − σ2stat
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For Gaussian 
uncertainties:

Assume we have made a measurement of some quantity,                , that has beenxm ± σm
combined with an independent constraint,               (perhaps from a calibration or axc ± σc
separate measurement etc.), to obtain an improved fit estimate of              xf ± σf

Pulls Decomposition in a Constrained Fit
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For Gaussian 
uncertainties:
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and similarly:

So we can also separate 
the effective contributions 
of measurement and 
constraint to the final fit 
result

Assume we have made a measurement of some quantity,                , that has beenxm ± σm
combined with an independent constraint,               (perhaps from a calibration or axc ± σc
separate measurement etc.), to obtain an improved fit estimate of              xf ± σf

Pulls Decomposition in a Constrained Fit
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Blindness













The ‘Split’ A2 Meson 

(CERN, mid 1960’s)

biased data  
selec%on



“Oops-Leon”
(Fermilab, 1976)e+e- bump at 6 GeV

Sta%s%cal fluctua%on



The ζ Par%cle 

(DESY, 1984)

Biased data cuts







“...The combined sta%s%cal significance, taking all three types of excess reported by ATLAS into account, is 2.8 sigma, slightly below 
the 3 sigma threshold (equivalent to a 1-in-370 chance of being due to a fluke) that a measurement must pass to count as 
"evidence" for something new: only 5 sigma data, equivalent to a 1-in-1.7 million chance of being due to a fluke, gains "discovery" 
status. 
The other main detector at the LHC, called CMS, has found an excess in a similar range, between 130 and 150 GeV, reports Nature. 
The size of that excess is roughly 2 sigma, writes physicist Adam Falkowski on the Resonances blog. 
If all this sounds a tad familiar, rewind back to April, when four physicists claimed to have found hints of the Higgs in ATLAS data in a 
study abstract leaked online. A subsequent official analysis by the collabora%on of 700 physicists who run ATLAS concluded that 
result was an error. Unlike that claim, the new excesses have been veked by the ATLAS and CMS collabora%ons respec%vely.”

CERN, 2011



Bias

and Experimental Design



“Blind” Analysis Techniques

Goal: To remove the ability to unconsciously tune on  
statistical fluctuations and/or adjust analyses towards a 
particular outcome by hiding the final result until the full 
analysis (incl. assessment of uncertainties) is fixed.   

At which point you then
“open the box” and take 
what life brings you!

• Agree on an appropriate blindness 
 scheme in advance
• Make sure no one breaks it
• Agree on the criteria necessary
  to “open the box”
• State the blindness scheme up
  front in any publication
• Agree to show exactly what results
  from box-opening and then justify
  any alterations

Rules of the Game



Signal Box Method

CDMS results on search 
for Dark Ma6er (Dec, 2009)

Expected summed
background in both
detectors: 0.9 ± 0.2

1st detector

2nd detector

                RESULTS:
                       2 
(consistent with background fluctuations)



Divided Data Sample

NOMAD Search for  
νµ - ντ oscilla@ons 
     (Feb, 1999)

Used 20% of data to
confirm background
predictions and define
search window, then
impose signal box
method on remaining
80% of the data

Expected background 
in signal box: 6.5 ± 1.1

                RESULTS:
                       5 
(consistent with background fluctuations)



Hidden Parameters

SNO Measurement of 
total solar neutrino flux 
        (Sept, 2003)

Excluded a hidden fraction
of the final data set (unknown
flux normalisation), included
hidden admixture of tagged
background neutrons, scaled
simulation NC cross section
by hidden factor

                                              RESULTS: 

         Φν  = 5.21±0.27(stat)±0.38(sys) x106/cm2/s



Bifurcated Side-Band Analysis*

Assume we have a data set with a total number of signal S and a total 
number of background B. Further assume that we have two 
independent parameters (for example, energy and fiducial volume) that 
can be used to cut out some number of unknown background while 
maintaining high signal efficiency (based on simulations of the signal). 
We wish to estimate the background contamination in the signal region:

Generalisation of Adler et al., PRL 79, 12 1997 and Nix et al., NIM A615, 2, 2010 to account for signal efficiencies

C
ut

 1

Cut 2

A B

C D

(signal region)

(anti-signal region)

pass-pass

fail-fail

pass-fail

fail-pass



Take the efficiency of retaining signal from 
each cut in the signal region to be ε1 and ε2, 
respectively. Similarly, take the fractions of 
background rejected by each cut in this 
region to be r1 and r2, respectively.

NA = Sϵ1ϵ2 + Br1r2 ≡ s + b

NB = Sϵ1(1 − ϵ2) + Br1(1 − r2)

NC = Sϵ2(1 − ϵ1) + Br2(1 − r1)
ND = S(1 − ϵ1)(1 − ϵ2) + B(1 − r1)(1 − r2)

nA ≡ NA

ϵ1ϵ2
= S + B ( r1r2

ϵ1ϵ2 )
nB ≡ NB

ϵ1(1 − ϵ2) = S + B ( r1(1 − r2)
ϵ1(1 − ϵ2) )

nC ≡ NC

ϵ2(1 − ϵ1)
= S + B ( r2(1 − r1)

ϵ2(1 − ϵ1) )
nD ≡ ND

(1 − ϵ1)(1 − ϵ2) = S + B ( (1 − r1)(1 − r2)
(1 − ϵ1)(1 − ϵ2) )

To simplify the algebra a bit, let’s redefine variables:

C
ut

 1

Cut 2

A B

C D

(signal region)

(anti-signal region)

pass-pass

fail-fail

pass-fail

fail-pass



nA − S = B ( r1r2
ϵ1ϵ2 ) nB − S = B ( r1(1 − r2)

ϵ1(1 − ϵ2) ) nC − S = B ( r2(1 − r1)
ϵ2(1 − ϵ1) ) nD − S = B ( (1 − r1)(1 − r2)

(1 − ϵ1)(1 − ϵ2) )

(nC − S)(nB − S) = (nA − S)(nD − S)

nCnB − nCS − SnB + S2 = nAnD − nAS − SnD + S2

S = nAnD − nCnB

nA + nD − nC − nB

S = NAND − NCNB

NA(1 − ϵ1)(1 − ϵ2) + NDϵ1ϵ2 − NCϵ1(1 − ϵ2) − NBϵ2(1 − ϵ1)

b = NA − Sϵ1ϵ2s = Sϵ1ϵ2

re-expanding:

Do not need to know details about r1 and r2 !



S = NAND − NCNB

NA(1 − ϵ1)(1 − ϵ2) + NDϵ1ϵ2 − NCϵ1(1 − ϵ2) − NBϵ2(1 − ϵ1)

b = NA − Sϵ1ϵ2s = Sϵ1ϵ2

σ2
var ≃ NB ( NC

ND )
2

+ NC ( NB

ND )
2

+ ND ( NBNC

N2
D )

2

So, for large efficiencies, the variance in the estimated 
background contamination, b, is approximately:

ϵ1, ϵ2 → 1 b → NBNC

ND
note: as

Do not need 
to even look 
in the signal 
region !

Could first use tight cuts with high efficiency for 1st order look, 
then loosen cuts in pre-determined way once box is opened to 
better evaluate signal and background contamination



α

β

Remember, this assumes cut parameters are uncorrelated! 
Note that a mixed background model can inadvertently 
produce correlations if, for example, both r1 and r2 are notably 
different between background components: then a particular 
cut value could favour a particular background, which could 
then produce a correlated rejection for the second cut. 

In general, should look for possible correlations by plotting one 
cut parameter versus another, for example, in the anti-signal 
cut region (i.e. box D).

If a correlation is present, you may be able to redefine your 
parameters to remove this to first order. For example:

α/
(m
β 

+ 
b)

β



Alternatively, we can first define the background model as the sum of 
various components. Now assume that we can decompose these into a set 
of backgrounds that are well-modelled and/or sub-dominant, plus a 
background with the highest uncertainty that we most wish to evaluate:

∑
i

Biri
1ri

2 + Br1r2
background we most 
want to evaluate

ηA ≡ 1
ϵ1ϵ2 (NA − ∑

i
Biri

1ri
2) = S + B ( r1r2

ϵ1ϵ2 )

ηB ≡ 1
ϵ1(1 − ϵ2) (NB − ∑

i
Biri

1(1 − ri
2)) = S + B ( r1(1 − r2)

ϵ1(1 − ϵ2) )
ηC ≡ 1

ϵ2(1 − ϵ1) (NC − ∑
i

Biri
2(1 − ri

1)) = S + B ( r2(1 − r1)
ϵ2(1 − ϵ1) )

ηD ≡ 1
(1 − ϵ1)(1 − ϵ2) (ND − ∑

i
Bi(1 − ri

1)(1 − ri
2)) = S + B ( (1 − r1)(1 − r2)

(1 − ϵ1)(1 − ϵ2) )

Then, similar to before, we can define the following quantities:

Does not depend on knowing 
the rejection factors for the 
unknown background!



b → [NB − ∑i Biri
1(1 − ri

2)] [NC − ∑i Biri
2(1 − ri

1)]
[ND − ∑i Bi(1 − ri

1)(1 − ri
2)]

ϵ1, ϵ2 → 1as

Again, no need to even look in the signal region !



Statistical 
Optimisation



B = fS

Significance (�’s) =
Sp
B

=
↵MTp
f↵MT

/
p
MT

Assume that both the signal and background 
levels are proportional to the detector mass, M, 
and running time, T. Find an expression for the 
maximum background level that can be 
tolerated to achieve a 3σ detection as a 
fraction of the expected signal for a given 
model. How does the sensitivity change as a 
function of M and T ?

1� =
p
B =

p
fS

under H0

3
p

fS = S
Thus, for 
a 3σ signal:

f =
S

9

(able to tolerate 
more background 
for larger signal)

B =
S2

9
or



Example of Statistical Optimisation

“Radius”

“Radius”

~R3

~exp(αR)

Assume that we are in
the “large N” limit and 
expected the number of
counts to be dominated
by background events.

We wish to exclude the
worst of the background
by choosing a radius to 
define a “fiducial volume,” 
within which will look for
an excess of events as
evidence of a signal.

What choice of fiducial
radius will give the best
sensitivity for the search?

From the plot, it looks like backgrounds
fall by ~1/e when R changes by 10%
of the detector radius... so α ~10

Rf

Sp
B

⇠ R3

p
exp(↵R)

= R3e�↵R/2

3R2 =
α

2
R3 R =

6

α

3R2e�↵R/2 � ↵

2
R3e�↵R/2 = 0

maximise: maximise:

(~R2 differentially)



Direction of the primary 
γ-ray reconstructed from 
timing of secondary 
air-shower particles.

reconstructed
  direction

 source
direction

θ

Sky View:
a

Assuming an angular resolution
characterised by a Gaussian, what 
is the optimal angular bin radius 
to maximise signal sensitivity?

VHE γ-Ray Astronomy

What if the expected
background is very small?

S ∼
� a

0
θ exp(− θ2

2σ2
)dθ

= σ2

�
1− exp(− a2

2σ2
)

�

B ⇠
Z a

0
✓d✓ =

a2

2

S√
B

∼
�
1− exp(− a2

2σ2
)

�
a−1

� 1

a2


1� exp(� a2

2�2
)

�
+

1

�2
exp(� a2

2�2
) = 0

Maximise: 

exp(− a2

2σ2
) =

�
1 +

a2

σ2

�−1

Numerically: 
a

�
' 1.58



A Brief Note On 
Redundancy 

& 
Calibrations:



Sudbury Neutrino Observatory (SNO)

3 Different Operational Phases

Found that estimated systematic uncertainty
in possible position-dependent energy resolution
was larger for the 2nd phase, which should have
performance at least as good as 1st phase(?!)

If you don’t look, 
you don’t see!!

(Some groups seem to have elevated this 
 to a strategy for getting small errors!) 

Realised that fewer calibrations had been done
in 1st phase, so there was less data to compare!



Φ
to

ta
l

SSM

June 2001 
   (indirect)

April 2002 
    (direct)

       Sept 2003 
     (salt, unconstrained)

   May 2008 
(NCD measurement)

      Sept 2011 
   (Combined Phases)

3 Experimental Techniques, 
at Least 2 Analyses/Technique + Combined Cross-checks


