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Abstract

We analyze undiscounted continuous-time games of strategic experimentation
with two-armed bandits. The risky arm generates payoffs according to a Lévy pro-
cess with an unknown average payoff per unit of time which nature draws from
an arbitrary finite set. Observing all actions and realized payoffs, plus a free back-
ground signal, players use Markov strategies with the common posterior belief about
the unknown parameter as the state variable. We show that the unique symmet-
ric Markov perfect equilibrium can be computed in a simple closed form involving
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the expected full-information payoff, given the current belief. In particular, the
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1 Introduction

We analyze a class of continuous-time two-armed bandit models in which a number of
symmetric players act non-cooperatively, trying to learn an unknown state of the world
that governs the risky arm’s expected payoff per unit of time. Actual payoffs are given
by Lévy processes, that is, processes with independent and stationary increments. In
addition, players receive free background information in the form of a process of the same
type as the payoff processes. Rather than discounting future payoffs, players evaluate
their payoff streams according to the strong long-run average criterion.1 Assuming that
all actions and payoffs are public information, we restrict players to Markov strategies
with the common posterior belief about the unknown parameter as the natural state
variable, and we characterize the unique symmetric Markov perfect equilibrium.

This setting allows us to handle a much larger class of priors and payoff-generating
processes than the existing economics literature on bandit-based multi-agent learning in
continuous time. First, the unknown state of the world can be drawn from an arbitrary
finite set, whereas the literature assumes a binary state. Second, the payoff processes
can combine continuous with discrete increments, whereas the literature assumes either
Brownian or Poisson payoffs. Third, lump-sum payoffs can be good or bad news, whereas
the literature assumes that news is of one type only.

Despite this broadening of the class of payoff-generating processes, and the general-
ization from Bernoulli to arbitrary discrete priors in particular, the equilibrium strategy
has a simple explicit form. In fact, at any point in time, a player’s best response depends
only on the intensity of experimentation performed by the other players, the payoff of the
safe arm, the expected current payoff of the risky arm, and the expected full-information
payoff – it does not depend on the precise specification of the payoff-generating process.
This feature carries over to the symmetric Markov perfect equilibrium, where one and the
same functional form applies across all specifications that we consider. The common equi-
librium action is a piecewise linear function of the ratio of two differences: that between
the risky arm’s expected full-information payoff and the safe payoff, and that between
the safe payoff and the risky arm’s expected current payoff.

We further show that this result extends to two specifications of priors and payoff-
generating processes in which the unknown state of the world is drawn from a continuous
distribution of unbounded support: Brownian payoffs with normal priors, and Poisson
payoffs with gamma priors. In either specification, the players’ information is captured

1First used by Ramsey (1928) in growth theory, this criterion is the limit of the standard discounted
performance criterion as the discount rate goes to zero, both in terms of value functions and optimal
strategies. See Dutta (1991) for the connection between performance criteria with and without discounting
in discrete time, and Bolton and Harris (2000) for a detailed treatment of the strong long-run average
criterion in a continuous-time Bayesian-learning setting such as ours.
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by a two-dimensional sufficient statistic, which can serve as the state variable for Markov
strategies.

Our characterization of the unique symmetric Markov perfect equilibrium hinges on
four features of the settings that we study: (i) players receive free background information;
(ii) they use the strong long-run average criterion; (iii) the experimentation game is
played in continuous time; and (iv) the players’ risky payoff processes and the background
information are all of the same (unknown) type, hence perfect substitutes with respect to
learning.

In fact, the background information ensures that players learn the true state exponen-
tially fast, no matter what strategy profile they use.2 This makes it possible to evaluate
players’ random payoff streams according to the strong long-run average criterion, that
is, by computing the expected accumulated shortfall of realized payoffs relative to the
expected full-information payoff. Under this criterion, the problem of finding a best re-
sponse to the opponents’ Markovian strategy profile has a recursive structure amenable to
dynamic-programming techniques. In continuous time, this leads to a Hamilton-Jacobi-
Bellman (HJB) equation in which the value function (i.e. the payoff function induced by
a best response) enters only through the expected rate of change of continuation payoffs.
When the players’ risky payoff processes and the background information are all of the
same type, moreover, the expected rate of change of continuation values is linear in the
total intensity of experimentation. This makes it possible to eliminate a player’s value
function completely from the maximization problem in the HJB equation, so optimal ac-
tions can be determined belief by belief without reference to the value function and the
payoff-generating processes.

While the computation of these candidate best responses does not involve the specifics
of the payoff-generating processes, the evolution of the players’ posterior beliefs obviously
does depend on them, and it is essential to ensure that the strategies in question induce
a well-defined law of motion for those beliefs. Standard results on the existence and
uniqueness of solutions to stochastic differential equations require Lipschitz continuity of
coefficients. We restrict players to strategies that are Lipschitz continuous in the posterior
belief, therefore, and we show that the candidate symmetric equilibrium strategy obtained
from the HJB equation falls in this class.

To verify that all players using this strategy constitutes an equilibrium, we exploit the
fact that a player’s value function is the unique viscosity solution of the HJB equation

2The assumption of free background information is quite natural in a number of situations in which
players face trade-offs and incentives akin to those captured in the experimentation game at hand. Ex-
amples are experience goods (e.g. the choice between a familiar restaurant of known quality and a new
restaurant of unknown quality) and innovation in research teams. Consumers have access to guides or
online recommender systems, research teams to published patents or journal articles.
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subject to the relevant boundary conditions.3 By showing that the payoff function for the
suggested strategy profile also solves this boundary-value problem in the viscosity sense,
we establish that the two functions agree, so the player indeed plays a best response.4

This paper belongs to a large and still growing economics literature, surveyed by Berge-
mann and Välimäki (2008) and Hörner and Skrzypacz (2016), that analyzes Bayesian
bandit problems in contexts such as search, learning, pricing, matching, contracting
and information design. More specifically, we contribute to the literature on strategic
experimentation with bandits, sharing its most basic setup – symmetric players solving
identical bandit problems with a safe and a risky arm, and exerting a purely informational
externality on each other. This literature was initiated by Bolton and Harris (1999) who
characterize the unique symmetric Markov perfect equilibrium under discounting when
risky payoffs are generated by Brownian motions with an unknown drift that can be either
high or low. The equilibrium features free-riding on other players’ experimentation efforts,
but also an encouragement effect whereby future experimentation by others increases a
player’s current effort.

Studying the same setting under the strong long-run average criterion, and adding
background information, Bolton and Harris (2000) are able to characterize the entire set
of undiscounted Markov equilibria – symmetric and asymmetric. This is possible because
posterior beliefs in the binary Brownian model evolve as a one-dimensional diffusion,
which allows for a space of admissible Markov strategies large enough to accommodate
the discontinuities of actions with respect to beliefs which are an immutable feature of
asymmetric equilibria.

Keller, Rady and Cripps (2005) and Keller and Rady (2010, 2015) analyze symmetric
and asymmetric Markov perfect equilibria under discounting (and without background
information) when the payoffs are generated by Poisson processes with an unknown in-
tensity that can be either high or low. Here, it is the piecewise deterministic evolution of
beliefs on the unit interval that permits discontinuous strategies: the belief moves in one
and the same direction as long as no lump-sum payoff arrives, so one-sided continuity of
strategies suffices to induce well-defined belief dynamics.

Our restriction to Lipschitz continuous strategies, mandated by the more general
payoff-generating processes and priors that we consider, rules out asymmetric equilibria
but, as our main result shows, still permits the computation of a unique symmetric equi-
librium along the same lines, and of the same functional form, as in Bolton and Harris

3For an introduction to viscosity solutions in continuous-time stochastic control with applications in
economics and finance, see the textbooks by Øksendal and Sulem (2007, Chapter 9) and Pham (2009,
Chapter 4).

4For a recent application of the viscosity-solutions approach to the verification of optimality in a
single-agent learning context with Brownian signals, see Ke and Villas-Boas (2019).
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(2000). The strategic forces at work are also the same: free-riding on the information pro-
duced by other players and the background signal, but no encouragement effect because
players do not discount. We bring two entirely new elements to this analysis, though: a
proof of exponentially fast convergence of beliefs which in turn implies boundedness of
the strong long-run average criterion, and the use of the viscosity-solutions approach in
the verification of the best-response property.

Relative to the above body of work, our main contribution is to show that the use of the
strong long-run average criterion and the introduction of background information permit
the computation of a unique symmetric Markov perfect equilibrium in a simple explicit
form for a much broader class of payoff-generating processes and priors. In particular,
this allows the analysis of situations in which players learn both from a Brownian payoff
component that might capture the steady flow of information under ‘business as usual’ and
from a jump component that might capture the sudden bursts of information – good and
bad – arriving in exceptional times or ‘crises’.5 In our framework, nature could draw the
characteristics of each component from separate (finite) sets, moreover, with full flexibility
as to their joint distribution.

A second contribution is to delineate precisely which aspects of the analysis in Bolton
and Harris (2000) and the present paper generalize to other settings and which do not.
In fact, each of the four features mentioned above is crucial. First, without background
information, the strong long-run average criterion would have no power because the ex-
pected accumulated shortfall of received payoffs relative to the expected full-information
payoff would grow infinitely large in general. Second, with discounting, the HJB equation
would necessarily contain a term ‘discount rate times current value’ that is not multiplied
by the total intensity of experimentation, so best responses would depend on current
values. As pointed out in Dutta (1991), moreover, alternative undiscounted performance
criteria would not permit a recursive representation. Third, if the model were set in dis-
crete time, the expected rate of change of continuation payoffs would not be linear in the
total intensity of experimentation. In a discrete-time version of the game in Keller, Rady
and Cripps (2005), for example, the probability of a success in any given round is clearly
non-linear in the number of players pulling the risky arm. Fourth, linearity would also
fail if the type of the risky arm were independent or imperfectly correlated across players,
if the law of the payoff process differed across players, or if each player had access to more
than one risky arm.6

5Cohen and Solan (2013) analyze a single-agent version of the bandit problem with Lévy payoffs in
which the state is binary and jumps are always good news; assuming that players discount the future,
they can dispense with background information.

6Linearity would also fail in a restless bandit model in which the state of the world changed exogenously
over time. This would be the case, for example, if payoffs were generated by a Brownian motion with
an unknown drift subject to Markovian state-switching between a high and a low level as in Keller and
Rady (1999, 2003).
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Besides Bolton and Harris (2000), the undiscounted limit of a continuous-time stochas-
tic game with a one-dimensional diffusion state has also been studied in Harris (1988, 1993)
and Bergemann and Välimäki (1997, 2002). More recent applications of this methodology
to single-agent experimentation problems can be found in Bonatti (2011) and Peitz, Rady
and Trepper (2017). The above considerations may be useful for applications of the strong
long-run average criterion in continuous-time stochastic optimization problems and games
with richer state spaces and dynamics.

Through its use of the strong long-run average criterion, which permits a minimization-
of-regret interpretation, the paper is loosely related to the vast literature on no-regret
learning in non-Bayesian bandit problems or games; see Blum and Mansour (2007) or
Bubeck and Cesa-Bianchi (2012), for example. While the emphasis in this literature is on
upper bounds for cumulative regret and on the speed of convergence to an optimum or
Nash equilibrium, the strategic-experimentation literature approaches the entire learning
process from a dynamic equilibrium perspective – that is, it analyzes learning in, not of,
an equilibrium.

The rest of the paper is organized as follows. Section 2 sets up the game and states
our assumptions on priors, payoff-generating processes and strategy spaces. Section 3
presents the infinitesimal generator of the process of posterior beliefs. Section 4 constructs
the unique symmetric Markov perfect equilibrium and discusses its properties. Section 5
presents extensions of our analysis to two settings with a continuously distributed state
of the world. Section 6 offers some concluding remarks.

2 The Experimentation Game

Time t ∈ [0,∞[ is continuous. There are N ≥ 1 players, each of them endowed with
one unit of a perfectly divisible resource per unit of time. Each player faces a two-armed
bandit problem where she continually has to decide what fraction of the available resource
to allocate to each arm. One arm is safe, the other risky.

The safe arm generates a known constant payoff s > 0 per unit of time. The evolution
of the payoffs generated by the risky arm depends on a state of the world, ℓ, which
nature draws from the set {0, 1, . . . , L} with L ≥ 1 according to the positive probabilities
π0, . . . , πL. Players do not observe the state, but know its distribution. They also know
that the payoff process associated with player n’s risky arm is of the form

Xn
t = ρ t+ σZn

t + Y n
t ,

where Zn is a standard Wiener process and Y n is a compound Poisson process whose
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Lévy measure ν is finite and has a finite second moment
∫
h2 ν(dh).7 The drift rate ρ, the

diffusion coefficient σ > 0 and the Lévy measure ν are the same for all players. While σ is
the same in all states of the world, moreover, ρ and ν vary with the state.8 Conditionally
on ℓ, the processes Z1, . . . , ZN , Y 1, . . . , Y N are independent.

We write ρℓ and νℓ for the drift rate and Lévy measure in state ℓ, λℓ = νℓ(R\{0})
for the expected number of jumps per unit of time, and hℓ =

∫
R\{0} h νℓ(dh) / λℓ for the

expected jump size.

The state-contingent expected risky payoff per unit of time is µℓ = ρℓ + λℓ hℓ. We
assume that µ0 < µ1 < . . . < µL−1 < µL with µ0 < s < µL, so that neither arm
dominates the other in terms of expected payoffs. Writing π for the vector of probabilities
(π1, . . . , πL), we let m(π) denote the expected per-period payoff from the risky arm, and
f(π) a player’s expected per-period payoff under full information:9

m(π) =
L∑
0

πℓµℓ, f(π) =
L∑
0

πℓ max{s, µℓ}.

Let kn,t ∈ [0, 1] be the fraction of the available resource that player n allocates to
the risky arm at time t; this fraction is required to be measurable with respect to the
information that the player possesses at time t. The player’s cumulative payoff up to
time T is then given by the time-changed process [T − τn(T )] s +Xn

τn(T ) where τn(T ) =∫ T

0
kn,t dt measures the operational time that the risky arm has been used. As Xn

t − µt is
a martingale, the player’s expected payoff up to T is

E
[∫ T

0

{(1− kn,t)s+ kn,tµ} dt
]
;

here, the expectation is both about the process of allocations kn,t and the unknown ex-
pected per-period payoff µ. With s lying in the interior of the range of possible realizations
of µ, each player has an incentive to learn the quality of the risky arm.

7Here, ν(B) < ∞ is the expected number of jumps per unit of time whose size is in the Borel set
B ⊆ R\{0}. The finite second moment ensures that the processes Xn have finite mean and finite quadratic
variation. A reminder about Lévy processes can be found in Cohen and Solan (2013, Section 2.1).

8Our assumptions on the diffusion coefficient and the Lévy measures ensure that the players cannot
infer the true state instantaneously from the continuous and jump part of risky payoffs, respectively.
Finiteness of Lévy measures simplifies the exposition but can be dropped: it suffices that these measures
have a finite second moment and satisfy assumptions A3 and A4 of Cohen and Solan (2013) for each
pair of states. Note also that the framework is flexible enough to accommodate drift rates and Lévy
measures that are drawn separately from some finite set each. The states 0, 1, . . . , L then correspond to
the possible pairs (ρ, ν), and the probabilities π0, . . . , πL describe their joint distribution.

9Given our convention to summarize the distribution of the unknown state by the probabilities of the
realizations 1, . . . , L, the symbol π0 should be viewed as shorthand for 1−

∑L
ℓ=1 πℓ from now on.
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Players do not discount future payoffs; as in Bolton and Harris (2000), they are instead
assumed to use the strong long-run average criterion. This means that player n chooses
allocations kn,t so as to maximize

E
[∫ ∞

0

{
(1− kn,t)s+ kn,tm(π)− f(π)

}
dt

]
.

Here, the integrand is the difference between what a player expects to receive at a given
point in time and what she would expect to receive were she to be fully informed.10 Note
that this objective function depends on others’ actions only through their impact on the
player’s own choices. In fact, we will soon impose restrictions under which others’ actions
matter only through their effect on a player’s beliefs.

The players start with a common prior belief about the unknown state ℓ, given by
the probabilities with which nature draws this state. Thereafter, all observe each other’s
actions and outcomes as well as a common background signal, so they hold common pos-
terior beliefs throughout time. The background signal is generated by the time-changed
process X0

τ0(t) where X0 is an independent process of the same law as each player’s payoff
process from the risky arm, and τ 0(t) = k0t with k0 > 0 exogenously given and arbitrarily
small. This signal ensures that the players eventually learn the value of µ even if they all
play safe all the time.

Let πt denote the vector of common posterior probabilities that the players assign to
states 1, . . . , L given their observations up to time t. With respect to the information
filtration generated by these observations, the process of beliefs πt is a Markov process
(in fact, a jump diffusion) and a martingale. The linearity of the functions m and f now
implies that E[m(πt)] = m(π) and E[f(πt)] = f(π) for all t > 0, so we can rewrite the
above objective function as

E
[∫ ∞

0

{
(1− kn,t)s+ kn,tm(πt)− f(πt)

}
dt

]
,

highlighting the potential for the posterior belief to serve as a state variable.

From now on, we restrict players to strategies that are Markovian with respect to this
variable, so that the action kn,t chosen at time t is a deterministic function of πt only.11

More precisely, we take the players’ common strategy space K to be the set of all Lipschitz

10The integral is the negative of the limit as T → ∞ of Tf(π)−E
[∫ T

0

{
(1− kn,t)s+ kn,tm(π)

}
dt
]
, the

continuous-time equivalent of the expected regret (or ‘Bayes risk’) considered in Lai (1987), for example.
In the present context, the strong long-run average criterion is equivalent to minimization of cumulative
Bayesian regret, therefore.

11In the presence of discrete payoff increments, one actually must take the left limit πt− as the state
variable because the action chosen at time t cannot depend on a lump-sum payoff that arrives at t. We
write πt with the understanding that the left limit is meant whenever this distinction is relevant.

7



continuous functions from the L-dimensional simplex

∆L =

{
π ∈ RL

+ :
L∑

ℓ=1

πℓ ≤ 1

}

to [0, 1]. By standard existence and uniqueness results for solutions of stochastic differen-
tial equations, any strategy profile (κ1, . . . , κN) ∈ KN gives rise to a well-defined process
of posterior beliefs,12 and hence to well-defined payoffs

un(π|κ1, . . . , κN) = E
[∫ ∞

0

{
[1− κn(πt)]s+ κn(πt)m(πt)− f(πt)

}
dt

∣∣∣∣ π0 = π

]
∈ [−∞, 0].

A player’s payoff will indeed be −∞ for certain Markov strategies. If the player always
uses the safe arm, for example, and the true state ℓ is such that µℓ > s, then by almost
sure convergence of posterior beliefs to the truth, the above integrand will converge to
s− µℓ < 0 as t grows large, implying a diverging integral in that state. Since this occurs
with positive prior probability, the expected payoff is −∞, therefore.

The following considerations lead to a class of strategies with finite expected payoffs.
Let ∆1

L be the set of beliefs π ∈ ∆L such that πℓ = 0 whenever µℓ < s, and ∆0
L the set of

beliefs π ∈ ∆L such that πℓ = 0 whenever µℓ > s. These sets are the faces of the simplex
on which there is a trivially optimal action: the risky arm on ∆1

L, and the safe arm on
∆0

L. We call a strategy κn ∈ K reasonable if ∆1
L is contained in the interior of κ−1

n (1) and
∆0

L is contained in the interior of κ−1
n (0). Given such a strategy, each face of the simplex

on which there is a trivially optimal action has a neighbourhood in ∆L on which the
strategy selects that action and thus maximizes the expected per-period payoff, so that
[1 − κn(π)]s + κn(π)m(π) = max{s,m(π)}. On ∆1

L and ∆0
L, moreover, max{s,m(π)} =

f(π), hence [1− κn(π)]s+ κn(π)m(π)− f(π) = 0; this holds in particular at each vertex
of the simplex. Establishing that, in the presence of background information, posterior
beliefs converge exponentially fast to the truth, we show in the appendix that the expected
payoff from a reasonable strategy is always finite and, in fact, bounded on the simplex,
irrespective of the opponents’ profile of Markov strategies.13

12For L = 1 and no discontinuous payoff component, i.e. in the setting analyzed in Bolton and Harris
(2000), the presence of background information allows one to invoke a result of Engelbert and Schmidt
(1984) whereby any profile of Borel measurable Markov strategies implies a unique solution for the
belief dynamics; see also Section 5.5 of Karatzas and Shreve (1988). For L = 1, no Brownian payoff
component, and lump-sum payoffs that are always good news (meaning that ν0(B) ≤ ν1(B) for all Borel
sets B ⊆ R\{0}), one can proceed as in Keller, Rady and Cripps (2005) and Keller and Rady (2010)
and take K to be the set of functions which are left-continuous and piecewise Lipschitz continuous; as
beliefs drift down deterministically in between lump-sums, these properties allow one to construct belief
dynamics in a pathwise fashion. Neither approach generalizes to higher dimensions.

13In the minimization-of-regret interpretation of the payoff criterion, this means that all reasonable
strategies have zero time-averaged Bayesian regret: f(π)− 1

T E
[∫ T

0

{
(1− kn,t)s+ kn,tm(π)

}
dt
]
→ 0 as
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Strategy κn ∈ K is a best response against κ¬n = (κ1, . . . , κn−1, κn+1, . . . , κN) ∈ KN−1

if un(π|κn, κ¬n) ≥ un(π|κ̃n, κ¬n) for all π ∈ ∆L and all κ̃n ∈ K. A Markov perfect
equilibrium (MPE) is a profile of strategies (κ1, . . . , κN) ∈ KN that are mutually best
responses. Such an equilibrium is symmetric if κ1 = κ2 = . . . = κN . Obviously, each
player must obtain a finite payoff in any MPE.

3 The Infinitesimal Generator

The evolution of posterior beliefs is driven by up to N +1 distinct sources of information:
the observations on up to N risky arms plus the background signal. Suppose that only
player 1 uses the risky arm, and at full intensity. In other words, consider the time-
invariant action profile for which k1 = 1 whereas kn = 0 for all n > 1. Write G for
the infinitesimal generator of the corresponding belief process – as the payoff-generating
process is the same on every player’s risky arm, the identity of the player in question does
indeed not matter here.

If we now change player 1’s time-invariant intensity to k1 < 1 while keeping all other
intensities at zero, the resulting deceleration of the process of observations implies the
scaled-down generator k1G for the posterior belief; see Dynkin (1965, Theorem 10.12), for
example. The same applies to the background signal, of course, if it alone is observed,
with associated generator k0G.

As the processes X0 and X1 are independent conditionally on the realized state,
Trotter (1959, Theorem 1) implies that the infinitesimal generator of posterior beliefs is
(k0 + k1)G when both the background signal and player 1’s payoffs are observed. By
the same token, successively adding the other players with time-invariant allocations
k2, . . . , kN leads to the infinitesimal generator (k0 +K)G where K =

∑N
n=1 kn measures

how much of the N available units of the resource is allocated to risky arms overall. This
fact will play a crucial role in our analysis.

The generator G is that of a jump diffusion. In the interior
◦
∆L of the simplex, its

action on a C2 function u is given by

Gu(π) =
1

2σ2

L∑
i=1

L∑
ℓ=1

πi πℓ [ρi − ρ(π)][ρℓ − ρ(π)]
∂2u(π)

∂πi ∂πℓ

+

∫
R\{0}

[u(j(π, h))− u(π)] ν(π)(dh) −
L∑

ℓ=1

πℓ (λℓ − λ(π))
∂u(π)

∂πℓ

,

T → ∞. No-regret learning in this specific sense is thus strictly less restrictive than the strong long-run
average criterion which, as we shall see, selects a unique optimal strategy given opponents’ play.
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where

ρ(π) =
L∑

ℓ=0

πℓ ρℓ, ν(π) =
L∑

ℓ=0

πℓ νℓ, λ(π) =
L∑

ℓ=0

πℓ λℓ

are the expected drift rate of the payoff-generating process, its expected Lévy measure,
and the expected number of its jumps per unit of time, respectively, given the current
belief π, and

jℓ(π, h) =
πℓ νℓ(dh)

ν(π)(dh)

is the revised probability of state ℓ after a lump-sum payoff of size h arrives. The first
term captures the learning from the continuous part of the payoff-generating process; the
second term, the discrete belief revision upon the arrival of a lump-sum payoff; and the
third term, the gradual belief revision when no such lump-sum arrives.

For L = 1, and hence π = π1, we obtain the generator computed by Cohen and Solan
(2013), with the first term simplifying to

1

2σ2
(ρ1 − ρ0)

2π2(1− π)2 u′′(π),

the expression familiar from Bolton and Harris (1999, 2000). It reflects the fact, estab-
lished in Liptser and Shiryayev (1977, Theorem 9.1), that when there is no discontinuous
payoff component (λ0 = λ1 = 0), then the posterior belief πt of a single agent who allo-
cates his entire resource to the risky arm follows a diffusion process with zero drift and
diffusion coefficient (ρ1 − ρ0)σ

−1πt(1− πt) relative to the agent’s information filtration.14

For L > 1, a generalization of Liptser and Shiryayev (1977, Theorem 9.1) shows that, from
the agent’s perspective, the corresponding belief process πt is a driftless L-dimensional
diffusion with instantaneous variance-covariance matrix given by

Cov [dπi,t, dπℓ,t | πt] =
[
πi,t (ρi − ρ(πt))σ

−1
] [
πℓ,t (ρℓ − ρ(πt))σ

−1
]
dt,

hence the structure of the first term in Gu.15

The second and third terms generalize their counterparts in Cohen and Solan (2013) to
L > 1 in the obvious way. In the special case that L = 1 and the size of lump-sum payoffs
is uninformative (meaning that conditional on the arrival of a lump-sum, the distribution
of its size does not depend on ℓ), these terms reduce to

λ(π)

[
u

(
πλ1

(1− π)λ0 + πλ1

)
− u(π)

]
− (λ1 − λ0)π(1− π)u′(π),

14More precisely, the belief evolves according to dπt = σ−1 πt[ρ1−ρ(πt)] dZ̄t where the innovation pro-
cess Z̄t, given by dZ̄t = σ−1

(
[ρ− ρ(πt)] dt+ σ dZt

)
, is a Wiener process relative to the agent’s information

filtration.
15This generalization already appears in Veronesi (2000), for example.
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as in Keller, Rady and Cripps (2005) and Keller and Rady (2010).

Note that we have not imposed any mutual absolute continuity assumptions on the
measures ν0, . . . , νL. As a consequence, lump-sum payoffs of a certain size may rule out
certain states, so that the posterior belief jumps to a subsimplex of ∆L of dimension
lower than L. Once this happens, Bayesian updating ensures that beliefs remain in this
subsimplex.

4 Symmetric Markov Perfect Equilibrium

Suppose that all players except player n use the strategy κ† ∈ K, and write (κn, κ
†
¬n) for

the strategy profile that results when player n uses the strategy κn ∈ K.

When choosing κn, player n faces a problem of optimal stochastic control of a jump
diffusion, and κn is a best response if and only if the payoff function un(·|κn, κ

†
¬n) is the

value function for that control problem. The associated HJB equation is

0 = max
k∈[0,1]

{
(1− k)s+ km(π)− f(π) + [k0 + (N − 1)κ†(π) + k]Gu(π)

}
. (1)

Following Bolton and Harris (2000), we exploit the fact that k0 + (N − 1)κ†(π) + k is
positive (because of the background signal) and rearrange the HJB equation as

0 = max
k∈[0,1]

s− f(π) + k[m(π)− s]

k0 + (N − 1)κ†(π) + k
+ Gu(π),

which demonstrates that the set of maximizers does not depend on continuation values.
In a second step, we rewrite the HJB equation so that k appears only in the denominator:

0 = max
k∈[0,1]

[k0 + (N − 1)κ†(π)][s−m(π)]− [f(π)− s]

k0 + (N − 1)κ†(π) + k
− [s−m(π)] + Gu(π). (2)

Following Bolton and Harris (2000) again, we define the incentive to experiment by

I(π) =
f(π)− s

s−m(π)

when m(π) < s, and ∞ otherwise. When I(π) < k0 + (N − 1)κ†(π), the numerator in (2)
is positive and the maximum is achieved by k = 0; when I(π) > k0 + (N − 1)κ†(π), the
numerator is negative and the maximum is achieved by k = 1; when I(π) = k0 + (N −
1)κ†(π), the numerator is zero and the choice of k is inconsequential.

There are three different ways, therefore, in which k = κ†(π) can achieve the maximum
in the HJB equation: either κ†(π) = 0 and I(π) ≤ k0, or κ†(π) = 1 and I(π) ≥ k0+N−1,
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or 0 < κ†(π) < 1 and I(π) = k0 + (N − 1)κ†(π). This pins down κ†(π) in terms of the
incentive to experiment, I(π), the strength of the background signal, k0, and the number
of players, N :

κ†(π) =


0 if I(π) ≤ k0,
I(π)−k0
N−1

if k0 < I(π) < k0 +N − 1,

1 if I(π) ≥ k0 +N − 1.

(3)

As the partial derivatives of the incentive to experiment I are clearly bounded on the
compact set {π ∈ ∆L : k0 ≤ I(π) ≤ k0 +N − 1}, the function κ† is Lipschitz continuous
and hence an element of K. Finally, it is straightforward to verify that κ† is a reasonable
strategy as defined in Section 2.

Proposition. All players using the strategy κ† constitutes the unique symmetric Markov
perfect equilibrium of the experimentation game.

Proof: Suppose that all players except player n use the strategy κ† defined in (3).
Let u∗(·|κ†

¬n) denote the value function of the control problem that player n faces when
choosing a best response, and u(·|κ†, κ†

¬n) the player’s payoff function when she also uses
strategy κ†. By definition, u∗(·|κ†

¬n) ≥ u(·|κ†, κ†
¬n).

We show in the appendix that u∗(·|κ†
¬n) is a viscosity subsolution of the HJB equation

(1) in the interior
◦
∆L of the L-dimensional simplex, and u(·|κ†, κ†

¬n) a viscosity superso-
lution; cf. Lemmas A.2–A.3.16 As both functions vanish in all vertices of ∆L, the com-
parison principle for viscosity sub- and supersolutions established in Ishii and Yamada
(1993, Theorem 3.1) allows us to conclude that u∗(·|κ†

¬n) ≤ u(·|κ†, κ†
¬n); cf. Corollary

A.1.17 As u∗(·|κ†
¬n) = u(·|κ†, κ†

¬n), therefore, all players using the strategy κ† constitutes
an equilibrium.18 Uniqueness of this symmetric equilibrium follows from the arguments
that led us from the HJB equation (1) to the representation (3) for candidate equilibrium
actions.

Figures 1 and 2 illustrate the case L = 2. (In both figures, µ0 = 2, µ1 = 5, µ2 = 8,
N = 4 and k0 = 0.2; s = 6 in Figure 1, and s = 4 in Figure 2.) The solid lines are the
boundaries of the sets of beliefs at which the equilibrium requires full experimentation
(κ† = 1) and no experimentation (κ† = 0), respectively. The dotted lines are level curves
of κ† for the experimentation intensities 0.2, 0.4, 0.6 and 0.8. A comparison of the two
figures exhibits the familiar property that a decrease in the reward from the safe arm
gives the players an increased incentive to experiment.

16A definition of these concepts is also given in the appendix.
17It is this comparison principle that implies the uniqueness result for viscosity solutions to the HJB

equation alluded to in the introduction.
18The identity between these two functions further implies that the value function is both a sub- and

a supersolution, confirming the claim made in the introduction that u∗(·|κ†¬n) is a viscosity solution of
the HJB equation.
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Figure 1: Equilibrium actions for L = 2

and µ0 < µ1 < s < µ2
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Figure 2: Equilibrium actions for L = 2

and µ0 < s < µ1 < µ2

Figures 1 and 2 further illustrate the fact that like the functions m, f , and I, the
equilibrium strategy κ† is non-decreasing in each component of π = (π1, . . . , πL); thus,
any shift in subjective probability mass from state 0 to another state weakly increases the
intensity of experimentation.

Note that by equation (3), the set of beliefs for which κ†(π) = 0 is independent of the
number of players. This is a stark manifestation of the incentive to free-ride on information
generated by others. In the terminology coined by Bolton and Harris (1999), it means that
there is no ‘encouragement effect’: the prospect of subsequent experimentation by other
players provides a player no incentive to increase the current intensity of experimentation
and thereby shorten the time at which the information generated by the other players
arrives. Intuitively, this simply reflects our assumption that players do not discount
future payoffs and hence are indifferent as to their timing. Formally, the absence of
the encouragement effect is a consequence of the linearity of the infinitesimal generator
of posterior beliefs in k0 +K: as the value of future experimentation by other players is
captured by a player’s equilibrium continuation values, yet best responses are independent
of those continuation values, there is no channel for future experimentation by others to
impact current actions.

Free-riding can also be seen in the fact that κ† is non-increasing in N , and decreasing
where it assumes interior values. Figure 3 illustrates this effect. On the horizontal axis
we set π1 = π2 and let that common belief range from 0 to 0.5: so it is a slice through
the simplex from the origin to the midpoint of the opposite edge. (In this figure, the
parameters are as in Figure 1 except that N varies from 2 for the leftmost curve to 10 for
the rightmost curve.)
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Belief

κ†

Figure 3: Equilibrium actions for L = 2, π1 = π2 and N ∈ {2, 4, 6, 8, 10}

The dependence of the overall intensity of experimentation on the number of players is
less clear cut: roughly speaking, Nκ† increases in N at beliefs where κ† requires exclusive
use of the risky arm, but decreases at beliefs where both arms are used simultaneously.

Players also free-ride on the background information. The less of it is available (i.e. the
lower k0), the more experimentation of their own the players perform; in particular, the set
of beliefs at which they use the risky arm exclusively widens, and the set of beliefs at which
they use the safe arm exclusively shrinks. For k0 ↓ 0, in fact, the equilibrium strategy
κ† converges monotonically to the Markov strategy κ†

0 defined as follows: κ†
0(π) = 0

when f(π) = s; κ†
0(π) = I(π)/(N − 1) when 0 < I(π) < N − 1; and κ†

0(π) = 1 when
I(π) ≥ N − 1. This strategy obviously specifies the optimal action when f(π) = s and,
with k0 = 0, the action k = κ†

0(π) solves the maximization problem in equation (2) at all
other beliefs. Nevertheless, κ†

0 is not part of a symmetric MPE of the undiscounted game
without background information. The reason is that the strong long-run average criterion
implies a payoff equal to −∞ for the corresponding strategy profile in the interior of the
simplex, so the HJB equation loses its meaning.19

It was already said in Section 2 that the presence of background information ensures
exponentially fast convergence of beliefs to the degenerate distribution concentrated on
the true state; this immediately implies that equilibrium actions converge exponentially

19This is most easily seen in the setting of Keller, Rady and Cripps (2005) with L = 1, no Brownian
payoff component, no lump-sum payoffs in state 0, and a Poisson payoff process in state 1. If state 0 is
the true state, the belief π1 converges deterministically to 0 from any prior in the open unit interval and,
even though κ†0 specifies a positive intensity of experimentation all along the way, this intensity decreases
quite fast. As a consequence, the convergence of the posterior to the truth is so slow in this state that the
expected accumulated shortfall of received payoffs relative to the expected full-information payoff grows
infinitely large. Details are available from the authors upon request.
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fast to the full-information optimum as well.

As to the short-run dynamics of beliefs in equilibrium, the present framework per-
mits the analysis of experimentation games in which large payoff increments are bad
news, whereas smaller increments are good news.20 For example, let L = 1 for sim-
plicity, with ρ0 = ρ1 and λ0 = λ1. Assume that the payoff increments are in the set
{−10,−5, 5, 10}. For the ‘good’ arm, the associated probabilities of a lump-sum of that
size are (0.1, 0.3, 0.5, 0.1), so the expected increment is 1; for the ‘bad’ arm, the probabil-
ities are (0.5, 0.1, 0.1, 0.3), and the expected increment is −2. When a payoff increment
occurs, the belief jumps – up if the increment is moderate (−5 and 5 are relatively more
likely if the arm is ‘good’), and down if the increment is extreme (−10 and 10 are rela-
tively more likely if the arm is ‘bad’). So, in this stripped-down illustration, an arrival of
the largest possible payoff increment is bad news, and may well cause the players to stop
experimenting.

5 Continuous State Spaces and Sufficient Statistics

This section presents two specifications of priors and payoff-generating processes that fall
outside the framework of Section 2 but still permit the same analysis as in Sections 3 and 4.
In both settings, the unknown state of the world is drawn from a continuous distribution
of unbounded support, with conjugate priors ensuring that the players’ information is
captured by a two-dimensional sufficient statistic, which can serve as the state variable for
Markov strategies.21 Models in which agents have beliefs and observe stochastic processes
like those in Sections 5.1 and 5.2 can be found in Jovanovic (1979) and Moscarini and
Squintani (2010), respectively.

5.1 Brownian Payoffs, Normal Prior

Suppose that the payoff-generating processes and the background signal are of the form

Xn
t = µ t+ σZn

t ,

where the Zn are independent standard Wiener processes and nature draws the unknown
drift µ from a normal distribution with mean m0 and precision τ0 > 0. This is also
the players’ common prior. Given the Gaussian processes they observe, players then

20In Keller, Rady and Cripps (2005) and Keller and Rady (2010, 2015) lump-sum sizes are completely
uninformative, while in Cohen and Solan (2013) lump-sums are informative, but always good news.

21The unbounded state space requires adjustments to the proof (via uniqueness of viscosity solutions
to the HJB equation) that every player using the strategy κ† constitutes an MPE of the game; we omit
the details here.
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believe at time t that µ is distributed according to a normal distribution with some
mean mt and precision τt > 0; see DeGroot (1970, Chapter 9), for example. The pair
πt = (mt, τt) constitutes a sufficient statistic for the updating of beliefs, therefore. Given
a generic π = (m, τ) ∈ R× ]0,∞[ , the corresponding probability density function for µ is
g(µ; π) = τ 1/2ϕ

(
(µ−m)τ 1/2

)
, where ϕ denotes the standard normal density. Let G(·; π)

denote the associated cumulative distribution function.

As in Section 3, consider a single player allocating his entire resource to the risky arm.
Following Chernoff (1968, Lemma 4.1) or Liptser and Shiryayev (1977, Theorem 10.1),
τt increases deterministically at the rate σ−2 and mt is a driftless diffusion process with
diffusion coefficient σ−1 τ−1

t relative to the player’s information filtration.22 As a result,
we see that

Gu(π) = 1

σ2

[
1

2τ 2
∂2u(π)

∂m2
+

∂u(π)

∂τ

]
for any function of class C2,1. By the same arguments as in Section 3, moreover, the
generator associated with time-invariant intensities (k0, k1, . . . , kN) ∈ [0, 1]N+1 is again
(k0 +K)G.

Since the precision τt increases over time, the relevant state space is the half-plane
Π = R × [τ0,∞[ . As to admissible strategies, we take K to be the set of all functions
κ : Π → [0, 1] such that κτ−1 is Lipschitz continuous on Π. Given a strategy profile
(κ1, . . . , κN) ∈ KN , the sum K =

∑N
n=1 κn also lies in K, and the system we need to solve

is
dm = K(m, τ) τ−1σ−1dZ̄, dτ = K(m, τ)σ−2dt.

The change of variable η = ln τ transforms this into dm = K(m, eη) e−ησ−1dZ̄ and dη =

K(m, eη) e−ησ−2dt; as K(m, eη) e−η is Lipschitz continuous in (m, η) on R × [ln τ0,∞[ ,
this system has a unique solution, as was to be shown.

We can now replicate the arguments of Section 4 in the present setting. As a first
step, we compute the expected current payoff m(π), the expected full-information payoff
f(π), and the incentive to experiment I(π). The expected current payoff m(π) is simply
the projection of π on its first component. For the expected full-information payoff, we
have

f(π) = sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z),

where z = (s−m)τ 1/2 and Φ denotes the standard normal cumulative distribution func-
tion. To see this, note first that f(π) = sG(s; π) +

∫∞
s

µ g(µ; π) dµ. We trivially obtain
G(s; π) =

∫ s

−∞ g(µ; π) dµ =
∫ z

−∞ ϕ(x) dx = Φ(z). Since g(µ; π) ∝ exp
(
−1

2
(µ−m)2τ

)
,

moreover, we have dg(µ; π) = −(µ−m)τ g(µ; π) dµ and so µ g(µ; π) dµ = mg(µ; π) dµ−
22More precisely, it can be shown that dmt = σ−1 τ−1

t dZ̄t and dτt = σ−2 dt where, now, the innovation
process is dZ̄t = σ−1

(
[µ−mt] dt+ σ dZt

)
. Note that the expression equivalent to that for dmt to be

found in equation (9) of Jovanovic (1979) omits the term [µ−mt] dt.
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τ−1 dg(µ; π), implying∫ ∞

s

µ g(µ; π) dµ =

∫ ∞

s

mg(µ; π) dµ−
∫ ∞

s

τ−1 dG(µ; π)

= m [1−G(s; π)] + τ−1 g(s; π) = m [1− Φ(z)] + τ−1/2 ϕ(z).

The above representation makes it straightforward to verify that f is strictly increasing
in m and strictly decreasing in τ .23 This implies that I and κ† as defined in (3) are non-
decreasing in m and non-increasing in τ .

When m < s, we have

I(π) =
sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z)− s

s−m
= Φ(z)− 1 + z−1ϕ(z).

In the appendix, we verify that κ† ∈ K by showing that Iτ−1 is Lipschitz continuous on
the set {π ∈ Π : k0 ≤ I(π) ≤ k0 +N − 1}. This is more involved than in scenarios with a
discrete prior because the set in question is unbounded.

Figure 4 illustrates equilibrium actions as a function of the posterior mean m and
variance τ−1. (In this figure, s = 6 and N = 4.) As in Figures 1–2, the solid curves are
the boundaries of the sets of beliefs at which the equilibrium requires full experiment-
ation or no experimentation, and the dashed lines are level curves for κ† equal to 0.2,
0.4, 0.6 and 0.8. All these curves are downward sloping; as one would expect, there is
a trade-off between mean and variance with the latter capturing the ‘option value’ of
experimentation. In particular, a very high variance is needed to induce a high intensity
of experimentation at low means. As the mean approaches the safe flow payoff, the level
curves become steeper and steeper so that the posterior variance has a diminishing impact
on the intensity with which the players explore the risky arm.

5.2 Poisson Payoffs, Gamma Prior

Let s > 0 for the safe arm. Suppose that the payoff-generating processes and the back-
ground signal are independent Poisson processes whose unknown common intensity µ is
drawn from a gamma distribution with parameters α0 > 0 and β0 > 0. This is also the
players’ common prior. Given the processes they observe, players then believe at time
t that µ is distributed according to a gamma distribution with some parameters αt > 0

and βt > 0, which together constitute a sufficient statistic again; see DeGroot (1970,
Chapter 9), for example. Given a generic π = (α, β) ∈ ]0,∞[2, the probability density

23Alternatively, since max{s, µ} is increasing in µ, a first-order stochastic dominance argument can
be used to establish that ∂f(π)/∂m > 0, and since max{s, µ} is convex in µ, a second-order stochastic
dominance argument can be used to establish that ∂f(π)/∂τ < 0.
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Figure 4: Equilibrium actions for Brownian payoffs and normal prior

function for µ is g(µ; π) = [βα/Γ(α)]µα−1e−βµ; the mean and variance of µ are α/β and
α/β2, respectively. We again write G(·; π) for the corresponding cumulative distribution
function.

Once more, consider a single player allocating his entire resource to the risky arm. He
expects to obtain a positive increment between t and t + dt with probability (αt/βt) dt,
in which case Bayes’ rule implies that πt jumps to (αt + 1, βt); with probability 1 −
(αt/βt) dt, there is no such increment and dπt = (dαt, dβt) = (0, dt). Thus, α counts
arrivals of increments and β measures the time that has elapsed – again, see DeGroot
(1970, Chapter 9). As a consequence, we have24

Gu(π) = α

β
[u(α + 1, β)− u(π)] +

∂u(π)

∂β
.

Once more, the generator associated with time-invariant intensities (k0, k1, . . . , kN) ∈
[0, 1]N+1 is (k0 +K)G.

Given that αt and βt increase over time, and αt can only do so in unit increments, the
relevant state space is Π = {α0+ j : j = 0, 1, 2, . . .}× [β0,∞[ . For K, we choose the set of
all functions κ : Π → [0, 1] such that κ(α0+j, ·) is right-continuous and piecewise Lipschitz
continuous for all j. Starting from any π ∈ Π, any strategy profile (κ1, . . . , κN) ∈ KN

induces a well-defined law of motion for πt.

As the unknown intensity µ is also the risky arm’s average payoff per unit of time, we
see that the expected current payoff is m(π) = α/β. The expected full-information payoff

24Up to a change of variables from (α, β) to (β,m) with m = α/β, this generator also appears in Ding
and Ryzhov (2016).
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is
f(π) = sG(s; π) +

α

β
[1−G(s;α + 1, β)],

with the second term obtained as follows:∫ ∞

s

µ g(µ; π) dµ =

∫ ∞

s

µ
βα

Γ(α)
µα−1e−βµ dµ =

α

β

∫ ∞

s

βα+1

αΓ(α)
µαe−βµ dµ

=
α

β

∫ ∞

s

βα+1

Γ(α + 1)
µαe−βµ dµ =

α

β

∫ ∞

s

g(µ;α + 1, β) dµ

=
α

β
[1−G(s;α + 1, β)].

The formula for f makes it straightforward to verify that, exactly like m, this function
is strictly increasing in α and strictly decreasing in β.25 Consequently, the incentive to
experiment I and the strategy κ† as defined in (3) are non-decreasing in α and non-
increasing in β.

For m(π) < s, we have

I(π) =
sG(s;α, β) + α

β
[1−G(s;α + 1, β)]− s

s− α
β

=
sG(s;α, β)− α

β
G(s;α + 1, β)

s− α
β

− 1.

In the appendix, we verify that κ† ∈ K by showing for any fixed α that I(α, ·) has a
bounded first derivative when m(π) < s.

Figure 5 illustrates the mean-variance trade-off in equilibrium actions for Poisson
payoffs and gamma prior. (Here, as in the example with Brownian payoffs and normal
prior, s = 6 and N = 4; the curves shown are thus the exact counterparts of those in
Figure 4.) To compute the level curves, one uses the fact that the shape parameter α

equals the squared mean of the gamma distribution divided by its variance, and β is α

divided by the mean. The similarity to Figure 4 is striking; a closer comparison reveals
that the level curves in the Brownian-normal case are somewhat steeper than those in the
Poisson-gamma case. This is because in the former, an increase in the variance induces
a mean-preserving spread for the random variable α on the whole real axis, whereas in
the latter, the mean-preserving spread is concentrated on the positive half-axis and thus
raises the option value of experimentation by more.

25Alternatively, for α′ > α′′ the likelihood ratio g(α;α′, β)/g(α;α′′, β) is increasing, and for β′ > β′′ the
likelihood ratio g(α;α, β′)/g(α;α, β′′) is decreasing. Since the likelihood-ratio ordering implies first-order
stochastic dominance, f has the stated monotonicity properties.
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Figure 5: Equilibrium actions for Poisson payoffs and gamma prior

6 Concluding Remarks

We have seen that when rewards from the risky arm are generated by IID Lévy processes
with an unknown average payoff per unit of time, the players’ strategy in the symmetric
MPE of the undiscounted experimentation game depends only – and in a very simple
functional form – on the safe payoff, the expected current payoff of the risky arm, and the
expected full-information payoff. Given a finite set from which nature draws the unknown
average payoff, the equilibrium strategy is then independent of the actual specification of
the payoff-generating processes.

As to the settings with a continuous prior, recall that in the Brownian-normal case
the precision of the posterior distribution increases unboundedly with time, as does the
inverse of the variance in the Poisson-gamma case. Consequently, the posterior proba-
bility density function becomes concentrated on a narrow domain of the support. If we
approximated the normal or gamma distribution with a discrete distribution then, over
time, the beliefs would become more and more concentrated on the discrete values closest
to the true parameter – this suggests that we could take the ‘engineering’ approach and
focus on discrete distributions, with the specification of the payoff-generating processes
being irrelevant.26

Letting the discount rate go to zero is going to make the analysis easier in many
dynamic settings, but it remains unclear, in general, whether the simplification will be as
great as in the present case. Candidates for optimal strategies or best responses may be

26But note that if the two closest neighbours of the true average payoff µ per unit of time are µℓ and µℓ+1

with µℓ < µ < µℓ+1, then, although m(πT ) ≃ µ for large T , we would have Var[µ|πT ] ≃ (µℓ+1−µ)(µ−µℓ),
which is bounded away from zero.
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easier to identify in the undiscounted limit, but there remains the need to obtain a well-
defined law of motion, which may again require restrictions such as Lipschitz continuity
and could even lead to existence problems. Nevertheless, we believe that the strong long-
run average criterion has the potential to prove useful in other contexts, especially since
strategies which are optimal under this criterion will shed light on (at least approximately)
optimal behaviour for small positive discount rates.
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Appendix
Boundedness of Payoffs from Reasonable Strategies

We present the case L = 1 only, so that ℓ ∈ {0, 1}, π = π1 ∈ [0, 1], µ0 < s < µ1, m(π) =

(1− π)µ0 + πµ1 and f(π) = (1− π)s+ πµ1. Suppose first that the Lévy measures ν0 and ν1 are
non-trivial and equivalent.

For the description of the evolution of beliefs, it is convenient to work with the log odds
ratio

ωt = ln
πt

1− πt
,

so that
πt =

eωt

1 + eωt
and 1− πt =

e−ωt

1 + e−ωt
.

Lemma A.1 There exists a constant C > 0 such that for all x, y ∈ R,

ex+y

1 + ex+y
≤ ex

1 + ex
+

ex

(1 + ex)2
y + C

ex

(1 + ex)3
y2.

Proof: For
f(x, y) =

ex+y

1 + ex+y
,

we compute the partial derivatives

fy(x, y) =
ex+y

(1 + ex+y)2
, fyy(x, y) =

ex+y(1− ex+y)

(1 + ex+y)3
.

For fixed x, the function f(x, ·) thus has the following second-order Taylor approximation around
y0 = 0:

f(x, y) ≈ ex

1 + ex
+

ex

(1 + ex)2
y +

1

2

ex(1− ex)

(1 + ex)3
y2.

As 1− ex ≤ 1, we have the local (with respect to the second variable) upper bound

f(x, y) ≤ ex

1 + ex
+

ex

(1 + ex)2
y +

1

2

ex

(1 + ex)3
y2.

Replacing the factor 1
2 in the last term by a sufficiently large constant C ensures a global upper

bound.27

Suppose now that starting from π0 = π (and corresponding ω0 = ω), the players use the
strategy profile (κ1, . . . , κN ) ∈ KN . By an extension of the results in Cohen and Solan (2013,
Section 3.2) to more than one agent, the log odds ratio at time t > 0 can be written as

ωt = ω + ηℓ

[
k0t+

N∑
n=1

∫ t

0
κn(πs−) ds

]
+M ℓ

t ,

27Numerical computations suggest that C = 2 is large enough.
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where
ηℓ = (−1)ℓ+1 (ρ1 − ρ0)

2

2σ2
− (λ1 − λ0) +

∫
R\{0}

ln
ν1
ν0

(h) νℓ(dh),

ν1
ν0

is the Radon-Nikodym derivative of ν1 with respect to ν0, and M ℓ is a martingale under the
probability measure Pℓ associated with state ℓ. The expectation and variance of M ℓ under this
measure, moreover, satisfy Eℓ[M

ℓ
t ] = 0 and Varℓ[M ℓ

t ] ≤ Cℓ t for all t and a positive constant
Cℓ.28

As lnx < x− 1 for all positive x ̸= 1, and ν1
ν0

= (ν0ν1 )
−1, one sees that∫

R\{0}
ln
ν1
ν0

(h) ν0(dh) < λ1 − λ0 <

∫
R\{0}

ln
ν1
ν0

(h) ν1(dh)

unless ν1 = ν0, in which case the inequality µ1 > µ0 implies ρ1 > ρ0. So η0 < 0 < η1. As κn ≥ 0

for all n, this in turn implies

ω + η0k0t+M0
t ≥ ωt ≥ ω + η1k0t+M1

t .

By Lemma A.1,

πt ≤
eω+η0k0t+M0

t

1 + eω+η0k0t+M0
t

≤ eω+η0k0t

1 + eω+η0k0t
+

eω+η0k0t

(1 + eω+η0k0t)2
M0

t + C
eω+η0k0t

(1 + eω+η0k0t)3
(M0

t )
2

and

1− πt ≤
e−ω−η1k0t−M1

t

1 + e−ω−η1k0t−M1
t

≤ e−ω−η1k0t

1 + e−ω−η1k0t
− e−ω−η1k0t

(1 + e−ω−η1k0t)2
M1

t +C
e−ω−η1k0t

(1 + e−ω−η1k0t)3
(M1

t )
2.

Writing C ′
ℓ = CCℓ, we thus have

E0[πt] ≤ eω+η0k0t
(
1 + CVar0[M0

t ]
)
= eω+η0k0t(1 + C ′

0t) =
π

1− π
eη0k0t(1 + C ′

0t)

and

E1[1− πt] ≤ e−ω−η1k0t
(
1 + CVar1[M1

t ]
)
= e−ω−η1k0t(1 + C ′

1t) =
1− π

π
e−η1k0t(1 + C ′

1t).

Now let player n use a reasonable strategy. Then there is a constant C2 > 0 such that

[1− κn(π)]s+ κn(π)m(π)− f(π) ≥ C2 [max{s,m(π)} − f(π)]

for all π.29 Note that max{s,m(π)} − f(π) is bounded below by s − f(π) = π (s − µ1) and by
m(π)− f(π) = (1− π) (µ0 − s).

Given the prior belief π0 = π, the player uses the expectation operator Eπ = (1−π)E0+πE1

to compute her objective function. Thus,
28For any fixed action profile, M ℓ has stationary increments, so its variance grows linearly with time.

Cℓ can be chosen as the rate at which the variance grows when all players use the risky arm exclusively.
29This is because [1 − κn(π)]s + κn(π)m(π) = max{s,m(π)} in neighbourhoods of π = 0 and 1, and

max{s,m(π)} − f(π) is bounded away from zero outside these neighbourhoods.
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un(π|κ1, . . . , κN )

≥ (1− π)C2(s− µ1)E0

[∫ ∞

0
πt dt

]
+ πC2(µ0 − s)E1

[∫ ∞

0
(1− πt) dt

]
= (1− π)C2(s− µ1)

∫ ∞

0
E0[πt] dt+ πC2(µ0 − s)

∫ ∞

0
E1[1− πt] dt

≥ πC2(s− µ1)

∫ ∞

0
eη0k0t(1 + C ′

0t) dt+ (1− π)C2(µ0 − s)

∫ ∞

0
e−η1k0t(1 + C ′

1t) dt

= πC2(s− µ1)
C ′
0 − η0k0
η20k

2
0

+ (1− π)C2(µ0 − s)
C ′
1 + η1k0
η21k

2
0

.

This is the desired result.
Next, suppose that the Lévy measure ν1, say, is not absolutely continuous with respect to

ν0. Take a ν0-null set B ⊆ R\{0} with ν1(B) > 0. In state ℓ = 1, we then have P1[πt = 1] ≥
1− e−ν1(B)t, so that

E1[1− πt] = P1[πt = 1] · 0 + P1[πt < 1] · E1[1− πt|πt < 1] ≤ P1[πt < 1] ≤ e−ν1(B)t.

This exponential convergence again allows us to compute an upper bound for
∫∞
0 E1[1− πt] dt.

Finally, if both Lévy measures are trivial, the inequality η0 < 0 < η1 holds trivially, and the
result follows as above.

Viscosity Solutions of the HJB Equation

Consider a nonempty, open, connected and bounded set Ω ⊂ RL. Denote the set of all symmetric
L× L matrices by SL. Let H ∈ C(Ω× RL × SL × R) satisfy

H(x, p,X + Y, d) ≥ H(x, p,X, d+ q)

for all (x, p,X, d) ∈ Ω× RL × SL × R, all positive semidefinite Y ∈ SN and all q ≥ 0.30

We are interested in solutions u : Ω → R of boundary value problems of the form

H(x,Du,D2u, u−Mu) = 0 in Ω, (A.1)
u = v on ∂Ω, (A.2)

where Du and D2u are the gradient and the Hessian matrix of u, respectively, M is an operator
mapping C(Ω) into itself, and v ∈ C(Ω).

A function u ∈ C(Ω) is called a viscosity subsolution of (A.1) if for every ϕ ∈ C2(Ω) and
every x0 ∈ Ω such that ϕ ≥ u on Ω and ϕ(x0) = u(x0),

H(x0, Dϕ(x0), D
2ϕ(x0), ϕ(x0)−Mϕ(x0)) ≥ 0.

Analogously, a function u ∈ C(Ω) is called a viscosity supersolution of (A.1) if for every ϕ ∈

30Note that the variables X and Y just introduced are unrelated to the objects for which we use these
symbols in the main text.
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C2(Ω) and every x0 ∈ Ω such that ϕ ≤ u on Ω and ϕ(x0) = u(x0),

H(x0, Dϕ(x0), D
2ϕ(x0), ϕ(x0)−Mϕ(x0)) ≤ 0.

Finally, u ∈ C(Ω) is called a viscosity solution of (A.1) if it is a viscosity sub- and supersolution
of (A.1).

The HJB equation (1) and its reformulation (2) are both of the form (A.1) with Ω =
◦
∆L,

the operator in question being

Mu(π) =
1

λ(π)

∫
R\{0}

u(j(π, h)) ν(π)(dh).

By the arguments that led us from (1) to (2) in Section 4, these equations have the same viscosity
solutions. We will refer to either equation as the HJB equation in what follows.

Suppose that all players except player n use the strategy κ† defined in (3). Let u∗(·|κ†¬n)
denote the value function of the control problem that player n faces when choosing a best
response, and u(·|κ†, κ†¬n) the player’s payoff function when she also uses strategy κ†, that is,

u(π|κ†, κ†¬n) = E(κ†,κ†
¬n)

[∫ ∞

0

{
[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)

}
dt

∣∣∣∣π0 = π

]
.

By definition, u∗(·|κ†¬n) ≥ u(·|κ†, κ†¬n). We shall establish the converse inequality via a compar-
ison result for viscosity sub- and supersolutions.

We know that both functions are bounded. Assume for now that they are actually continuous
on ∆L; we will justify this assumption later. While the following result and its proof are standard,
we include them for the sake of a self-contained treatment.

Lemma A.2 The value function u∗(·|κ†¬n) is a viscosity subsolution of the HJB equation.

Proof: We simplify the notation by writing u instead of u∗(·|κ†¬n).
Consider ϕ ∈ C2(∆L) and π0 ∈

◦
∆L such that u− ϕ ≤ 0 = u(π0)− ϕ(π0). To establish that

u is a viscosity subsolution of (1), we must show that

max
k∈[0,1]

{
(1− k)s+ km(π0)− f(π0) + [k0 + (N − 1)κ†(π0) + k]Gϕ(π0)

}
≥ 0.

Suppose that this is not the case, so that

(1− k)s+ km(π0)− f(π0) + [k0 + (N − 1)κ†(π0) + k]Gϕ(π0) < 0

for all k ∈ [0, 1]. For ε > 0, define ψ ∈ C2(∆L) by

ψ(π) = ϕ(π) + ε∥π − π0∥4

and note that ψ → ϕ uniformly as ε→ 0. For δ > 0, let Bδ(π0) ⊂ RL be the open ball of radius
δ centered at π0. By continuity, we can find ε, δ > 0 such that Bδ(π0) ⊂

◦
∆L and

(1− k)s+ km(π)− f(π) + [k0 + (N − 1)κ†(π) + k]Gψ(π) < 0
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for all k ∈ [0, 1] and all π ∈ Bδ(π0). As π0 is a strict maximizer of u− ψ, moreover, there exists
γ > 0 such that u(π) − ψ(π) ≤ −γ for π ∈ ∆L \ Bδ(π0). Suppose now that player n uses the
strategy κ ∈ K against the other players’ common strategy κ†. Define τ = inf{t > 0: ∥πt−π0∥ >
δ}. As k0 > 0, we have E(κ,κ†

¬n)[τ ] <∞ and

E(κ,κ†
¬n)

[∫ τ

0

{
[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)

}
dt+ u(πτ )

]
− u(π0)

≤ E(κ,κ†
¬n)

[∫ τ

0

{
[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)

}
dt+ ψ(πτ )

]
− ψ(π0)− γ

= E(κ,κ†
¬n)

[∫ τ

0

{
[1− κ(πt)]s+ κ(πt)m(πt)− f(πt) + [k0 + (N − 1)κ†(π) + κ(πt)]Gψ(πt)

}
dt

]
− γ

< −γ,

where the equality in the third line follows from Dynkin’s formula. But this contradicts the
dynamic programming principle, which states that

u(π0) = sup
κ∈K

E(κ,κ†
¬n)

[∫ τ

0

{
[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)

}
dt+ u(πτ )

]
.

Lemma A.3 The payoff function u(·|κ†, κ†¬n) is a viscosity supersolution of the HJB equation.

Proof: We simplify the notation by writing u instead of u(·|κ†, κ†¬n).
Consider ϕ ∈ C2(∆L) and π0 ∈

◦
∆L such that u−ϕ ≥ 0 = u(π0)−ϕ(π0). For any deterministic

time τ > 0,

0 = E(κ†,κ†
¬n)

[∫ τ

0

{
[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)

}
dt+ u(πτ )

]
− u(π0)

≥ E(κ†,κ†
¬n)

[∫ τ

0

{
[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)

}
dt+ ϕ(πτ )

]
− ϕ(π0)

= E(κ†,κ†
¬n)

[∫ τ

0

{
[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt) + [k0 +Nκ†(πt)]Gϕ(πt)

}
dt

]
by Dynkin’s formula. Dividing through by τ and letting τ → 0, we get

[1− κ†(π0)]s+ κ†(π0)m(π0)− f(π0) + [k0 +Nκ†(π0)]Gϕ(π0) ≤ 0,

which is equivalent to

[k0 + (N − 1)κ†(π0)][s−m(π0)]− [f(π0)− s]

k0 +Nκ†(π0)
− [s−m(π0)] + Gϕ(π0) ≤ 0.

As
κ†(π0) ∈ arg max

k∈[0,1]

[k0 + (N − 1)κ†(π0)][s−m(π0)]− [f(π0)− s]

k0 + (N − 1)κ†(π0) + k
,

u is thus a viscosity supersolution of (2).

The comparison result that yields the inequality u∗(·|κ†¬n) ≤ u(·|κ†, κ†¬n) is due to Ishii and
Yamada (1993). These authors consider functional equations F (x, u,Du,D2u, u−Mu) = 0 such
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that
F (x, r, p,X + Y, d) ≤ F (x, r, p,X, d+ q)

for all (x, r, p,X, d) ∈ Ω×R×RL× SL×R, all positive semidefinite Y ∈ SN and all q ≥ 0. This
means that F corresponds to −H here.31 As a consequence, the inequalities defining sub- and
supersolutions in terms of F are the opposite of those in terms of H.

There is a second, more substantive difference between the definitions of Ishii and Yamada
(1993) and ours. Translated back into our setting, a function u ∈ C(Ω) is a viscosity subsolution
of (A.1) in their sense if for every ϕ ∈ C2(Ω) and every x0 ∈ Ω such that ϕ − u has a local
minimum in x0,

H(x0, Dϕ(x0), D
2ϕ(x0), u(x0)−Mu(x0)) ≥ 0.

Analogously, a function u ∈ C(Ω) is a viscosity supersolution of (A.1) in their sense if for every
ϕ ∈ C2(Ω) and every x0 ∈ Ω such that ϕ− u has a local maximum at x0,

H(x0, Dϕ(x0), D
2ϕ(x0), u(x0)−Mu(x0)) ≤ 0.

In these alternative definitions, therefore, u is replaced by ϕ only as far as the gradient and
Hessian are concerned, but not in the nonlocal term. When M is an integral operator of the
type considered here, however, an argument in Alvarez and Tourin (1996, p. 300) implies that
these definitions are in fact equivalent to ours.32

Lemma A.4 Let a function v ∈ C(∂∆L) be given. Suppose that u is a viscosity subsolution of
the HJB equation, u a viscosity supersolution, and u ≤ v ≤ u on ∂∆L. Then u ≤ u on ∆L.

Proof: Equation (2) takes the form assumed in Ishii and Yamada (1993) with the domain
Ω =

◦
∆L, the function

F (x, p,X, d) = − 1

2σ2
R(x)′XR(x) + L(x)′p+ λ(x)d− c(x)

where

R(x) =


x1[ρ1 − ρ(x)]

...
xL[ρL − ρ(x)]

 , L(x) =


x1[λ1 − λ(x)]

...
xL[λL − λ(x)]


and

c(x) = max
k∈[0,1]

[k0 + (N − 1)κ†(x)][s−m(x)]− [f(x)− s]

k0 + (N − 1)κ†(x) + k
− [s−m(x)]

=
[k0 + (N − 1)κ†(x)][s−m(x)]− [f(x)− s]

k0 +Nκ†(x)
− [s−m(x)],

31Note that Ishii and Yamada (1993) allow the value of the solution to enter as a separate variable
besides its difference with the nonlocal operator. Because of the absence of discounting, this generality
is not needed here, so H has one argument fewer.

32See Azimzadeh, Bayraktar and Labahn (2018, Section 2) for a related discussion.
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and the operator
Mu(x) =

1

λ(x)

∫
R\{0}

u(j(x, h)) ν(x)(dh).

It is straightforward to check that F , M and the function B(x, u) = u−v(x) defined on ∂∆L×R
satisfy all the conditions imposed by Ishii and Yamada (1993). The result thus follows from their
Theorem 3.1.

Corollary A.1 u∗(·|κ†¬n) = u(·|κ†, κ†¬n).

Proof: The proof is by induction over the dimension of the faces of the simplex. The 0-faces
(vertices) correspond to degenerate beliefs that assign probability 1 to one of the states; at all
these vertices, both functions assume the value 0. An application of Lemma A.4 for L = 1 now
yields u∗(·|κ†¬n) = u(·|κ†, κ†¬n) along any 1-face (edge) of the simplex. Applying the lemma for
L = 2 then proves this identity for all 2-faces (facets), and so on until the entire simplex is
covered.

It remains to justify our assumption that the functions u∗(·|κ†¬n) and u(·|κ†, κ†¬n) are continu-
ous. In fact, using upper semicontinuous and lower semicontinuous envelopes, Ishii and Yamada
(1993) define the notion of viscosity sub- and supersolution for functions that are merely locally
bounded. Lemmas A.2 and A.3 still hold then, and Lemma A.4 generalizes in a way that ensures
that any viscosity solution satisfying a continuous boundary condition must be continuous over-
all; see Ishii and Yamada (1993, Corollary 3.3). Continuity of the functions in question follows
from an iterative application of this result as in the proof of Corollary A.1.

Verification that κ† ∈ K for Brownian Payoffs and Normal Prior

From the main body of the text, for m < s we have

I(π) = Φ(z)− 1 + z−1ϕ(z)

where z = (s−m)τ1/2.
The function F (z) = Φ(z) − 1 + z−1ϕ(z) is a strictly decreasing bijection from ]0,∞[ to

itself with first derivative F ′(z) = −z−2ϕ(z). For any positive real number c, therefore, we
have I(π) = c if and only if (s − m)τ1/2 = F−1(c). At any such (m, τ) in the half-plane
Π = R × [τ0,∞[ , we have ∂I/∂m = −F ′(F−1(c)) τ1/2 and ∂I/∂τ = 1

2F
′(F−1(c))F−1(c) τ−1.

To verify that κ† ∈ K, it suffices to show that Iτ−1 is Lipschitz continuous on Π(a, b) =

{π ∈ Π : a ≤ I(π) ≤ b} for any positive real numbers a < b. For I(π) = c, we have ∂(Iτ−1)/∂m =

−F ′(F−1(c)) τ−1/2 and ∂(Iτ−1)/∂τ =
(
1
2F

′(F−1(c))F−1(c)− c
)
τ−2. This establishes that both

partial derivatives of Iτ−1 are bounded along any level curve I(π) = c in Π. Letting c range
from a to b shows that they are bounded on the whole of Π(a, b), so Iτ−1 is indeed Lipschitz
continuous there.
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Verification that κ† ∈ K for Poisson Payoffs and Gamma Prior

Again from the main body of the text, for m(π) = α/β < s we have

I(π) =
sG(s;α, β)− α

β G(s;α+ 1, β)

s− α
β

− 1.

We fix α as well as positive real numbers a < b. To verify that κ† ∈ K, it suffices to show that
I(α, ·) is Lipschitz continuous on the set B(a, b) =

{
β ∈ ]αs ,∞[ : a ≤ I(π) ≤ b

}
. To this end, we

note first that

G(s;α, β)−G(s;α+ 1, β) =

∫ s

0

βα

Γ(α)
xα−1e−βµ

[
1− βµ

α

]
dµ.

For β = α/s and µ < s, the term in square brackets under the integral is positive, so we have
G(s;α, αs )−G(s;α+1, αs ) > 0. For β ↘ α

s , therefore, the numerator sG(s;α, β)− α
β G(s;α+1, β)

in the above expression for I(π) tends to a positive limit. Given that I(π) is finite for β ∈ B(a, b),
this implies that the denominator in the above expression must be bounded away from 0, i.e. β
must be bounded away from α/s on B(a, b). Using the fact that

∂G(s;α, β)

∂β
=
α

β
[G(s;α, β)−G(s;α+ 1, β)] ,

it is now straightforward to verify that I(α, ·) has a bounded first derivative on B(a, b).
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